1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
|
/* From
https://github.com/endorno/pytorch/blob/master/torch/lib/TH/generic/simd/simd.h
Highly modified.
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou,
Iain Melvin, Jason Weston) Copyright (c) 2006 Idiap Research Institute
(Samy Bengio) Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert,
Samy Bengio, Johnny Mariethoz)
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories
America and IDIAP Research Institute nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SIMDutf_INTERNAL_ISADETECTION_H
#define SIMDutf_INTERNAL_ISADETECTION_H
#include <cstdint>
#include <cstdlib>
#if defined(_MSC_VER)
#include <intrin.h>
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
#include <cpuid.h>
#endif
#include "simdutf/portability.h"
// RISC-V ISA detection utilities
#if SIMDUTF_IS_RISCV64 && defined(__linux__)
#include <unistd.h> // for syscall
// We define these ourselves, for backwards compatibility
struct simdutf_riscv_hwprobe {
int64_t key;
uint64_t value;
};
#define simdutf_riscv_hwprobe(...) syscall(258, __VA_ARGS__)
#define SIMDUTF_RISCV_HWPROBE_KEY_IMA_EXT_0 4
#define SIMDUTF_RISCV_HWPROBE_IMA_V (1 << 2)
#define SIMDUTF_RISCV_HWPROBE_EXT_ZVBB (1 << 17)
#endif // SIMDUTF_IS_RISCV64 && defined(__linux__)
namespace simdutf {
namespace internal {
enum instruction_set {
DEFAULT = 0x0,
NEON = 0x1,
AVX2 = 0x4,
SSE42 = 0x8,
PCLMULQDQ = 0x10,
BMI1 = 0x20,
BMI2 = 0x40,
ALTIVEC = 0x80,
AVX512F = 0x100,
AVX512DQ = 0x200,
AVX512IFMA = 0x400,
AVX512PF = 0x800,
AVX512ER = 0x1000,
AVX512CD = 0x2000,
AVX512BW = 0x4000,
AVX512VL = 0x8000,
AVX512VBMI2 = 0x10000,
AVX512VPOPCNTDQ = 0x2000,
RVV = 0x4000,
ZVBB = 0x8000,
LSX = 0x40000,
LASX = 0x80000,
};
#if defined(__PPC64__)
static inline uint32_t detect_supported_architectures() {
return instruction_set::ALTIVEC;
}
#elif SIMDUTF_IS_RISCV64
static inline uint32_t detect_supported_architectures() {
uint32_t host_isa = instruction_set::DEFAULT;
#if SIMDUTF_IS_RVV
host_isa |= instruction_set::RVV;
#endif
#if SIMDUTF_IS_ZVBB
host_isa |= instruction_set::ZVBB;
#endif
#if defined(__linux__)
simdutf_riscv_hwprobe probes[] = {{SIMDUTF_RISCV_HWPROBE_KEY_IMA_EXT_0, 0}};
long ret = simdutf_riscv_hwprobe(&probes, sizeof probes / sizeof *probes, 0,
nullptr, 0);
if (ret == 0) {
uint64_t extensions = probes[0].value;
if (extensions & SIMDUTF_RISCV_HWPROBE_IMA_V)
host_isa |= instruction_set::RVV;
if (extensions & SIMDUTF_RISCV_HWPROBE_EXT_ZVBB)
host_isa |= instruction_set::ZVBB;
}
#endif
#if defined(RUN_IN_SPIKE_SIMULATOR)
// Proxy Kernel does not implement yet hwprobe syscall
host_isa |= instruction_set::RVV;
#endif
return host_isa;
}
#elif defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
static inline uint32_t detect_supported_architectures() {
return instruction_set::NEON;
}
#elif defined(__x86_64__) || defined(_M_AMD64) // x64
namespace {
namespace cpuid_bit {
// Can be found on Intel ISA Reference for CPUID
// EAX = 0x01
constexpr uint32_t pclmulqdq = uint32_t(1)
<< 1; ///< @private bit 1 of ECX for EAX=0x1
constexpr uint32_t sse42 = uint32_t(1)
<< 20; ///< @private bit 20 of ECX for EAX=0x1
constexpr uint32_t osxsave =
(uint32_t(1) << 26) |
(uint32_t(1) << 27); ///< @private bits 26+27 of ECX for EAX=0x1
// EAX = 0x7f (Structured Extended Feature Flags), ECX = 0x00 (Sub-leaf)
// See: "Table 3-8. Information Returned by CPUID Instruction"
namespace ebx {
constexpr uint32_t bmi1 = uint32_t(1) << 3;
constexpr uint32_t avx2 = uint32_t(1) << 5;
constexpr uint32_t bmi2 = uint32_t(1) << 8;
constexpr uint32_t avx512f = uint32_t(1) << 16;
constexpr uint32_t avx512dq = uint32_t(1) << 17;
constexpr uint32_t avx512ifma = uint32_t(1) << 21;
constexpr uint32_t avx512cd = uint32_t(1) << 28;
constexpr uint32_t avx512bw = uint32_t(1) << 30;
constexpr uint32_t avx512vl = uint32_t(1) << 31;
} // namespace ebx
namespace ecx {
constexpr uint32_t avx512vbmi = uint32_t(1) << 1;
constexpr uint32_t avx512vbmi2 = uint32_t(1) << 6;
constexpr uint32_t avx512vnni = uint32_t(1) << 11;
constexpr uint32_t avx512bitalg = uint32_t(1) << 12;
constexpr uint32_t avx512vpopcnt = uint32_t(1) << 14;
} // namespace ecx
namespace edx {
constexpr uint32_t avx512vp2intersect = uint32_t(1) << 8;
}
namespace xcr0_bit {
constexpr uint64_t avx256_saved = uint64_t(1) << 2; ///< @private bit 2 = AVX
constexpr uint64_t avx512_saved =
uint64_t(7) << 5; ///< @private bits 5,6,7 = opmask, ZMM_hi256, hi16_ZMM
} // namespace xcr0_bit
} // namespace cpuid_bit
} // namespace
static inline void cpuid(uint32_t *eax, uint32_t *ebx, uint32_t *ecx,
uint32_t *edx) {
#if defined(_MSC_VER)
int cpu_info[4];
__cpuidex(cpu_info, *eax, *ecx);
*eax = cpu_info[0];
*ebx = cpu_info[1];
*ecx = cpu_info[2];
*edx = cpu_info[3];
#elif defined(HAVE_GCC_GET_CPUID) && defined(USE_GCC_GET_CPUID)
uint32_t level = *eax;
__get_cpuid(level, eax, ebx, ecx, edx);
#else
uint32_t a = *eax, b, c = *ecx, d;
asm volatile("cpuid\n\t" : "+a"(a), "=b"(b), "+c"(c), "=d"(d));
*eax = a;
*ebx = b;
*ecx = c;
*edx = d;
#endif
}
static inline uint64_t xgetbv() {
#if defined(_MSC_VER)
return _xgetbv(0);
#else
uint32_t xcr0_lo, xcr0_hi;
asm volatile("xgetbv\n\t" : "=a"(xcr0_lo), "=d"(xcr0_hi) : "c"(0));
return xcr0_lo | ((uint64_t)xcr0_hi << 32);
#endif
}
static inline uint32_t detect_supported_architectures() {
uint32_t eax;
uint32_t ebx = 0;
uint32_t ecx = 0;
uint32_t edx = 0;
uint32_t host_isa = 0x0;
// EBX for EAX=0x1
eax = 0x1;
cpuid(&eax, &ebx, &ecx, &edx);
if (ecx & cpuid_bit::sse42) {
host_isa |= instruction_set::SSE42;
}
if (ecx & cpuid_bit::pclmulqdq) {
host_isa |= instruction_set::PCLMULQDQ;
}
if ((ecx & cpuid_bit::osxsave) != cpuid_bit::osxsave) {
return host_isa;
}
// xgetbv for checking if the OS saves registers
uint64_t xcr0 = xgetbv();
if ((xcr0 & cpuid_bit::xcr0_bit::avx256_saved) == 0) {
return host_isa;
}
// ECX for EAX=0x7
eax = 0x7;
ecx = 0x0; // Sub-leaf = 0
cpuid(&eax, &ebx, &ecx, &edx);
if (ebx & cpuid_bit::ebx::avx2) {
host_isa |= instruction_set::AVX2;
}
if (ebx & cpuid_bit::ebx::bmi1) {
host_isa |= instruction_set::BMI1;
}
if (ebx & cpuid_bit::ebx::bmi2) {
host_isa |= instruction_set::BMI2;
}
if (!((xcr0 & cpuid_bit::xcr0_bit::avx512_saved) ==
cpuid_bit::xcr0_bit::avx512_saved)) {
return host_isa;
}
if (ebx & cpuid_bit::ebx::avx512f) {
host_isa |= instruction_set::AVX512F;
}
if (ebx & cpuid_bit::ebx::avx512bw) {
host_isa |= instruction_set::AVX512BW;
}
if (ebx & cpuid_bit::ebx::avx512cd) {
host_isa |= instruction_set::AVX512CD;
}
if (ebx & cpuid_bit::ebx::avx512dq) {
host_isa |= instruction_set::AVX512DQ;
}
if (ebx & cpuid_bit::ebx::avx512vl) {
host_isa |= instruction_set::AVX512VL;
}
if (ecx & cpuid_bit::ecx::avx512vbmi2) {
host_isa |= instruction_set::AVX512VBMI2;
}
if (ecx & cpuid_bit::ecx::avx512vpopcnt) {
host_isa |= instruction_set::AVX512VPOPCNTDQ;
}
return host_isa;
}
#elif defined(__loongarch__)
#if defined(__linux__)
#include <sys/auxv.h>
// bits/hwcap.h
// #define HWCAP_LOONGARCH_LSX (1 << 4)
// #define HWCAP_LOONGARCH_LASX (1 << 5)
#endif
static inline uint32_t detect_supported_architectures() {
uint32_t host_isa = instruction_set::DEFAULT;
#if defined(__linux__)
uint64_t hwcap = 0;
hwcap = getauxval(AT_HWCAP);
if (hwcap & HWCAP_LOONGARCH_LSX) {
host_isa |= instruction_set::LSX;
}
if (hwcap & HWCAP_LOONGARCH_LASX) {
host_isa |= instruction_set::LASX;
}
#endif
return host_isa;
}
#else // fallback
// includes 32-bit ARM.
static inline uint32_t detect_supported_architectures() {
return instruction_set::DEFAULT;
}
#endif // end SIMD extension detection code
} // namespace internal
} // namespace simdutf
#endif // SIMDutf_INTERNAL_ISADETECTION_H
|