1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
/*
This upcoming macro (SIMDUTF_ICELAKE_TRANSCODE16) takes 16 + 4 bytes (of a
UTF-8 string) and loads all possible 4-byte substring into an AVX512
register.
For example if we have bytes abcdefgh... we create following 32-bit lanes
[abcd|bcde|cdef|defg|efgh|...]
^ ^
byte 0 of reg byte 63 of reg
*/
/** pshufb
# lane{0,1,2} have got bytes: [ 0, 1, 2, 3, 4, 5, 6, 8, 9, 10,
11, 12, 13, 14, 15] # lane3 has got bytes: [ 16, 17, 18, 19, 4, 5,
6, 8, 9, 10, 11, 12, 13, 14, 15]
expand_ver2 = [
# lane 0:
0, 1, 2, 3,
1, 2, 3, 4,
2, 3, 4, 5,
3, 4, 5, 6,
# lane 1:
4, 5, 6, 7,
5, 6, 7, 8,
6, 7, 8, 9,
7, 8, 9, 10,
# lane 2:
8, 9, 10, 11,
9, 10, 11, 12,
10, 11, 12, 13,
11, 12, 13, 14,
# lane 3 order: 13, 14, 15, 16 14, 15, 16, 17, 15, 16, 17, 18, 16,
17, 18, 19 12, 13, 14, 15, 13, 14, 15, 0, 14, 15, 0, 1, 15, 0, 1, 2,
]
*/
#define SIMDUTF_ICELAKE_TRANSCODE16(LANE0, LANE1, MASKED) \
{ \
const __m512i merged = _mm512_mask_mov_epi32(LANE0, 0x1000, LANE1); \
const __m512i expand_ver2 = _mm512_setr_epi64( \
0x0403020103020100, 0x0605040305040302, 0x0807060507060504, \
0x0a09080709080706, 0x0c0b0a090b0a0908, 0x0e0d0c0b0d0c0b0a, \
0x000f0e0d0f0e0d0c, 0x0201000f01000f0e); \
const __m512i input = _mm512_shuffle_epi8(merged, expand_ver2); \
\
__mmask16 leading_bytes; \
const __m512i v_0000_00c0 = _mm512_set1_epi32(0xc0); \
const __m512i t0 = _mm512_and_si512(input, v_0000_00c0); \
const __m512i v_0000_0080 = _mm512_set1_epi32(0x80); \
leading_bytes = _mm512_cmpneq_epu32_mask(t0, v_0000_0080); \
\
__m512i char_class; \
char_class = _mm512_srli_epi32(input, 4); \
/* char_class = ((input >> 4) & 0x0f) | 0x80808000 */ \
const __m512i v_0000_000f = _mm512_set1_epi32(0x0f); \
const __m512i v_8080_8000 = _mm512_set1_epi32(0x80808000); \
char_class = \
_mm512_ternarylogic_epi32(char_class, v_0000_000f, v_8080_8000, 0xea); \
\
const int valid_count = static_cast<int>(count_ones(leading_bytes)); \
const __m512i utf32 = expanded_utf8_to_utf32(char_class, input); \
\
const __m512i out = _mm512_mask_compress_epi32(_mm512_setzero_si512(), \
leading_bytes, utf32); \
\
if (UTF32) { \
if (MASKED) { \
const __mmask16 valid = uint16_t((1 << valid_count) - 1); \
_mm512_mask_storeu_epi32((__m512i *)output, valid, out); \
} else { \
_mm512_storeu_si512((__m512i *)output, out); \
} \
output += valid_count; \
} else { \
if (MASKED) { \
output += utf32_to_utf16_masked<big_endian>( \
byteflip, out, valid_count, reinterpret_cast<char16_t *>(output)); \
} else { \
output += utf32_to_utf16<big_endian>( \
byteflip, out, valid_count, reinterpret_cast<char16_t *>(output)); \
} \
} \
}
#define SIMDUTF_ICELAKE_WRITE_UTF16_OR_UTF32(INPUT, VALID_COUNT, MASKED) \
{ \
if (UTF32) { \
if (MASKED) { \
const __mmask16 valid_mask = uint16_t((1 << VALID_COUNT) - 1); \
_mm512_mask_storeu_epi32((__m512i *)output, valid_mask, INPUT); \
} else { \
_mm512_storeu_si512((__m512i *)output, INPUT); \
} \
output += VALID_COUNT; \
} else { \
if (MASKED) { \
output += utf32_to_utf16_masked<big_endian>( \
byteflip, INPUT, VALID_COUNT, \
reinterpret_cast<char16_t *>(output)); \
} else { \
output += \
utf32_to_utf16<big_endian>(byteflip, INPUT, VALID_COUNT, \
reinterpret_cast<char16_t *>(output)); \
} \
} \
}
#define SIMDUTF_ICELAKE_STORE_ASCII(UTF32, utf8, output) \
if (UTF32) { \
const __m128i t0 = _mm512_castsi512_si128(utf8); \
const __m128i t1 = _mm512_extracti32x4_epi32(utf8, 1); \
const __m128i t2 = _mm512_extracti32x4_epi32(utf8, 2); \
const __m128i t3 = _mm512_extracti32x4_epi32(utf8, 3); \
_mm512_storeu_si512((__m512i *)(output + 0 * 16), \
_mm512_cvtepu8_epi32(t0)); \
_mm512_storeu_si512((__m512i *)(output + 1 * 16), \
_mm512_cvtepu8_epi32(t1)); \
_mm512_storeu_si512((__m512i *)(output + 2 * 16), \
_mm512_cvtepu8_epi32(t2)); \
_mm512_storeu_si512((__m512i *)(output + 3 * 16), \
_mm512_cvtepu8_epi32(t3)); \
} else { \
const __m256i h0 = _mm512_castsi512_si256(utf8); \
const __m256i h1 = _mm512_extracti64x4_epi64(utf8, 1); \
if (big_endian) { \
_mm512_storeu_si512( \
(__m512i *)(output + 0 * 16), \
_mm512_shuffle_epi8(_mm512_cvtepu8_epi16(h0), byteflip)); \
_mm512_storeu_si512( \
(__m512i *)(output + 2 * 16), \
_mm512_shuffle_epi8(_mm512_cvtepu8_epi16(h1), byteflip)); \
} else { \
_mm512_storeu_si512((__m512i *)(output + 0 * 16), \
_mm512_cvtepu8_epi16(h0)); \
_mm512_storeu_si512((__m512i *)(output + 2 * 16), \
_mm512_cvtepu8_epi16(h1)); \
} \
}
|