1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
|
/*
* Copyright (c) 2016 Positive Technologies, https://www.ptsecurity.com,
* Fast Positive Hash.
*
* Portions Copyright (c) 2010-2016 Leonid Yuriev <leo@yuriev.ru>,
* The 1Hippeus project (t1h).
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/*
* t1ha = { Fast Positive Hash}
* by [Positive Technologies](https://www.ptsecurity.ru)
*
* Briefly, it is a 64-bit Hash Function:
* 1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
* but without penalties could runs on any 64-bit CPU.
* 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
* and all others which are not use specific hardware tricks.
* 3. Not suitable for cryptography.
*
* ACKNOWLEDGEMENT:
* The t1ha was originally developed by Leonid Yuriev
* for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
*/
#ifndef T1HA_INCLUDED
#define T1HA_INCLUDED
#include "config.h"
#include <string.h>
#include <stddef.h>
#ifndef __has_builtin
#define __has_builtin(x) (0)
#endif
#ifdef BYTE_ORDER
#ifndef __ORDER_LITTLE_ENDIAN__
#define __ORDER_LITTLE_ENDIAN__ LITTLE_ENDIAN
#endif
#ifndef __ORDER_BIG_ENDIAN__
#define __ORDER_BIG_ENDIAN__ BIG_ENDIAN
#endif
#ifndef __BYTE_ORDER__
#define __BYTE_ORDER__ BYTE_ORDER
#endif
#else
#if !defined(__BYTE_ORDER__) || !defined(__ORDER_LITTLE_ENDIAN__) || \
!defined(__ORDER_BIG_ENDIAN__)
#define __ORDER_LITTLE_ENDIAN__ 1234
#define __ORDER_BIG_ENDIAN__ 4321
#if defined(__LITTLE_ENDIAN__) || defined(__ARMEL__) || \
defined(__THUMBEL__) || defined(__AARCH64EL__) || defined(__MIPSEL__) || \
defined(_MIPSEL) || defined(__MIPSEL) || defined(__i386) || \
defined(__x86_64) || defined(_M_IX86) || defined(_M_X64) || \
defined(i386) || defined(_X86_) || defined(__i386__) || defined(_X86_64_)
#define __BYTE_ORDER__ __ORDER_LITTLE_ENDIAN__
#elif defined(__BIG_ENDIAN__) || defined(__ARMEB__) || defined(__THUMBEB__) || \
defined(__AARCH64EB__) || defined(__MIPSEB__) || defined(_MIPSEB) || \
defined(__MIPSEB)
#define __BYTE_ORDER__ __ORDER_BIG_ENDIAN__
#else
#error __BYTE_ORDER__ should be defined.
#endif
#endif
#endif
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__ && \
__BYTE_ORDER__ != __ORDER_BIG_ENDIAN__
#error Unsupported byte order.
#endif
#if !defined(UNALIGNED_OK)
#if defined(__i386) || defined(__x86_64) || defined(_M_IX86) || \
defined(_M_X64) || defined(i386) || defined(_X86_) || defined(__i386__) || \
defined(_X86_64_)
#define UNALIGNED_OK 1
#else
#define UNALIGNED_OK 0
#endif
#endif
#ifndef __GNUC_PREREQ
#if defined(__GNUC__) && defined(__GNUC_MINOR__)
#define __GNUC_PREREQ(maj, min) \
((__GNUC__ << 16) + __GNUC_MINOR__ >= ((maj) << 16) + (min))
#else
#define __GNUC_PREREQ(maj, min) 0
#endif
#endif
#if __GNUC_PREREQ(4, 4) || defined(__clang__)
#if defined(__i386__) || defined(__x86_64__)
#include <x86intrin.h>
#endif
#define likely(cond) __builtin_expect(!!(cond), 1)
#define unlikely(cond) __builtin_expect(!!(cond), 0)
#define unreachable() __builtin_unreachable()
#define bswap64(v) __builtin_bswap64(v)
#define bswap32(v) __builtin_bswap32(v)
#if __GNUC_PREREQ(4, 8) || __has_builtin(__builtin_bswap16)
#define bswap16(v) __builtin_bswap16(v)
#endif
#if __GNUC_PREREQ(4, 3) || __has_attribute(unused)
#define maybe_unused __attribute__((unused))
#endif
#elif defined(_MSC_VER)
#include <intrin.h>
#include <stdlib.h>
#define likely(cond) (cond)
#define unlikely(cond) (cond)
#define unreachable() __assume(0)
#define bswap64(v) _byteswap_uint64(v)
#define bswap32(v) _byteswap_ulong(v)
#define bswap16(v) _byteswap_ushort(v)
#define rot64(v, s) _rotr64(v, s)
#define rot32(v, s) _rotr(v, s)
#if defined(_M_ARM64) || defined(_M_X64)
#pragma intrinsic(_umul128)
#define mul_64x64_128(a, b, ph) _umul128(a, b, ph)
#pragma intrinsic(__umulh)
#define mul_64x64_high(a, b) __umulh(a, b)
#endif
#if defined(_M_IX86)
#pragma intrinsic(__emulu)
#define mul_32x32_64(a, b) __emulu(a, b)
#elif defined(_M_ARM)
#define mul_32x32_64(a, b) _arm_umull(a, b)
#endif
#else /* Compiler */
#define likely(cond) (cond)
#define unlikely(cond) (cond)
#define unreachable() \
do \
for (;;) \
; \
while (0)
#endif /* Compiler */
#ifndef bswap64
static __inline uint64_t bswap64(uint64_t v) {
return v << 56 | v >> 56 | ((v << 40) & 0x00ff000000000000ull) |
((v << 24) & 0x0000ff0000000000ull) |
((v << 8) & 0x000000ff00000000ull) |
((v >> 8) & 0x00000000ff000000ull) |
((v >> 24) & 0x0000000000ff0000ull) |
((v >> 40) & 0x000000000000ff00ull);
}
#endif /* bswap64 */
#ifndef bswap32
static __inline uint32_t bswap32(uint32_t v) {
return v << 24 | v >> 24 | ((v << 8) & 0x00ff0000) | ((v >> 8) & 0x0000ff00);
}
#endif /* bswap32 */
#ifndef bswap16
static __inline uint16_t bswap16(uint16_t v) { return v << 8 | v >> 8; }
#endif /* bswap16 */
#ifndef rot64
static __inline uint64_t rot64(uint64_t v, unsigned s) {
return (v >> s) | (v << (64 - s));
}
#endif /* rot64 */
#ifndef rot32
static __inline uint32_t rot32(uint32_t v, unsigned s) {
return (v >> s) | (v << (32 - s));
}
#endif /* rot32 */
#ifndef mul_32x32_64
static __inline uint64_t mul_32x32_64(uint32_t a, uint32_t b) {
return a * (uint64_t)b;
}
#endif /* mul_32x32_64 */
/***************************************************************************/
static __inline uint64_t fetch64(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint64_t *)v;
#else
return bswap64(*(const uint64_t *)v);
#endif
}
static __inline uint64_t fetch32(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint32_t *)v;
#else
return bswap32(*(const uint32_t *)v);
#endif
}
static __inline uint64_t fetch16(const void *v) {
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return *(const uint16_t *)v;
#else
return bswap16(*(const uint16_t *)v);
#endif
}
static __inline uint64_t fetch_tail(const void *v, size_t tail) {
const uint8_t *_ = (const uint8_t *)v;
switch (tail & 7) {
case 1:
return _[0];
case 2:
return fetch16(_);
case 3:
return fetch16(_) | (_[2] << 16);
case 4:
return fetch32(_);
case 5:
return fetch32(_) | ((uint64_t)_[4] << 32);
case 6:
return fetch32(_) | (fetch16(_ + 4) << 32);
case 7:
return fetch32(_) | (fetch16(_ + 4) << 32) | ((uint64_t)_[6] << 48);
case 0:
return fetch64(_);
default:
unreachable();
}
}
/* xor-mul-xor mixer */
static __inline uint64_t mix(uint64_t v, uint64_t p) {
static const unsigned s0 = 41;
v *= p;
return v ^ rot64(v, s0);
}
static __inline unsigned add_with_carry(uint64_t *sum, uint64_t addend) {
*sum += addend;
return *sum < addend;
}
/* xor high and low parts of full 128-bit product */
static __inline uint64_t mux64(uint64_t v, uint64_t p) {
#ifdef __SIZEOF_INT128__
__uint128_t r = (__uint128_t)v * (__uint128_t)p;
/* modern GCC could nicely optimize this */
return r ^ (r >> 64);
#elif defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128
__uint128 r = (__uint128)v * (__uint128)p;
return r ^ (r >> 64);
#elif defined(mul_64x64_128)
uint64_t l, h;
l = mul_64x64_128(v, p, &h);
return l ^ h;
#elif defined(mul_64x64_high)
uint64_t l, h;
l = v * p;
h = mul_64x64_high(v, p);
return l ^ h;
#else
/* performs 64x64 to 128 bit multiplication */
uint64_t ll = mul_32x32_64((uint32_t)v, (uint32_t)p);
uint64_t lh = mul_32x32_64(v >> 32, (uint32_t)p);
uint64_t hl = mul_32x32_64(p >> 32, (uint32_t)v);
uint64_t hh =
mul_32x32_64(v >> 32, p >> 32) + (lh >> 32) + (hl >> 32) +
/* Few simplification are possible here for 32-bit architectures,
* but thus we would lost compatibility with the original 64-bit
* version. Think is very bad idea, because then 32-bit t1ha will
* still (relatively) very slowly and well yet not compatible. */
add_with_carry(&ll, lh << 32) + add_with_carry(&ll, hl << 32);
return hh ^ ll;
#endif
}
static uint64_t
t1ha(const void *data, size_t len, uint64_t seed)
{
/* 'magic' primes */
static const uint64_t p0 = 17048867929148541611ull;
static const uint64_t p1 = 9386433910765580089ull;
static const uint64_t p2 = 15343884574428479051ull;
static const uint64_t p3 = 13662985319504319857ull;
static const uint64_t p4 = 11242949449147999147ull;
static const uint64_t p5 = 13862205317416547141ull;
static const uint64_t p6 = 14653293970879851569ull;
/* rotations */
static const unsigned s0 = 41;
static const unsigned s1 = 17;
static const unsigned s2 = 31;
uint64_t a = seed;
uint64_t b = len;
const int need_align = (((uintptr_t)data) & 7) != 0 && !UNALIGNED_OK;
uint64_t align[4];
if (unlikely(len > 32)) {
uint64_t c = rot64(len, s1) + seed;
uint64_t d = len ^ rot64(seed, s1);
const void *detent = (const uint8_t *)data + len - 31;
do {
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align))
v = (const uint64_t *)memcpy(&align, v, 32);
uint64_t w0 = fetch64(v + 0);
uint64_t w1 = fetch64(v + 1);
uint64_t w2 = fetch64(v + 2);
uint64_t w3 = fetch64(v + 3);
uint64_t d02 = w0 ^ rot64(w2 + d, s1);
uint64_t c13 = w1 ^ rot64(w3 + c, s1);
c += a ^ rot64(w0, s0);
d -= b ^ rot64(w1, s2);
a ^= p1 * (d02 + w3);
b ^= p0 * (c13 + w2);
data = (const uint64_t *)data + 4;
} while (likely(data < detent));
a ^= p6 * (rot64(c, s1) + d);
b ^= p5 * (c + rot64(d, s1));
len &= 31;
}
const uint64_t *v = (const uint64_t *)data;
if (unlikely(need_align) && len > 1)
v = (const uint64_t *)memcpy(&align, v, len);
switch (len) {
default:
b += mux64(fetch64(v++), p4);
case 24:
case 23:
case 22:
case 21:
case 20:
case 19:
case 18:
case 17:
a += mux64(fetch64(v++), p3);
case 16:
case 15:
case 14:
case 13:
case 12:
case 11:
case 10:
case 9:
b += mux64(fetch64(v++), p2);
case 8:
case 7:
case 6:
case 5:
case 4:
case 3:
case 2:
case 1:
a += mux64(fetch_tail(v, len), p1);
case 0:
return mux64(rot64(a + b, s1), p4) + mix(a ^ b, p0);
}
}
static __inline uint32_t tail32_le(const void *v, size_t tail) {
const uint8_t *p = (const uint8_t *)v;
uint32_t r = 0;
switch (tail & 3) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
/* For most CPUs this code is better when not needed
* copying for alignment or byte reordering. */
case 0:
return fetch32(p);
case 3:
r = (uint32_t)p[2] << 16;
case 2:
return r + fetch16(p);
case 1:
return p[0];
#else
/* For most CPUs this code is better than a
* copying for alignment and/or byte reordering. */
case 0:
r += p[3];
r <<= 8;
case 3:
r += p[2];
r <<= 8;
case 2:
r += p[1];
r <<= 8;
case 1:
return r + p[0];
#endif
}
unreachable();
}
static __inline uint32_t tail32_be(const void *v, size_t tail) {
const uint8_t *p = (const uint8_t *)v;
switch (tail & 3) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
/* For most CPUs this code is better when not needed
* copying for alignment or byte reordering. */
case 1:
return p[0];
case 2:
return fetch16_be(p);
case 3:
return fetch16_be(p) << 8 | p[2];
case 0:
return fetch32_be(p);
#else
/* For most CPUs this code is better than a
* copying for alignment and/or byte reordering. */
case 1:
return p[0];
case 2:
return p[1] | (uint32_t)p[0] << 8;
case 3:
return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
case 0:
return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
(uint32_t)p[0] << 24;
#endif
}
unreachable();
}
static __inline uint64_t remix32(uint32_t a, uint32_t b) {
static const uint64_t p0 = 17048867929148541611ull;
a ^= rot32(b, 13);
uint64_t l = a | (uint64_t)b << 32;
l *= p0;
l ^= l >> 41;
return l;
}
static __inline void mixup32(uint32_t *a, uint32_t *b, uint32_t v, uint32_t p) {
uint64_t l = mul_32x32_64(*b + v, p);
*a ^= (uint32_t)l;
*b += (uint32_t)(l >> 32);
}
static uint64_t t1ha32(const void *data, size_t len, uint64_t seed) {
/* 32-bit 'magic' primes */
static const uint32_t q0 = 0x92D78269;
static const uint32_t q1 = 0xCA9B4735;
static const uint32_t q2 = 0xA4ABA1C3;
static const uint32_t q3 = 0xF6499843;
static const uint32_t q4 = 0x86F0FD61;
static const uint32_t q5 = 0xCA2DA6FB;
static const uint32_t q6 = 0xC4BB3575;
/* rotations */
static const unsigned s1 = 17;
uint32_t a = rot32((uint32_t)len, s1) + (uint32_t)seed;
uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32);
const int need_align = (((uintptr_t)data) & 3) != 0 && !UNALIGNED_OK;
uint32_t align[4];
if (unlikely(len > 16)) {
uint32_t c = ~a;
uint32_t d = rot32(b, 5);
const void *detent = (const uint8_t *)data + len - 15;
do {
const uint32_t *v = (const uint32_t *)data;
if (unlikely(need_align))
v = (const uint32_t *)memcpy(&align, v, 16);
uint32_t w0 = fetch32(v + 0);
uint32_t w1 = fetch32(v + 1);
uint32_t w2 = fetch32(v + 2);
uint32_t w3 = fetch32(v + 3);
uint32_t c02 = w0 ^ rot32(w2 + c, 11);
uint32_t d13 = w1 + rot32(w3 + d, s1);
c ^= rot32(b + w1, 7);
d ^= rot32(a + w0, 3);
b = q1 * (c02 + w3);
a = q0 * (d13 ^ w2);
data = (const uint32_t *)data + 4;
} while (likely(data < detent));
c += a;
d += b;
a ^= q6 * (rot32(c, 16) + d);
b ^= q5 * (c + rot32(d, 16));
len &= 15;
}
const uint8_t *v = (const uint8_t *)data;
if (unlikely(need_align) && len > 4)
v = (const uint8_t *)memcpy(&align, v, len);
switch (len) {
default:
mixup32(&a, &b, fetch32(v), q4);
v += 4;
case 12:
case 11:
case 10:
case 9:
mixup32(&b, &a, fetch32(v), q3);
v += 4;
case 8:
case 7:
case 6:
case 5:
mixup32(&a, &b, fetch32(v), q2);
v += 4;
case 4:
case 3:
case 2:
case 1:
mixup32(&b, &a, tail32_le(v, len), q1);
case 0:
return remix32(a, b);
}
}
#endif
|