1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
--[[
Probabilistic Criterion for Triplet Siamese Model for learning embedding.
Ref: https://arxiv.org/pdf/1610.00243.pdf
loss = -log( exp(-X) / ( exp(-X) + exp(-Y) ) )
where
X : Distance between similar samples
Y : Distance between dissimilar samples
The loss could be break down to following log expansion
loss = -log( exp(-X) ) - (-log( exp(-X) + exp(-Y) ))
= -log( exp(-X) ) + log( exp(-X) + exp(-Y) )
= -(-X) + log( exp(-X) + exp(-Y) )
= X + log( exp(-X) + exp(-Y) )
Gradients:
dLoss/dX = 1 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-X)
= 1 - exp(-X) / (exp(-X) + exp(-Y))
dLoss/dY = 0 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-Y)
= -exp(-Y) / (exp(-X) + exp(-Y))
--]]
local DistanceRatioCriterion, parent = torch.class('nn.DistanceRatioCriterion',
'nn.Criterion')
function DistanceRatioCriterion:__init(sizeAverage)
parent.__init(self)
if sizeAverage ~= nil then
self.sizeAverage = sizeAverage
else
self.sizeAverage = true
end
end
-- Forward
--[[
-- X : Distance between similar samples
-- Y : Distance between dissimilar samples
loss = -log( exp(-X) ) - (-log( exp(-X) + exp(-Y) ))
= -log( exp(-X) ) + log( exp(-X) + exp(-Y) )
= -(-X) + log( exp(-X) + exp(-Y) )
= X + log( exp(-X) + exp(-Y) )
--]]
function DistanceRatioCriterion:updateOutput(input)
assert(#input == 2, "Invalid number of inputs")
local X = input[1]
local Y = input[2]
assert(X:nElement() == Y:nElement(), "Number of distances don't match.")
assert(X:size(1) == Y:size(1), "Invalid distances' size.")
-- Compute exp(-X) and exp(-Y)
self._expMinusX = self._expMinusX or X.new()
self._expMinusY = self._expMinusY or Y.new()
-- Compute ( exp(-X) + exp(-Y) )
self._expMinusX:resizeAs(X):copy(X):mul(-1):exp()
self._expMinusY:resizeAs(Y):copy(Y):mul(-1):exp()
self._sumExpMinusXY = self.sumExpMinusExp or X.new()
self._sumExpMinusXY:resizeAs(self._expMinusX):copy(self._expMinusX)
:add(self._expMinusY)
-- Compute log( exp(-X) + exp(-Y) )
self._logSumExpMinusXY = self._logSumExpMinusXY or self._sumExpMinusXY.new()
self._logSumExpMinusXY:resizeAs(self._sumExpMinusXY)
:copy(self._sumExpMinusXY):log()
-- Compute log( exp(-X) + exp(-Y) )
self.loss = self.loss or self._logSumExpMinusXY.new()
self.loss:resizeAs(X):copy(X):add(self._logSumExpMinusXY)
if self.sizeAverage then
return self.loss:sum()/X:size(1)
else
return self.loss:sum()
end
end
-- Backward
--[[
-- X : Distance between similar samples
-- Y : Distance between dissimilar samples
Gradients:
dLoss/dX = 1 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-X)
= 1 - exp(-X) / (exp(-X) + exp(-Y))
dLoss/dY = 0 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-Y)
= -exp(-Y) / (exp(-X) + exp(-Y))
--]]
function DistanceRatioCriterion:updateGradInput(input)
assert(#input == 2, "Invalid number of inputs")
local X = input[1]
local Y = input[2]
assert(X:nElement() == Y:nElement(), "Number of distances don't match.")
assert(X:size(1) == Y:size(1), "Invalid distances' size.")
-- dLoss/dX
-- -exp(-X)
self.dX = self.dX or X.new()
self.dX:resizeAs(self._expMinusX):copy(self._expMinusX):mul(-1)
-- -exp(-X) / (exp(-X) + exp(-Y))
self.dX:cdiv(self._sumExpMinusXY)
-- 1 - exp(-X) / (exp(-X) + exp(-Y))
self.dX:add(1)
-- dLoss/dY
-- -exp(-Y)
self.dY = self.dY or Y.new()
self.dY:resizeAs(self._expMinusY):copy(self._expMinusY):mul(-1)
-- -exp(-Y) / (exp(-X) + exp(-Y))
self.dY:cdiv(self._sumExpMinusXY)
if self.sizeAverage then
self.dX:div(X:size(1))
self.dY:div(X:size(1))
end
return {self.dX, self.dY}
end
function DistanceRatioCriterion:type(type, tensorCache)
if type then
self._expMinusX = nil
self._expMinusY = nil
self._sumExpMinusXY = nil
self._logSumExpMinusXY = nil
self.loss = nil
self.dX = nil
self.dY = nil
end
return parent.type(self, type, tensorCache)
end
|