aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/simdutf/src/lasx/lasx_base64.cpp
blob: 33515f2f8939142e62e4abccea3678236dd31841 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/**
 * References and further reading:
 *
 * Wojciech Muła, Daniel Lemire, Base64 encoding and decoding at almost the
 * speed of a memory copy, Software: Practice and Experience 50 (2), 2020.
 * https://arxiv.org/abs/1910.05109
 *
 * Wojciech Muła, Daniel Lemire, Faster Base64 Encoding and Decoding using AVX2
 * Instructions, ACM Transactions on the Web 12 (3), 2018.
 * https://arxiv.org/abs/1704.00605
 *
 * Simon Josefsson. 2006. The Base16, Base32, and Base64 Data Encodings.
 * https://tools.ietf.org/html/rfc4648. (2006). Internet Engineering Task Force,
 * Request for Comments: 4648.
 *
 * Alfred Klomp. 2014a. Fast Base64 encoding/decoding with SSE vectorization.
 * http://www.alfredklomp.com/programming/sse-base64/. (2014).
 *
 * Alfred Klomp. 2014b. Fast Base64 stream encoder/decoder in C99, with SIMD
 * acceleration. https://github.com/aklomp/base64. (2014).
 *
 * Hanson Char. 2014. A Fast and Correct Base 64 Codec. (2014).
 * https://aws.amazon.com/blogs/developer/a-fast-and-correct-base-64-codec/
 *
 * Nick Kopp. 2013. Base64 Encoding on a GPU.
 * https://www.codeproject.com/Articles/276993/Base-Encoding-on-a-GPU. (2013).
 */

template <bool isbase64url>
size_t encode_base64(char *dst, const char *src, size_t srclen,
                     base64_options options) {
  // credit: Wojciech Muła
  // SSE (lookup: pshufb improved unrolled)
  const uint8_t *input = (const uint8_t *)src;
  static const char *lookup_tbl =
      isbase64url
          ? "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
          : "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  uint8_t *out = (uint8_t *)dst;

  v32u8 shuf;
  __m256i v_fc0fc00, v_3f03f0, shift_r, shift_l, base64_tbl0, base64_tbl1,
      base64_tbl2, base64_tbl3;
  if (srclen >= 28) {
    shuf = v32u8{1, 0, 2, 1, 4, 3, 5, 4, 7, 6, 8, 7, 10, 9, 11, 10,
                 1, 0, 2, 1, 4, 3, 5, 4, 7, 6, 8, 7, 10, 9, 11, 10};

    v_fc0fc00 = __lasx_xvreplgr2vr_w(uint32_t(0x0fc0fc00));
    v_3f03f0 = __lasx_xvreplgr2vr_w(uint32_t(0x003f03f0));
    shift_r = __lasx_xvreplgr2vr_w(uint32_t(0x0006000a));
    shift_l = __lasx_xvreplgr2vr_w(uint32_t(0x00080004));
    base64_tbl0 = ____m256i(__lsx_vld(lookup_tbl, 0));
    base64_tbl1 = ____m256i(__lsx_vld(lookup_tbl, 16));
    base64_tbl2 = ____m256i(__lsx_vld(lookup_tbl, 32));
    base64_tbl3 = ____m256i(__lsx_vld(lookup_tbl, 48));
  }
  size_t i = 0;
  for (; i + 100 <= srclen; i += 96) {
    __m128i in0_lo =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 0);
    __m128i in0_hi =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 1);
    __m128i in1_lo =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 2);
    __m128i in1_hi =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 3);
    __m128i in2_lo =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 4);
    __m128i in2_hi =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 5);
    __m128i in3_lo =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 6);
    __m128i in3_hi =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 7);

    __m256i in0 = lasx_set_q(in0_hi, in0_lo);
    __m256i in1 = lasx_set_q(in1_hi, in1_lo);
    __m256i in2 = lasx_set_q(in2_hi, in2_lo);
    __m256i in3 = lasx_set_q(in3_hi, in3_lo);

    in0 = __lasx_xvshuf_b(in0, in0, (__m256i)shuf);
    in1 = __lasx_xvshuf_b(in1, in1, (__m256i)shuf);
    in2 = __lasx_xvshuf_b(in2, in2, (__m256i)shuf);
    in3 = __lasx_xvshuf_b(in3, in3, (__m256i)shuf);

    __m256i t0_0 = __lasx_xvand_v(in0, v_fc0fc00);
    __m256i t0_1 = __lasx_xvand_v(in1, v_fc0fc00);
    __m256i t0_2 = __lasx_xvand_v(in2, v_fc0fc00);
    __m256i t0_3 = __lasx_xvand_v(in3, v_fc0fc00);

    __m256i t1_0 = __lasx_xvsrl_h(t0_0, shift_r);
    __m256i t1_1 = __lasx_xvsrl_h(t0_1, shift_r);
    __m256i t1_2 = __lasx_xvsrl_h(t0_2, shift_r);
    __m256i t1_3 = __lasx_xvsrl_h(t0_3, shift_r);

    __m256i t2_0 = __lasx_xvand_v(in0, v_3f03f0);
    __m256i t2_1 = __lasx_xvand_v(in1, v_3f03f0);
    __m256i t2_2 = __lasx_xvand_v(in2, v_3f03f0);
    __m256i t2_3 = __lasx_xvand_v(in3, v_3f03f0);

    __m256i t3_0 = __lasx_xvsll_h(t2_0, shift_l);
    __m256i t3_1 = __lasx_xvsll_h(t2_1, shift_l);
    __m256i t3_2 = __lasx_xvsll_h(t2_2, shift_l);
    __m256i t3_3 = __lasx_xvsll_h(t2_3, shift_l);

    __m256i input0 = __lasx_xvor_v(t1_0, t3_0);
    __m256i input0_shuf0 = __lasx_xvshuf_b(base64_tbl1, base64_tbl0, input0);
    __m256i input0_shuf1 = __lasx_xvshuf_b(
        base64_tbl3, base64_tbl2, __lasx_xvsub_b(input0, __lasx_xvldi(32)));
    __m256i input0_mask = __lasx_xvslei_bu(input0, 31);
    __m256i input0_result =
        __lasx_xvbitsel_v(input0_shuf1, input0_shuf0, input0_mask);
    __lasx_xvst(input0_result, reinterpret_cast<__m256i *>(out), 0);
    out += 32;

    __m256i input1 = __lasx_xvor_v(t1_1, t3_1);
    __m256i input1_shuf0 = __lasx_xvshuf_b(base64_tbl1, base64_tbl0, input1);
    __m256i input1_shuf1 = __lasx_xvshuf_b(
        base64_tbl3, base64_tbl2, __lasx_xvsub_b(input1, __lasx_xvldi(32)));
    __m256i input1_mask = __lasx_xvslei_bu(input1, 31);
    __m256i input1_result =
        __lasx_xvbitsel_v(input1_shuf1, input1_shuf0, input1_mask);
    __lasx_xvst(input1_result, reinterpret_cast<__m256i *>(out), 0);
    out += 32;

    __m256i input2 = __lasx_xvor_v(t1_2, t3_2);
    __m256i input2_shuf0 = __lasx_xvshuf_b(base64_tbl1, base64_tbl0, input2);
    __m256i input2_shuf1 = __lasx_xvshuf_b(
        base64_tbl3, base64_tbl2, __lasx_xvsub_b(input2, __lasx_xvldi(32)));
    __m256i input2_mask = __lasx_xvslei_bu(input2, 31);
    __m256i input2_result =
        __lasx_xvbitsel_v(input2_shuf1, input2_shuf0, input2_mask);
    __lasx_xvst(input2_result, reinterpret_cast<__m256i *>(out), 0);
    out += 32;

    __m256i input3 = __lasx_xvor_v(t1_3, t3_3);
    __m256i input3_shuf0 = __lasx_xvshuf_b(base64_tbl1, base64_tbl0, input3);
    __m256i input3_shuf1 = __lasx_xvshuf_b(
        base64_tbl3, base64_tbl2, __lasx_xvsub_b(input3, __lasx_xvldi(32)));
    __m256i input3_mask = __lasx_xvslei_bu(input3, 31);
    __m256i input3_result =
        __lasx_xvbitsel_v(input3_shuf1, input3_shuf0, input3_mask);
    __lasx_xvst(input3_result, reinterpret_cast<__m256i *>(out), 0);
    out += 32;
  }
  for (; i + 28 <= srclen; i += 24) {

    __m128i in_lo = __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 0);
    __m128i in_hi =
        __lsx_vld(reinterpret_cast<const __m128i *>(input + i), 4 * 3 * 1);

    __m256i in = lasx_set_q(in_hi, in_lo);

    // bytes from groups A, B and C are needed in separate 32-bit lanes
    // in = [DDDD|CCCC|BBBB|AAAA]
    //
    //      an input triplet has layout
    //      [????????|ccdddddd|bbbbcccc|aaaaaabb]
    //        byte 3   byte 2   byte 1   byte 0    -- byte 3 comes from the next
    //        triplet
    //
    //      shuffling changes the order of bytes: 1, 0, 2, 1
    //      [bbbbcccc|ccdddddd|aaaaaabb|bbbbcccc]
    //           ^^^^ ^^^^^^^^ ^^^^^^^^ ^^^^
    //                  processed bits
    in = __lasx_xvshuf_b(in, in, (__m256i)shuf);

    // unpacking
    // t0    = [0000cccc|cc000000|aaaaaa00|00000000]
    __m256i t0 = __lasx_xvand_v(in, v_fc0fc00);
    // t1    = [00000000|00cccccc|00000000|00aaaaaa]
    //          ((c >> 6),  (a >> 10))
    __m256i t1 = __lasx_xvsrl_h(t0, shift_r);

    // t2    = [00000000|00dddddd|000000bb|bbbb0000]
    __m256i t2 = __lasx_xvand_v(in, v_3f03f0);
    // t3    = [00dddddd|00000000|00bbbbbb|00000000]
    //          ((d << 8), (b << 4))
    __m256i t3 = __lasx_xvsll_h(t2, shift_l);

    // res   = [00dddddd|00cccccc|00bbbbbb|00aaaaaa] = t1 | t3
    __m256i indices = __lasx_xvor_v(t1, t3);

    __m256i indices_shuf0 = __lasx_xvshuf_b(base64_tbl1, base64_tbl0, indices);
    __m256i indices_shuf1 = __lasx_xvshuf_b(
        base64_tbl3, base64_tbl2, __lasx_xvsub_b(indices, __lasx_xvldi(32)));
    __m256i indices_mask = __lasx_xvslei_bu(indices, 31);
    __m256i indices_result =
        __lasx_xvbitsel_v(indices_shuf1, indices_shuf0, indices_mask);
    __lasx_xvst(indices_result, reinterpret_cast<__m256i *>(out), 0);
    out += 32;
  }

  return i / 3 * 4 + scalar::base64::tail_encode_base64((char *)out, src + i,
                                                        srclen - i, options);
}

static inline void compress(__m128i data, uint16_t mask, char *output) {
  if (mask == 0) {
    __lsx_vst(data, reinterpret_cast<__m128i *>(output), 0);
    return;
  }
  // this particular implementation was inspired by work done by @animetosho
  // we do it in two steps, first 8 bytes and then second 8 bytes
  uint8_t mask1 = uint8_t(mask);      // least significant 8 bits
  uint8_t mask2 = uint8_t(mask >> 8); // most significant 8 bits
  // next line just loads the 64-bit values thintable_epi8[mask1] and
  // thintable_epi8[mask2] into a 128-bit register, using only
  // two instructions on most compilers.

  v2u64 shufmask = {tables::base64::thintable_epi8[mask1],
                    tables::base64::thintable_epi8[mask2]};

  // we increment by 0x08 the second half of the mask
  const v4u32 hi = {0, 0, 0x08080808, 0x08080808};
  __m128i shufmask1 = __lsx_vadd_b((__m128i)shufmask, (__m128i)hi);

  // this is the version "nearly pruned"
  __m128i pruned = __lsx_vshuf_b(data, data, shufmask1);
  // we still need to put the two halves together.
  // we compute the popcount of the first half:
  int pop1 = tables::base64::BitsSetTable256mul2[mask1];
  // then load the corresponding mask, what it does is to write
  // only the first pop1 bytes from the first 8 bytes, and then
  // it fills in with the bytes from the second 8 bytes + some filling
  // at the end.
  __m128i compactmask =
      __lsx_vld(reinterpret_cast<const __m128i *>(
                    tables::base64::pshufb_combine_table + pop1 * 8),
                0);
  __m128i answer = __lsx_vshuf_b(pruned, pruned, compactmask);

  __lsx_vst(answer, reinterpret_cast<__m128i *>(output), 0);
}

struct block64 {
  __m256i chunks[2];
};

template <bool base64_url>
static inline uint32_t to_base64_mask(__m256i *src, bool *error) {
  __m256i ascii_space_tbl =
      ____m256i((__m128i)v16u8{0x20, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
                               0x9, 0xa, 0x0, 0xc, 0xd, 0x0, 0x0});
  // credit: aqrit
  __m256i delta_asso =
      ____m256i((__m128i)v16u8{0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x0, 0x0,
                               0x0, 0x0, 0x0, 0xF, 0x0, 0xF});
  __m256i delta_values;
  if (base64_url) {
    delta_values = ____m256i(
        (__m128i)v16i8{int8_t(0x00), int8_t(0x00), int8_t(0x00), int8_t(0x13),
                       int8_t(0x04), int8_t(0xBF), int8_t(0xBF), int8_t(0xB9),
                       int8_t(0xB9), int8_t(0x00), int8_t(0x11), int8_t(0xC3),
                       int8_t(0xBF), int8_t(0xE0), int8_t(0xB9), int8_t(0xB9)});
  } else {
    delta_values = ____m256i(
        (__m128i)v16i8{int8_t(0x00), int8_t(0x00), int8_t(0x00), int8_t(0x13),
                       int8_t(0x04), int8_t(0xBF), int8_t(0xBF), int8_t(0xB9),
                       int8_t(0xB9), int8_t(0x00), int8_t(0x10), int8_t(0xC3),
                       int8_t(0xBF), int8_t(0xBF), int8_t(0xB9), int8_t(0xB9)});
  }

  __m256i check_asso;
  if (base64_url) {
    check_asso = ____m256i((__m128i)v16u8{0x0D, 0x01, 0x01, 0x01, 0x01, 0x01,
                                          0x01, 0x01, 0x01, 0x01, 0x03, 0x07,
                                          0x0B, 0x06, 0x0B, 0x12});
  } else {
    check_asso = ____m256i((__m128i)v16u8{0x0D, 0x01, 0x01, 0x01, 0x01, 0x01,
                                          0x01, 0x01, 0x01, 0x01, 0x03, 0x07,
                                          0x0B, 0x0B, 0x0B, 0x0F});
  }

  __m256i check_values;
  if (base64_url) {
    check_values = ____m256i(
        (__m128i)v16i8{int8_t(0x0), int8_t(0x80), int8_t(0x80), int8_t(0x80),
                       int8_t(0xCF), int8_t(0xBF), int8_t(0xD3), int8_t(0xA6),
                       int8_t(0xB5), int8_t(0x86), int8_t(0xD0), int8_t(0x80),
                       int8_t(0xB0), int8_t(0x80), int8_t(0x0), int8_t(0x0)});
  } else {
    check_values = ____m256i(
        (__m128i)v16i8{int8_t(0x80), int8_t(0x80), int8_t(0x80), int8_t(0x80),
                       int8_t(0xCF), int8_t(0xBF), int8_t(0xD5), int8_t(0xA6),
                       int8_t(0xB5), int8_t(0x86), int8_t(0xD1), int8_t(0x80),
                       int8_t(0xB1), int8_t(0x80), int8_t(0x91), int8_t(0x80)});
  }

  __m256i shifted = __lasx_xvsrli_b(*src, 3);
  __m256i asso_index = __lasx_xvand_v(*src, __lasx_xvldi(0xF));
  __m256i delta_hash = __lasx_xvavgr_bu(
      __lasx_xvshuf_b(delta_asso, delta_asso, asso_index), shifted);
  __m256i check_hash = __lasx_xvavgr_bu(
      __lasx_xvshuf_b(check_asso, check_asso, asso_index), shifted);

  __m256i out = __lasx_xvsadd_b(
      __lasx_xvshuf_b(delta_values, delta_values, delta_hash), *src);
  __m256i chk = __lasx_xvsadd_b(
      __lasx_xvshuf_b(check_values, check_values, check_hash), *src);
  __m256i chk_ltz = __lasx_xvmskltz_b(chk);
  unsigned int mask = __lasx_xvpickve2gr_wu(chk_ltz, 0);
  mask = mask | (__lsx_vpickve2gr_hu(lasx_extracti128_hi(chk_ltz), 0) << 16);
  if (mask) {
    __m256i ascii_space = __lasx_xvseq_b(
        __lasx_xvshuf_b(ascii_space_tbl, ascii_space_tbl, asso_index), *src);
    __m256i ascii_space_ltz = __lasx_xvmskltz_b(ascii_space);
    unsigned int ascii_space_mask = __lasx_xvpickve2gr_wu(ascii_space_ltz, 0);
    ascii_space_mask =
        ascii_space_mask |
        (__lsx_vpickve2gr_hu(lasx_extracti128_hi(ascii_space_ltz), 0) << 16);
    *error |= (mask != ascii_space_mask);
  }

  *src = out;
  return (uint32_t)mask;
}

template <bool base64_url>
static inline uint64_t to_base64_mask(block64 *b, bool *error) {
  *error = 0;
  uint64_t m0 = to_base64_mask<base64_url>(&b->chunks[0], error);
  uint64_t m1 = to_base64_mask<base64_url>(&b->chunks[1], error);
  return m0 | (m1 << 32);
}

static inline void copy_block(block64 *b, char *output) {
  __lasx_xvst(b->chunks[0], reinterpret_cast<__m256i *>(output), 0);
  __lasx_xvst(b->chunks[1], reinterpret_cast<__m256i *>(output), 32);
}

static inline uint64_t compress_block(block64 *b, uint64_t mask, char *output) {
  uint64_t nmask = ~mask;
  uint64_t count =
      __lsx_vpickve2gr_d(__lsx_vpcnt_h(__lsx_vreplgr2vr_d(nmask)), 0);
  uint16_t *count_ptr = (uint16_t *)&count;
  compress(lasx_extracti128_lo(b->chunks[0]), uint16_t(mask), output);
  compress(lasx_extracti128_hi(b->chunks[0]), uint16_t(mask >> 16),
           output + count_ptr[0]);
  compress(lasx_extracti128_lo(b->chunks[1]), uint16_t(mask >> 32),
           output + count_ptr[0] + count_ptr[1]);
  compress(lasx_extracti128_hi(b->chunks[1]), uint16_t(mask >> 48),
           output + count_ptr[0] + count_ptr[1] + count_ptr[2]);
  return count_ones(nmask);
}

// The caller of this function is responsible to ensure that there are 64 bytes
// available from reading at src. The data is read into a block64 structure.
static inline void load_block(block64 *b, const char *src) {
  b->chunks[0] = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 0);
  b->chunks[1] = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 32);
}

// The caller of this function is responsible to ensure that there are 128 bytes
// available from reading at src. The data is read into a block64 structure.
static inline void load_block(block64 *b, const char16_t *src) {
  __m256i m1 = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 0);
  __m256i m2 = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 32);
  __m256i m3 = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 64);
  __m256i m4 = __lasx_xvld(reinterpret_cast<const __m256i *>(src), 96);
  b->chunks[0] = __lasx_xvpermi_d(__lasx_xvssrlni_bu_h(m2, m1, 0), 0b11011000);
  b->chunks[1] = __lasx_xvpermi_d(__lasx_xvssrlni_bu_h(m4, m3, 0), 0b11011000);
}

static inline void base64_decode(char *out, __m256i str) {
  __m256i t0 = __lasx_xvor_v(
      __lasx_xvslli_w(str, 26),
      __lasx_xvslli_w(__lasx_xvand_v(str, __lasx_xvldi(-1758 /*0x0000FF00*/)),
                      12));
  __m256i t1 = __lasx_xvsrli_w(
      __lasx_xvand_v(str, __lasx_xvldi(-3521 /*0x003F0000*/)), 2);
  __m256i t2 = __lasx_xvor_v(t0, t1);
  __m256i t3 = __lasx_xvor_v(t2, __lasx_xvsrli_w(str, 16));
  __m256i pack_shuffle = ____m256i(
      (__m128i)v16u8{3, 2, 1, 7, 6, 5, 11, 10, 9, 15, 14, 13, 0, 0, 0, 0});
  t3 = __lasx_xvshuf_b(t3, t3, (__m256i)pack_shuffle);

  // Store the output:
  __lsx_vst(lasx_extracti128_lo(t3), out, 0);
  __lsx_vst(lasx_extracti128_hi(t3), out, 12);
}
// decode 64 bytes and output 48 bytes
static inline void base64_decode_block(char *out, const char *src) {
  base64_decode(out, __lasx_xvld(reinterpret_cast<const __m256i *>(src), 0));
  base64_decode(out + 24,
                __lasx_xvld(reinterpret_cast<const __m256i *>(src), 32));
}

static inline void base64_decode_block_safe(char *out, const char *src) {
  base64_decode(out, __lasx_xvld(reinterpret_cast<const __m256i *>(src), 0));
  char buffer[32];
  base64_decode(buffer,
                __lasx_xvld(reinterpret_cast<const __m256i *>(src), 32));
  std::memcpy(out + 24, buffer, 24);
}

static inline void base64_decode_block(char *out, block64 *b) {
  base64_decode(out, b->chunks[0]);
  base64_decode(out + 24, b->chunks[1]);
}
static inline void base64_decode_block_safe(char *out, block64 *b) {
  base64_decode(out, b->chunks[0]);
  char buffer[32];
  base64_decode(buffer, b->chunks[1]);
  std::memcpy(out + 24, buffer, 24);
}

template <bool base64_url, typename chartype>
full_result
compress_decode_base64(char *dst, const chartype *src, size_t srclen,
                       base64_options options,
                       last_chunk_handling_options last_chunk_options) {
  const uint8_t *to_base64 = base64_url ? tables::base64::to_base64_url_value
                                        : tables::base64::to_base64_value;
  size_t equallocation =
      srclen; // location of the first padding character if any
  // skip trailing spaces
  while (srclen > 0 && scalar::base64::is_eight_byte(src[srclen - 1]) &&
         to_base64[uint8_t(src[srclen - 1])] == 64) {
    srclen--;
  }
  size_t equalsigns = 0;
  if (srclen > 0 && src[srclen - 1] == '=') {
    equallocation = srclen - 1;
    srclen--;
    equalsigns = 1;
    // skip trailing spaces
    while (srclen > 0 && scalar::base64::is_eight_byte(src[srclen - 1]) &&
           to_base64[uint8_t(src[srclen - 1])] == 64) {
      srclen--;
    }
    if (srclen > 0 && src[srclen - 1] == '=') {
      equallocation = srclen - 1;
      srclen--;
      equalsigns = 2;
    }
  }
  if (srclen == 0) {
    if (equalsigns > 0) {
      return {INVALID_BASE64_CHARACTER, equallocation, 0};
    }
    return {SUCCESS, 0, 0};
  }
  char *end_of_safe_64byte_zone =
      (srclen + 3) / 4 * 3 >= 63 ? dst + (srclen + 3) / 4 * 3 - 63 : dst;

  const chartype *const srcinit = src;
  const char *const dstinit = dst;
  const chartype *const srcend = src + srclen;

  constexpr size_t block_size = 6;
  static_assert(block_size >= 2, "block_size must be at least two");
  char buffer[block_size * 64];
  char *bufferptr = buffer;
  if (srclen >= 64) {
    const chartype *const srcend64 = src + srclen - 64;
    while (src <= srcend64) {
      block64 b;
      load_block(&b, src);
      src += 64;
      bool error = false;
      uint64_t badcharmask = to_base64_mask<base64_url>(&b, &error);
      if (error) {
        src -= 64;
        while (src < srcend && scalar::base64::is_eight_byte(*src) &&
               to_base64[uint8_t(*src)] <= 64) {
          src++;
        }
        return {error_code::INVALID_BASE64_CHARACTER, size_t(src - srcinit),
                size_t(dst - dstinit)};
      }
      if (badcharmask != 0) {
        // optimization opportunity: check for simple masks like those made of
        // continuous 1s followed by continuous 0s. And masks containing a
        // single bad character.
        bufferptr += compress_block(&b, badcharmask, bufferptr);
      } else if (bufferptr != buffer) {
        copy_block(&b, bufferptr);
        bufferptr += 64;
      } else {
        if (dst >= end_of_safe_64byte_zone) {
          base64_decode_block_safe(dst, &b);
        } else {
          base64_decode_block(dst, &b);
        }
        dst += 48;
      }
      if (bufferptr >= (block_size - 1) * 64 + buffer) {
        for (size_t i = 0; i < (block_size - 2); i++) {
          base64_decode_block(dst, buffer + i * 64);
          dst += 48;
        }
        if (dst >= end_of_safe_64byte_zone) {
          base64_decode_block_safe(dst, buffer + (block_size - 2) * 64);
        } else {
          base64_decode_block(dst, buffer + (block_size - 2) * 64);
        }
        dst += 48;
        std::memcpy(buffer, buffer + (block_size - 1) * 64,
                    64); // 64 might be too much
        bufferptr -= (block_size - 1) * 64;
      }
    }
  }

  char *buffer_start = buffer;
  // Optimization note: if this is almost full, then it is worth our
  // time, otherwise, we should just decode directly.
  int last_block = (int)((bufferptr - buffer_start) % 64);
  if (last_block != 0 && srcend - src + last_block >= 64) {

    while ((bufferptr - buffer_start) % 64 != 0 && src < srcend) {
      uint8_t val = to_base64[uint8_t(*src)];
      *bufferptr = char(val);
      if (!scalar::base64::is_eight_byte(*src) || val > 64) {
        return {error_code::INVALID_BASE64_CHARACTER, size_t(src - srcinit),
                size_t(dst - dstinit)};
      }
      bufferptr += (val <= 63);
      src++;
    }
  }

  for (; buffer_start + 64 <= bufferptr; buffer_start += 64) {
    if (dst >= end_of_safe_64byte_zone) {
      base64_decode_block_safe(dst, buffer_start);
    } else {
      base64_decode_block(dst, buffer_start);
    }
    dst += 48;
  }
  if ((bufferptr - buffer_start) % 64 != 0) {
    while (buffer_start + 4 < bufferptr) {
      uint32_t triple = ((uint32_t(uint8_t(buffer_start[0])) << 3 * 6) +
                         (uint32_t(uint8_t(buffer_start[1])) << 2 * 6) +
                         (uint32_t(uint8_t(buffer_start[2])) << 1 * 6) +
                         (uint32_t(uint8_t(buffer_start[3])) << 0 * 6))
                        << 8;
      triple = scalar::utf32::swap_bytes(triple);
      std::memcpy(dst, &triple, 4);

      dst += 3;
      buffer_start += 4;
    }
    if (buffer_start + 4 <= bufferptr) {
      uint32_t triple = ((uint32_t(uint8_t(buffer_start[0])) << 3 * 6) +
                         (uint32_t(uint8_t(buffer_start[1])) << 2 * 6) +
                         (uint32_t(uint8_t(buffer_start[2])) << 1 * 6) +
                         (uint32_t(uint8_t(buffer_start[3])) << 0 * 6))
                        << 8;
      triple = scalar::utf32::swap_bytes(triple);
      std::memcpy(dst, &triple, 3);

      dst += 3;
      buffer_start += 4;
    }
    // we may have 1, 2 or 3 bytes left and we need to decode them so let us
    // backtrack
    int leftover = int(bufferptr - buffer_start);
    while (leftover > 0) {
      while (to_base64[uint8_t(*(src - 1))] == 64) {
        src--;
      }
      src--;
      leftover--;
    }
  }
  if (src < srcend + equalsigns) {
    full_result r = scalar::base64::base64_tail_decode(
        dst, src, srcend - src, equalsigns, options, last_chunk_options);
    r.input_count += size_t(src - srcinit);
    if (r.error == error_code::INVALID_BASE64_CHARACTER ||
        r.error == error_code::BASE64_EXTRA_BITS) {
      return r;
    } else {
      r.output_count += size_t(dst - dstinit);
    }
    if (last_chunk_options != stop_before_partial &&
        r.error == error_code::SUCCESS && equalsigns > 0) {
      // additional checks
      if ((r.output_count % 3 == 0) ||
          ((r.output_count % 3) + 1 + equalsigns != 4)) {
        r.error = error_code::INVALID_BASE64_CHARACTER;
        r.input_count = equallocation;
      }
    }
    return r;
  }
  if (equalsigns > 0) {
    if ((size_t(dst - dstinit) % 3 == 0) ||
        ((size_t(dst - dstinit) % 3) + 1 + equalsigns != 4)) {
      return {INVALID_BASE64_CHARACTER, equallocation, size_t(dst - dstinit)};
    }
  }
  return {SUCCESS, srclen, size_t(dst - dstinit)};
}