aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/Cosine.lua
blob: 19a9cba8234fd9d0bbef86a41964a4d2e1193f42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
local Cosine, parent = torch.class('nn.Cosine', 'nn.Module')

function Cosine:__init(inputSize,outputSize)
   parent.__init(self)

   self.weight = torch.Tensor(outputSize,inputSize)
   self.gradWeight = torch.Tensor(outputSize,inputSize)

   self:reset()
end

function Cosine:reset(stdv)
   if stdv then
      stdv = stdv * math.sqrt(3)
   else
      stdv = 1./math.sqrt(self.weight:size(1))
   end
   self.weight:uniform(-stdv, stdv)
end

function Cosine:updateOutput(input)
   local inputSize = self.weight:size(2)
   local outputSize = self.weight:size(1)

   self._weightNorm = self._weightNorm or self.weight.new()
   self._inputNorm = self._inputNorm or self.weight.new()

   -- y_j = (w_j * x) / ( || w_j || * || x || )

   self._weightNorm:norm(self.weight,2,2):add(1e-12)
   if input:dim() == 1 then
      self.output:resize(outputSize):zero()
      self.output:addmv(1, self.weight, input)
      self.__norm = input:norm()+1e-12
      self.output:cdiv(self._weightNorm:view(outputSize)):div(self.__norm)
   elseif input:dim() == 2 then
      local batchSize = input:size(1)
      local nElement = self.output:nElement()
      self.output:resize(batchSize, outputSize)
      if self.output:nElement() ~= nElement then
         self.output:zero()
      end
      self.output:addmm(0, self.output, 1, input, self.weight:t())

      self._inputNorm:norm(input,2,2):add(1e-12)
      self.output:cdiv(self._weightNorm:view(1,outputSize):expandAs(self.output))
      self.output:cdiv(self._inputNorm:expandAs(self.output))
   else
      error('input must be vector or matrix')
   end

   return self.output
end

function Cosine:updateGradInput(input, gradOutput)
   if not self.gradInput then
      return
   end

   local inputSize = self.weight:size(2)
   local outputSize = self.weight:size(1)

   --[[
   dy_j           w_ji                   x_i
   ---- = -------------------  -  y_j ---------
   dx_i   || w_j || * || x ||         || x ||^2
   --]]

   local nElement = self.gradInput:nElement()
   self.gradInput:resizeAs(input)
   if self.gradInput:nElement() ~= nElement then
      self.gradInput:zero()
   end

   if input:dim() == 1 then
      self._weight = self._weight or input.new()
      self._weight:resizeAs(self.weight):copy(self.weight)
      self._weight:cdiv(self._weightNorm:expandAs(self.weight))
      self._weight:div(self.__norm)
      self._weight:addr(1, self._weight, -1/(self.__norm*self.__norm), self.output, input)
      self.gradInput:addmv(0, 1, self._weight:t(), gradOutput)
   elseif input:dim() == 2 then
      local inputNorm = self._inputNorm:expandAs(input)
      local weightNorm = self._weightNorm:view(1,outputSize):expandAs(gradOutput)

      self.gradInput:copy(input):cdiv(inputNorm)
      self._gradOutput = self._gradOutput or gradOutput.new()
      self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
      self._gradOutput:cmul(self.output)
      self._sum = self._sum or input.new()
      self._sum:sum(self._gradOutput, 2)
      self.gradInput:cmul(self._sum:expandAs(input))

      self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
      self._gradOutput:cdiv(weightNorm)
      self.gradInput:addmm(-1, self.gradInput, 1, self._gradOutput, self.weight)

      self.gradInput:cdiv(inputNorm)
   end

   return self.gradInput
end

function Cosine:accGradParameters(input, gradOutput, scale)
   scale = scale or 1
   local inputSize = self.weight:size(2)
   local outputSize = self.weight:size(1)

   --[[
   dy_j            x_i                     w_ji
   ----- = -------------------  -  y_j -----------
   dw_ji   || w_j || * || x ||         || w_j ||^2
   --]]

   if input:dim() == 1 then
      self._gradOutput = self._gradOutput or gradOutput.new()
      self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
      local weightNorm = self._weightNorm:view(outputSize)
      self._gradOutput:cdiv(weightNorm)
      self.gradWeight:addr(scale/self.__norm, self._gradOutput, input)

      self._gradOutput:cdiv(weightNorm)
      self._gradOutput:cmul(self.output)
      self._weight = self._weight or self.weight.new()
      self._weight:resizeAs(self._weight):copy(self.weight)
      self._weight:cmul(self._gradOutput:view(outputSize, 1):expandAs(self.weight))
      self.gradWeight:add(-1, self._weight)
   elseif input:dim() == 2 then
      self._weight = self._weight or self.weight.new()
      self._weight:resizeAs(self.weight):copy(self.weight)
      self._gradOutput = self._gradOutput or gradOutput.new()
      self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
      self._gradOutput:cmul(self.output)
      self._sum = self._sum or input.new()
      self._sum:sum(self._gradOutput, 1)
      local grad = self._sum[1]
      grad:cdiv(self._weightNorm:select(2,1))
      self._weight:cmul(grad:view(outputSize,1):expandAs(self._weight))

      local input_ = self._gradOutput
      input_:resizeAs(input):copy(input)
      input_:cdiv(self._inputNorm:expandAs(input))
      self._weight:addmm(-1, self._weight, 1, gradOutput:t(), input_)

      self._weight:cdiv(self._weightNorm:expandAs(self._weight))
      self.gradWeight:add(self._weight)
   else
      error"1D or 2D input expected"
   end
end

function Cosine:type(type, tensorCache)
   if type then
      -- prevent premature memory allocations
      self._input = nil
      self._weight = nil
      self._inputNorm = nil
      self._weightNorm = nil
      self._gradOutput = nil
      self._sum = nil
   end
   return parent.type(self, type, tensorCache)
end

function Cosine:clearState()
   nn.utils.clear(self, {
      '_input',
      '_weight',
      '_gradOutput',
      '_sum',
      '_inputNorm',
      '_weightNorm',
   })
   return parent.clearState(self)
end