aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/torch/nn/DistanceRatioCriterion.lua
blob: 6b79d06208ea57637a8ad97d3a439294ec62b957 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
--[[
   Probabilistic Criterion for Triplet Siamese Model for learning embedding.
   Ref: https://arxiv.org/pdf/1610.00243.pdf

   loss = -log( exp(-X) / ( exp(-X) + exp(-Y) ) )
   where
   X : Distance between similar samples
   Y : Distance between dissimilar samples

   The loss could be break down to following log expansion

   loss = -log( exp(-X) ) - (-log( exp(-X) + exp(-Y) ))
        = -log( exp(-X) ) + log( exp(-X) + exp(-Y) )
        = -(-X) + log( exp(-X) + exp(-Y) )
        = X + log( exp(-X) + exp(-Y) )

   Gradients:
      dLoss/dX = 1 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-X)
               = 1 - exp(-X) / (exp(-X) + exp(-Y))

      dLoss/dY = 0 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-Y)
               = -exp(-Y) / (exp(-X) + exp(-Y))

--]]

local DistanceRatioCriterion, parent = torch.class('nn.DistanceRatioCriterion',
                                                   'nn.Criterion')

function DistanceRatioCriterion:__init(sizeAverage)
   parent.__init(self)
   if sizeAverage ~= nil then
     self.sizeAverage = sizeAverage
   else
     self.sizeAverage = true
   end
end

-- Forward
--[[
-- X : Distance between similar samples
-- Y : Distance between dissimilar samples
   loss = -log( exp(-X) ) - (-log( exp(-X) + exp(-Y) ))
        = -log( exp(-X) ) + log( exp(-X) + exp(-Y) )
        = -(-X) + log( exp(-X) + exp(-Y) )
        = X + log( exp(-X) + exp(-Y) )
--]]
function DistanceRatioCriterion:updateOutput(input)
   assert(#input == 2, "Invalid number of inputs")

   local X = input[1]
   local Y = input[2]

   assert(X:nElement() == Y:nElement(), "Number of distances don't match.")
   assert(X:size(1) == Y:size(1), "Invalid distances' size.")

   -- Compute exp(-X) and exp(-Y)
   self._expMinusX = self._expMinusX or X.new()
   self._expMinusY = self._expMinusY or Y.new()

   -- Compute ( exp(-X) + exp(-Y) )
   self._expMinusX:resizeAs(X):copy(X):mul(-1):exp()
   self._expMinusY:resizeAs(Y):copy(Y):mul(-1):exp()

   self._sumExpMinusXY = self.sumExpMinusExp or X.new()
   self._sumExpMinusXY:resizeAs(self._expMinusX):copy(self._expMinusX)
                     :add(self._expMinusY)

   -- Compute log( exp(-X) + exp(-Y) )
   self._logSumExpMinusXY = self._logSumExpMinusXY or self._sumExpMinusXY.new()
   self._logSumExpMinusXY:resizeAs(self._sumExpMinusXY)
                         :copy(self._sumExpMinusXY):log()

   -- Compute log( exp(-X) + exp(-Y) )
   self.loss = self.loss or self._logSumExpMinusXY.new()
   self.loss:resizeAs(X):copy(X):add(self._logSumExpMinusXY)

   if self.sizeAverage then
      return self.loss:sum()/X:size(1)
   else
      return self.loss:sum()
   end
end

-- Backward
--[[
-- X : Distance between similar samples
-- Y : Distance between dissimilar samples

   Gradients:
      dLoss/dX = 1 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-X)
               = 1 - exp(-X) / (exp(-X) + exp(-Y))

      dLoss/dY = 0 + 1 / (exp(-X) + exp(-Y)) * -1 * exp(-Y)
               = -exp(-Y) / (exp(-X) + exp(-Y))

--]]
function DistanceRatioCriterion:updateGradInput(input)
   assert(#input == 2, "Invalid number of inputs")
   local X = input[1]
   local Y = input[2]
   assert(X:nElement() == Y:nElement(), "Number of distances don't match.")
   assert(X:size(1) == Y:size(1), "Invalid distances' size.")

   -- dLoss/dX
   -- -exp(-X)
   self.dX = self.dX or X.new()
   self.dX:resizeAs(self._expMinusX):copy(self._expMinusX):mul(-1)

   -- -exp(-X) / (exp(-X) + exp(-Y))
   self.dX:cdiv(self._sumExpMinusXY)

   -- 1 - exp(-X) / (exp(-X) + exp(-Y))
   self.dX:add(1)

   -- dLoss/dY
   -- -exp(-Y)
   self.dY = self.dY or Y.new()
   self.dY:resizeAs(self._expMinusY):copy(self._expMinusY):mul(-1)

   -- -exp(-Y) / (exp(-X) + exp(-Y))
   self.dY:cdiv(self._sumExpMinusXY)

   if self.sizeAverage then
      self.dX:div(X:size(1))
      self.dY:div(X:size(1))
   end

   return {self.dX, self.dY}
end

function DistanceRatioCriterion:type(type, tensorCache)
   if type then
      self._expMinusX = nil
      self._expMinusY = nil
      self._sumExpMinusXY = nil
      self._logSumExpMinusXY = nil
      self.loss = nil
      self.dX = nil
      self.dY = nil
   end
   return parent.type(self, type, tensorCache)
end