aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/utils.lua
blob: 17b52afb3e124262584caec76eb11b313315e280 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
nn.utils = {}

-- oops; someone forgot to add torch.Storage.type
-- TODO replace with torch.Storage.type when implemented
local function torch_Storage_type(self, type)
   local current = torch.typename(self)
   if not type then return current end
   if type ~= current then
      local new = torch.getmetatable(type).new()
      if self:size() > 0 then
         new:resize(self:size()):copy(self)
      end
      return new
   else
      return self
   end
end

-- tensorCache maintains a list of all tensors and storages that have been
-- converted (recursively) by calls to recursiveType() and type().
-- It caches conversions in order to preserve sharing semantics
-- i.e. if two tensors share a common storage, then type conversion
-- should preserve that.
--
-- You can preserve sharing semantics across multiple networks by
-- passing tensorCache between the calls to type, e.g.
--
-- > tensorCache = {}
-- > net1:type('torch.CudaTensor', tensorCache)
-- > net2:type('torch.CudaTensor', tensorCache)
-- > nn.utils.recursiveType(anotherTensor, 'torch.CudaTensor', tensorCache)
--
-- Implementation note: to make Lua table lookup behave correctly,
-- tensor keys are stored as actual tensor objects, while storage
-- keys are stored as the pointers themselves (as numbers).
function nn.utils.recursiveType(param, type, tensorCache)
   tensorCache = tensorCache or {}

   if torch.type(param) == 'table' then
      for k, v in pairs(param) do
         param[k] = nn.utils.recursiveType(v, type, tensorCache)
      end
   elseif torch.isTypeOf(param, 'nn.Module') or
          torch.isTypeOf(param, 'nn.Criterion') then
      param:type(type, tensorCache)
   elseif torch.isTensor(param) then
      if torch.typename(param) ~= type then
         local newparam
         if tensorCache[param] then
            newparam = tensorCache[param]
         else
            newparam = torch.Tensor():type(type)
            local storageType = type:gsub('Tensor','Storage')
            if param:storage() then
               local storage_key = torch.pointer(param:storage())
               if not tensorCache[storage_key] then
                  tensorCache[storage_key] = torch_Storage_type(
                        param:storage(), storageType)
               end
               assert(torch.type(tensorCache[storage_key]) == storageType)
               newparam:set(
                  tensorCache[storage_key],
                  param:storageOffset(),
                  param:size(),
                  param:stride()
               )
            end
            tensorCache[param] = newparam
         end
         assert(torch.type(newparam) == type)
         param = newparam
      end
   end
   return param
end

function nn.utils.recursiveResizeAs(t1,t2)
   if torch.type(t2) == 'table' then
      t1 = (torch.type(t1) == 'table') and t1 or {t1}
      for key,_ in pairs(t2) do
         t1[key], t2[key] = nn.utils.recursiveResizeAs(t1[key], t2[key])
      end
      for key,_ in pairs(t1) do
         if not t2[key] then
            t1[key] = nil
         end
      end
   elseif torch.isTensor(t2) then
      t1 = torch.isTensor(t1) and t1 or t2.new()
      t1:resize(t2:size())
   else
      error("expecting nested tensors or tables. Got "..
            torch.type(t1).." and "..torch.type(t2).." instead")
   end
   return t1, t2
end

function nn.utils.recursiveFill(t2, val)
   if torch.type(t2) == 'table' then
      for key,_ in pairs(t2) do
         t2[key] = nn.utils.recursiveFill(t2[key], val)
      end
   elseif torch.isTensor(t2) then
      t2:fill(val)
   else
      error("expecting tensor or table thereof. Got "
           ..torch.type(t2).." instead")
   end
   return t2
end

function nn.utils.recursiveAdd(t1, val, t2)
   if not t2 then
      assert(val, "expecting at least two arguments")
      t2 = val
      val = 1
   end
   val = val or 1
   if torch.type(t2) == 'table' then
      t1 = (torch.type(t1) == 'table') and t1 or {t1}
      for key,_ in pairs(t2) do
         t1[key], t2[key] = nn.utils.recursiveAdd(t1[key], val, t2[key])
      end
   elseif torch.isTensor(t1) and torch.isTensor(t2) then
      t1:add(val, t2)
   else
      error("expecting nested tensors or tables. Got "..
            torch.type(t1).." and "..torch.type(t2).." instead")
   end
   return t1, t2
end

function nn.utils.recursiveCopy(t1,t2,async)
   if torch.type(t2) == 'table' then
      t1 = (torch.type(t1) == 'table') and t1 or {t1}
      for key,_ in pairs(t2) do
         t1[key], t2[key] = nn.utils.recursiveCopy(t1[key], t2[key], async)
      end
   elseif torch.isTensor(t2) then
      t1 = torch.isTensor(t1) and t1 or t2.new()
      t1:resize(t2:size())
      if async then
        t1:copyAsync(t2)
      else
        t1:copy(t2)
      end
   else
      error("expecting nested tensors or tables. Got "..
            torch.type(t1).." and "..torch.type(t2).." instead")
   end
   return t1, t2
end

function nn.utils.addSingletonDimension(...)
  local view, t, dim
  if select('#',...) < 3 then
    t, dim = select(1,...)
  else
    view, t, dim = select(1,...)
    assert(torch.isTensor(view),
           "output tensor expected, got " .. type(view))
  end

  assert(torch.isTensor(t), "input tensor expected")
  dim = dim or 1
  assert(dim > 0 and dim <= (t:dim() + 1), "invalid dimension: " .. dim
             .. '. Tensor is of ' .. t:dim() .. ' dimensions.')

  view = view or t.new()
  local size = torch.LongStorage(t:dim() + 1)
  local stride = torch.LongStorage(t:dim() + 1)

  for d = 1, dim - 1 do
    size[d] = t:size(d)
    stride[d] = t:stride(d)
  end
  size[dim] = 1
  stride[dim] = 1
  for d = dim + 1, t:dim() + 1 do
    size[d] = t:size(d - 1)
    stride[d] = t:stride(d - 1)
  end

  view:set(t:storage(), t:storageOffset(), size, stride)
  return view
end

function nn.utils.contiguousView(output, input, ...)
  output = output or input.new()
  if input:isContiguous() then
    output:view(input, ...)
  else
    output:resize(input:size())
    output:copy(input)
    output:view(output, ...)
  end
  return output
end

-- go over specified fields and clear them. accepts
-- nn.utils.clearState(self, {'_buffer', '_buffer2'}) and
-- nn.utils.clearState(self, '_buffer', '_buffer2')
function nn.utils.clear(self, ...)
   local arg = {...}
   if #arg > 0 and type(arg[1]) == 'table' then
      arg = arg[1]
   end
   local function clear(f)
      if self[f] then
         if torch.isTensor(self[f]) then
            self[f]:set()
         elseif type(self[f]) == 'table' then
            self[f] = {}
         else
            self[f] = nil
         end
      end
   end
   for i,v in ipairs(arg) do clear(v) end
   return self
end

table.unpack = table.unpack or unpack