summaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/lib/THNN/generic/LogSoftMax.c
blob: a7280422b17e20fb493ec1b1105b526cfa885c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/LogSoftMax.c"
#else

void THNN_(LogSoftMax_updateOutput)(
          THNNState *state,
          THTensor *input,
          THTensor *output)
{
  real *input_data, *output_data;
  ptrdiff_t nframe = 0, dim = 0, stride = 0;
  ptrdiff_t t, d;

  if (input->nDimension == 1)
  {
    nframe = 1;
    dim = input->size[0];
    stride = 1;
  }
  else if (input->nDimension == 2)
  {
    nframe = input->size[0];
    dim = input->size[1];
    stride = 1;
  }
  else if (input->nDimension == 3)
  {
    nframe = 1;
    dim = input->size[0];
    stride = input->size[1]*input->size[2];
  }
  else if (input->nDimension == 4)
  {
    nframe = input->size[0];
    dim = input->size[1];
    stride = input->size[2]*input->size[3];
  }
  else
    THArgCheck(0, 2, "1D, 2D, 3D or 4D tensor expected");

  input = THTensor_(newContiguous)(input);
  THTensor_(resizeAs)(output, input);

  real *input_data0 = THTensor_(data)(input);
  real *output_data0 = THTensor_(data)(output);

  accreal logsum;
  real maxInput;
  #pragma omp parallel for private(t, d, maxInput, logsum, input_data, output_data)
  for (t = 0; t < stride*nframe; t++)
  {
    logsum = 0;
    maxInput = -THInf;
    input_data = input_data0 + (t/stride)*dim*stride + t % stride;
    output_data = output_data0 + (t/stride)*dim*stride + t % stride;

    for (d = 0; d < dim; d++)
      maxInput = THMax(maxInput, input_data[d*stride]);

    for (d = 0; d < dim; d++)
      logsum += exp(input_data[d*stride] - maxInput);
    logsum = maxInput + log(logsum);

    for (d = 0; d < dim; d++)
      output_data[d*stride] = input_data[d*stride] - logsum;
  }

  THTensor_(free)(input);
}

void THNN_(LogSoftMax_updateGradInput)(
          THNNState *state,
          THTensor *input,
          THTensor *gradOutput,
          THTensor *gradInput,
          THTensor *output)
{
  THNN_CHECK_SHAPE(input, gradOutput);
  real *gradInput_data, *gradOutput_data, *output_data;
  ptrdiff_t nframe = 0, dim = 0, stride = 0;
  ptrdiff_t t, d;

  if (output->nDimension == 1)
  {
    nframe = 1;
    dim = output->size[0];
    stride = 1;
  }
  else if (output->nDimension == 2)
  {
    nframe = output->size[0];
    dim = output->size[1];
    stride = 1;
  }
  else if (output->nDimension == 3)
  {
    nframe = 1;
    dim = output->size[0];
    stride = output->size[1]*output->size[2];
  }
  else if (output->nDimension == 4)
  {
    nframe = output->size[0];
    dim = output->size[1];
    stride = output->size[2]*output->size[3];
  }
  else
    THError("1D, 2D, 3D or 4D tensor expected");

  output = THTensor_(newContiguous)(output);
  gradOutput = THTensor_(newContiguous)(gradOutput);

  THTensor_(resizeAs)(gradInput, output);
  real *gradInput_data0 = THTensor_(data)(gradInput);
  real *output_data0 = THTensor_(data)(output);
  real *gradOutput_data0 = THTensor_(data)(gradOutput);
  accreal sum;
  #pragma omp parallel for private(t, sum, d, gradInput_data, output_data, gradOutput_data)
  for (t = 0; t < stride*nframe; t++)
  {
    sum = 0;
    gradInput_data = gradInput_data0 + (t/stride)*dim*stride + t % stride;
    output_data = output_data0 + (t/stride)*dim*stride + t % stride;
    gradOutput_data = gradOutput_data0 + (t/stride)*dim*stride + t % stride;

    for (d = 0; d < dim; d++)
      sum += gradOutput_data[d*stride];

    for (d = 0; d < dim; d++)
      gradInput_data[d*stride] = gradOutput_data[d*stride] - exp(output_data[d*stride])*sum;
  }

  THTensor_(free)(gradOutput);
  THTensor_(free)(output);
}

#endif