summaryrefslogtreecommitdiffstats
path: root/contrib/t1ha/t1ha0.c
blob: 16cbefa5a8e4d812271fee4a8f329c4b24ad5abc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
 *  Copyright (c) 2016-2018 Positive Technologies, https://www.ptsecurity.com,
 *  Fast Positive Hash.
 *
 *  Portions Copyright (c) 2010-2018 Leonid Yuriev <leo@yuriev.ru>,
 *  The 1Hippeus project (t1h).
 *
 *  This software is provided 'as-is', without any express or implied
 *  warranty. In no event will the authors be held liable for any damages
 *  arising from the use of this software.
 *
 *  Permission is granted to anyone to use this software for any purpose,
 *  including commercial applications, and to alter it and redistribute it
 *  freely, subject to the following restrictions:
 *
 *  1. The origin of this software must not be misrepresented; you must not
 *     claim that you wrote the original software. If you use this software
 *     in a product, an acknowledgement in the product documentation would be
 *     appreciated but is not required.
 *  2. Altered source versions must be plainly marked as such, and must not be
 *     misrepresented as being the original software.
 *  3. This notice may not be removed or altered from any source distribution.
 */

/*
 * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" }
 * by [Positive Technologies](https://www.ptsecurity.ru)
 *
 * Briefly, it is a 64-bit Hash Function:
 *  1. Created for 64-bit little-endian platforms, in predominantly for x86_64,
 *     but portable and without penalties it can run on any 64-bit CPU.
 *  2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash
 *     and all others portable hash-functions (which do not use specific
 *     hardware tricks).
 *  3. Not suitable for cryptography.
 *
 * The Future will Positive. Всё будет хорошо.
 *
 * ACKNOWLEDGEMENT:
 * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев)
 * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta!
 */

#include "config.h"
#include "t1ha_bits.h"

static __always_inline uint32_t tail32_le(const void *v, size_t tail) {
  const uint8_t *p = (const uint8_t *)v;
#ifdef can_read_underside
  /* On some systems (e.g. x86) we can perform a 'oneshot' read, which
   * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com>
   * for the reminder. */
  const unsigned offset = (4 - tail) & 3;
  const unsigned shift = offset << 3;
  if (likely(can_read_underside(p, 4))) {
    p -= offset;
    return fetch32_le(p) >> shift;
  }
  return fetch32_le(p) & ((~UINT32_C(0)) >> shift);
#endif /* 'oneshot' read */

  uint32_t r = 0;
  switch (tail & 3) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
  /* For most CPUs this code is better when not needed
   * copying for alignment or byte reordering. */
  case 0:
    return fetch32_le(p);
  case 3:
    r = (uint32_t)p[2] << 16;
  /* fall through */
  case 2:
    return r + fetch16_le(p);
  case 1:
    return p[0];
#else
  /* For most CPUs this code is better than a
   * copying for alignment and/or byte reordering. */
  case 0:
    r += p[3];
    r <<= 8;
  /* fall through */
  case 3:
    r += p[2];
    r <<= 8;
  /* fall through */
  case 2:
    r += p[1];
    r <<= 8;
  /* fall through */
  case 1:
    return r + p[0];
#endif
  }
  unreachable();
}

static __always_inline uint32_t tail32_be(const void *v, size_t tail) {
  const uint8_t *p = (const uint8_t *)v;
#ifdef can_read_underside
  /* On some systems we can perform a 'oneshot' read, which is little bit
   * faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com> for the
   * reminder. */
  const unsigned offset = (4 - tail) & 3;
  const unsigned shift = offset << 3;
  if (likely(can_read_underside(p, 4))) {
    p -= offset;
    return fetch32_be(p) & ((~UINT32_C(0)) >> shift);
  }
  return fetch32_be(p) >> shift;
#endif /* 'oneshot' read */

  switch (tail & 3) {
#if UNALIGNED_OK && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
  /* For most CPUs this code is better when not needed
   * copying for alignment or byte reordering. */
  case 1:
    return p[0];
  case 2:
    return fetch16_be(p);
  case 3:
    return fetch16_be(p) << 8 | p[2];
  case 0:
    return fetch32_be(p);
#else
  /* For most CPUs this code is better than a
   * copying for alignment and/or byte reordering. */
  case 1:
    return p[0];
  case 2:
    return p[1] | (uint32_t)p[0] << 8;
  case 3:
    return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16;
  case 0:
    return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 |
           (uint32_t)p[0] << 24;
#endif
  }
  unreachable();
}

/***************************************************************************/

#ifndef rot32
static __maybe_unused __always_inline uint32_t rot32(uint32_t v, unsigned s) {
  return (v >> s) | (v << (32 - s));
}
#endif /* rot32 */

static __always_inline void mixup32(uint32_t *a, uint32_t *b, uint32_t v,
                                    uint32_t prime) {
  uint64_t l = mul_32x32_64(*b + v, prime);
  *a ^= (uint32_t)l;
  *b += (uint32_t)(l >> 32);
}

static __always_inline uint64_t final32(uint32_t a, uint32_t b) {
  uint64_t l = (b ^ rot32(a, 13)) | (uint64_t)a << 32;
  l *= prime_0;
  l ^= l >> 41;
  l *= prime_4;
  l ^= l >> 47;
  l *= prime_6;
  return l;
}

/* 32-bit 'magic' primes */
static const uint32_t prime32_0 = UINT32_C(0x92D78269);
static const uint32_t prime32_1 = UINT32_C(0xCA9B4735);
static const uint32_t prime32_2 = UINT32_C(0xA4ABA1C3);
static const uint32_t prime32_3 = UINT32_C(0xF6499843);
static const uint32_t prime32_4 = UINT32_C(0x86F0FD61);
static const uint32_t prime32_5 = UINT32_C(0xCA2DA6FB);
static const uint32_t prime32_6 = UINT32_C(0xC4BB3575);

uint64_t t1ha0_32le(const void *data, size_t len, uint64_t seed) {
  uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed;
  uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32);

  const int need_align = (((uintptr_t)data) & 3) != 0 && !UNALIGNED_OK;
  uint32_t align[4];

  if (unlikely(len > 16)) {
    uint32_t c = ~a;
    uint32_t d = rot32(b, 5);
    const void *detent = (const uint8_t *)data + len - 15;
    do {
      const uint32_t *v = (const uint32_t *)data;
      if (unlikely(need_align))
        v = (const uint32_t *)memcpy(&align, unaligned(v), 16);

      uint32_t w0 = fetch32_le(v + 0);
      uint32_t w1 = fetch32_le(v + 1);
      uint32_t w2 = fetch32_le(v + 2);
      uint32_t w3 = fetch32_le(v + 3);

      uint32_t c02 = w0 ^ rot32(w2 + c, 11);
      uint32_t d13 = w1 + rot32(w3 + d, 17);
      c ^= rot32(b + w1, 7);
      d ^= rot32(a + w0, 3);
      b = prime32_1 * (c02 + w3);
      a = prime32_0 * (d13 ^ w2);

      data = (const uint32_t *)data + 4;
    } while (likely(data < detent));

    c += a;
    d += b;
    a ^= prime32_6 * (rot32(c, 16) + d);
    b ^= prime32_5 * (c + rot32(d, 16));

    len &= 15;
  }

  const uint8_t *v = (const uint8_t *)data;
  if (unlikely(need_align) && len > 4)
    v = (const uint8_t *)memcpy(&align, unaligned(v), len);

  switch (len) {
  default:
    mixup32(&a, &b, fetch32_le(v), prime32_4);
    v += 4;
  /* fall through */
  case 12:
  case 11:
  case 10:
  case 9:
    mixup32(&b, &a, fetch32_le(v), prime32_3);
    v += 4;
  /* fall through */
  case 8:
  case 7:
  case 6:
  case 5:
    mixup32(&a, &b, fetch32_le(v), prime32_2);
    v += 4;
  /* fall through */
  case 4:
  case 3:
  case 2:
  case 1:
    mixup32(&b, &a, tail32_le(v, len), prime32_1);
  /* fall through */
  case 0:
    return final32(a, b);
  }
}

uint64_t t1ha0_32be(const void *data, size_t len, uint64_t seed) {
  uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed;
  uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32);

  const int need_align = (((uintptr_t)data) & 3) != 0 && !UNALIGNED_OK;
  uint32_t align[4];

  if (unlikely(len > 16)) {
    uint32_t c = ~a;
    uint32_t d = rot32(b, 5);
    const void *detent = (const uint8_t *)data + len - 15;
    do {
      const uint32_t *v = (const uint32_t *)data;
      if (unlikely(need_align))
        v = (const uint32_t *)memcpy(&align, unaligned(v), 16);

      uint32_t w0 = fetch32_be(v + 0);
      uint32_t w1 = fetch32_be(v + 1);
      uint32_t w2 = fetch32_be(v + 2);
      uint32_t w3 = fetch32_be(v + 3);

      uint32_t c02 = w0 ^ rot32(w2 + c, 11);
      uint32_t d13 = w1 + rot32(w3 + d, 17);
      c ^= rot32(b + w1, 7);
      d ^= rot32(a + w0, 3);
      b = prime32_1 * (c02 + w3);
      a = prime32_0 * (d13 ^ w2);

      data = (const uint32_t *)data + 4;
    } while (likely(data < detent));

    c += a;
    d += b;
    a ^= prime32_6 * (rot32(c, 16) + d);
    b ^= prime32_5 * (c + rot32(d, 16));

    len &= 15;
  }

  const uint8_t *v = (const uint8_t *)data;
  if (unlikely(need_align) && len > 4)
    v = (const uint8_t *)memcpy(&align, unaligned(v), len);

  switch (len) {
  default:
    mixup32(&a, &b, fetch32_be(v), prime32_4);
    v += 4;
  /* fall through */
  case 12:
  case 11:
  case 10:
  case 9:
    mixup32(&b, &a, fetch32_be(v), prime32_3);
    v += 4;
  /* fall through */
  case 8:
  case 7:
  case 6:
  case 5:
    mixup32(&a, &b, fetch32_be(v), prime32_2);
    v += 4;
  /* fall through */
  case 4:
  case 3:
  case 2:
  case 1:
    mixup32(&b, &a, tail32_be(v, len), prime32_1);
  /* fall through */
  case 0:
    return final32(a, b);
  }
}

/***************************************************************************/

#if T1HA0_RUNTIME_SELECT

#if T1HA0_AESNI_AVAILABLE && defined(__ia32__)
static uint64_t x86_cpu_features(void) {
  uint32_t features = 0;
  uint32_t extended = 0;
#ifdef __GNUC__
  uint32_t eax, ebx, ecx, edx;
  const unsigned cpuid_max = __get_cpuid_max(0, NULL);
  if (cpuid_max >= 1) {
    __cpuid_count(1, 0, eax, ebx, features, edx);
    if (cpuid_max >= 7)
      __cpuid_count(7, 0, eax, extended, ecx, edx);
  }
#elif defined(_MSC_VER)
  int info[4];
  __cpuid(info, 0);
  const unsigned cpuid_max = info[0];
  if (cpuid_max >= 1) {
    __cpuidex(info, 1, 0);
    features = info[2];
    if (cpuid_max >= 7) {
      __cpuidex(info, 7, 0);
      extended = info[1];
    }
  }
#endif
  return features | (uint64_t)extended << 32;
}
#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */

static
#if __GNUC_PREREQ(4, 0) || __has_attribute(used)
    __attribute__((used))
#endif
    uint64_t (*t1ha0_resolve(void))(const void *, size_t, uint64_t) {

#if T1HA0_AESNI_AVAILABLE && defined(__ia32__)
  uint64_t features = x86_cpu_features();
  if (features & UINT32_C(0x02000000) /* check for AES-NI */) {
    return t1ha0_ia32aes_noavx;
  }
#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */

#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
  return t1ha1_be;
#else
  return t1ha0_32be;
#endif
#else /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */
#if UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul
  return t1ha1_le;
#else
  return t1ha0_32le;
#endif
#endif /* __BYTE_ORDER__ */
}

#ifdef __ELF__

#if __has_attribute(ifunc)

uint64_t t1ha0(const void *data, size_t len, uint64_t seed)
    __attribute__((ifunc("t1ha0_resolve")));
#else
__asm("\t.globl\tt1ha0\n\t.type\tt1ha0, "
      "%gnu_indirect_function\n\t.set\tt1ha0,t1ha0_resolve");
#endif /* ifunc */

#elif __GNUC_PREREQ(4, 0) || __has_attribute(constructor)

uint64_t (*t1ha0_funcptr)(const void *, size_t, uint64_t);

static void __attribute__((constructor)) t1ha0_init(void) {
  t1ha0_funcptr = t1ha0_resolve();
}

#else /* ELF */
static uint64_t t1ha0_proxy(const void *data, size_t len, uint64_t seed) {
  t1ha0_funcptr = t1ha0_resolve();
  return t1ha0_funcptr(data, len, seed);
}

uint64_t (*t1ha0_funcptr)(const void *, size_t, uint64_t) = t1ha0_proxy;

#endif /* !ELF */
#endif /* T1HA0_RUNTIME_SELECT */