1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
#include "scalar/latin1.h"
#include "scalar/utf16.h"
#include "scalar/utf8.h"
#include "scalar/utf8_to_latin1/utf8_to_latin1.h"
#include "scalar/utf8_to_latin1/valid_utf8_to_latin1.h"
#include "scalar/utf16_to_utf8/utf16_to_utf8.h"
#include "scalar/utf16_to_utf8/valid_utf16_to_utf8.h"
#include "scalar/utf16_to_utf32/utf16_to_utf32.h"
#include "scalar/utf16_to_utf32/valid_utf16_to_utf32.h"
#include "scalar/utf32_to_utf8/utf32_to_utf8.h"
#include "scalar/utf32_to_utf8/valid_utf32_to_utf8.h"
#include "scalar/utf32_to_utf16/utf32_to_utf16.h"
#include "scalar/utf32_to_utf16/valid_utf32_to_utf16.h"
#include "simdutf/rvv/begin.h"
namespace simdutf {
namespace SIMDUTF_IMPLEMENTATION {
namespace {
#ifndef SIMDUTF_RVV_H
#error "rvv.h must be included"
#endif
} // unnamed namespace
} // namespace SIMDUTF_IMPLEMENTATION
} // namespace simdutf
//
// Implementation-specific overrides
//
namespace simdutf {
namespace SIMDUTF_IMPLEMENTATION {
#include "rvv/rvv_helpers.inl.cpp"
#include "rvv/rvv_length_from.inl.cpp"
#include "rvv/rvv_validate.inl.cpp"
#include "rvv/rvv_latin1_to.inl.cpp"
#include "rvv/rvv_utf16_to.inl.cpp"
#include "rvv/rvv_utf32_to.inl.cpp"
#include "rvv/rvv_utf8_to.inl.cpp"
simdutf_warn_unused int
implementation::detect_encodings(const char *input,
size_t length) const noexcept {
// If there is a BOM, then we trust it.
auto bom_encoding = simdutf::BOM::check_bom(input, length);
if (bom_encoding != encoding_type::unspecified)
return bom_encoding;
// todo: reimplement as a one-pass algorithm.
int out = 0;
if (validate_utf8(input, length))
out |= encoding_type::UTF8;
if (length % 2 == 0) {
if (validate_utf16(reinterpret_cast<const char16_t *>(input), length / 2))
out |= encoding_type::UTF16_LE;
}
if (length % 4 == 0) {
if (validate_utf32(reinterpret_cast<const char32_t *>(input), length / 4))
out |= encoding_type::UTF32_LE;
}
return out;
}
template <simdutf_ByteFlip bflip>
simdutf_really_inline static void
rvv_change_endianness_utf16(const char16_t *src, size_t len, char16_t *dst) {
for (size_t vl; len > 0; len -= vl, src += vl, dst += vl) {
vl = __riscv_vsetvl_e16m8(len);
vuint16m8_t v = __riscv_vle16_v_u16m8((uint16_t *)src, vl);
__riscv_vse16_v_u16m8((uint16_t *)dst, simdutf_byteflip<bflip>(v, vl), vl);
}
}
void implementation::change_endianness_utf16(const char16_t *src, size_t len,
char16_t *dst) const noexcept {
if (supports_zvbb())
return rvv_change_endianness_utf16<simdutf_ByteFlip::ZVBB>(src, len, dst);
else
return rvv_change_endianness_utf16<simdutf_ByteFlip::V>(src, len, dst);
}
simdutf_warn_unused size_t implementation::maximal_binary_length_from_base64(
const char *input, size_t length) const noexcept {
return scalar::base64::maximal_binary_length_from_base64(input, length);
}
simdutf_warn_unused result implementation::base64_to_binary(
const char *input, size_t length, char *output, base64_options options,
last_chunk_handling_options last_chunk_options) const noexcept {
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
size_t equallocation =
length; // location of the first padding character if any
size_t equalsigns = 0;
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
length -= 1;
equalsigns++;
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
equalsigns++;
length -= 1;
}
}
if (length == 0) {
if (equalsigns > 0) {
return {INVALID_BASE64_CHARACTER, equallocation};
}
return {SUCCESS, 0};
}
result r = scalar::base64::base64_tail_decode(
output, input, length, equalsigns, options, last_chunk_options);
if (last_chunk_options != stop_before_partial &&
r.error == error_code::SUCCESS && equalsigns > 0) {
// additional checks
if ((r.count % 3 == 0) || ((r.count % 3) + 1 + equalsigns != 4)) {
return {INVALID_BASE64_CHARACTER, equallocation};
}
}
return r;
}
simdutf_warn_unused full_result implementation::base64_to_binary_details(
const char *input, size_t length, char *output, base64_options options,
last_chunk_handling_options last_chunk_options) const noexcept {
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
size_t equallocation =
length; // location of the first padding character if any
size_t equalsigns = 0;
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
length -= 1;
equalsigns++;
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
equalsigns++;
length -= 1;
}
}
if (length == 0) {
if (equalsigns > 0) {
return {INVALID_BASE64_CHARACTER, equallocation, 0};
}
return {SUCCESS, 0, 0};
}
full_result r = scalar::base64::base64_tail_decode(
output, input, length, equalsigns, options, last_chunk_options);
if (last_chunk_options != stop_before_partial &&
r.error == error_code::SUCCESS && equalsigns > 0) {
// additional checks
if ((r.output_count % 3 == 0) ||
((r.output_count % 3) + 1 + equalsigns != 4)) {
return {INVALID_BASE64_CHARACTER, equallocation, r.output_count};
}
}
return r;
}
simdutf_warn_unused size_t implementation::maximal_binary_length_from_base64(
const char16_t *input, size_t length) const noexcept {
return scalar::base64::maximal_binary_length_from_base64(input, length);
}
simdutf_warn_unused result implementation::base64_to_binary(
const char16_t *input, size_t length, char *output, base64_options options,
last_chunk_handling_options last_chunk_options) const noexcept {
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
size_t equallocation =
length; // location of the first padding character if any
auto equalsigns = 0;
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
length -= 1;
equalsigns++;
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
equalsigns++;
length -= 1;
}
}
if (length == 0) {
if (equalsigns > 0) {
return {INVALID_BASE64_CHARACTER, equallocation};
}
return {SUCCESS, 0};
}
result r = scalar::base64::base64_tail_decode(
output, input, length, equalsigns, options, last_chunk_options);
if (last_chunk_options != stop_before_partial &&
r.error == error_code::SUCCESS && equalsigns > 0) {
// additional checks
if ((r.count % 3 == 0) || ((r.count % 3) + 1 + equalsigns != 4)) {
return {INVALID_BASE64_CHARACTER, equallocation};
}
}
return r;
}
simdutf_warn_unused full_result implementation::base64_to_binary_details(
const char16_t *input, size_t length, char *output, base64_options options,
last_chunk_handling_options last_chunk_options) const noexcept {
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
size_t equallocation =
length; // location of the first padding character if any
size_t equalsigns = 0;
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
length -= 1;
equalsigns++;
while (length > 0 &&
scalar::base64::is_ascii_white_space(input[length - 1])) {
length--;
}
if (length > 0 && input[length - 1] == '=') {
equallocation = length - 1;
equalsigns++;
length -= 1;
}
}
if (length == 0) {
if (equalsigns > 0) {
return {INVALID_BASE64_CHARACTER, equallocation, 0};
}
return {SUCCESS, 0, 0};
}
full_result r = scalar::base64::base64_tail_decode(
output, input, length, equalsigns, options, last_chunk_options);
if (last_chunk_options != stop_before_partial &&
r.error == error_code::SUCCESS && equalsigns > 0) {
// additional checks
if ((r.output_count % 3 == 0) ||
((r.output_count % 3) + 1 + equalsigns != 4)) {
return {INVALID_BASE64_CHARACTER, equallocation, r.output_count};
}
}
return r;
}
simdutf_warn_unused size_t implementation::base64_length_from_binary(
size_t length, base64_options options) const noexcept {
return scalar::base64::base64_length_from_binary(length, options);
}
size_t implementation::binary_to_base64(const char *input, size_t length,
char *output,
base64_options options) const noexcept {
return scalar::base64::tail_encode_base64(output, input, length, options);
}
} // namespace SIMDUTF_IMPLEMENTATION
} // namespace simdutf
#include "simdutf/rvv/end.h"
|