1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
|
local THNN = require 'nn.THNN'
local SpatialConvolution, parent = torch.class('nn.SpatialConvolution', 'nn.Module')
function SpatialConvolution:__init(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.padW = padW or 0
self.padH = padH or self.padW
self.weight = torch.Tensor(nOutputPlane, nInputPlane, kH, kW)
self.bias = torch.Tensor(nOutputPlane)
self.gradWeight = torch.Tensor(nOutputPlane, nInputPlane, kH, kW)
self.gradBias = torch.Tensor(nOutputPlane)
self:reset()
end
function SpatialConvolution:noBias()
self.bias = nil
self.gradBias = nil
return self
end
function SpatialConvolution:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW*self.kH*self.nInputPlane)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
if self.bias then
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
end
else
self.weight:uniform(-stdv, stdv)
if self.bias then
self.bias:uniform(-stdv, stdv)
end
end
end
local function backCompatibility(self)
self.finput = self.finput or self.weight.new()
self.fgradInput = self.fgradInput or self.weight.new()
if self.padding then
self.padW = self.padding
self.padH = self.padding
self.padding = nil
else
self.padW = self.padW or 0
self.padH = self.padH or 0
end
if self.weight:dim() == 2 then
self.weight = self.weight:view(self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
end
if self.gradWeight and self.gradWeight:dim() == 2 then
self.gradWeight = self.gradWeight:view(self.nOutputPlane, self.nInputPlane, self.kH, self.kW)
end
end
function SpatialConvolution:updateOutput(input)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
backCompatibility(self)
input.THNN.SpatialConvolutionMM_updateOutput(
input:cdata(),
self.output:cdata(),
self.weight:cdata(),
THNN.optionalTensor(self.bias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
return self.output
end
function SpatialConvolution:updateGradInput(input, gradOutput)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
if self.gradInput then
backCompatibility(self)
input.THNN.SpatialConvolutionMM_updateGradInput(
input:cdata(),
gradOutput:cdata(),
self.gradInput:cdata(),
self.weight:cdata(),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH
)
return self.gradInput
end
end
function SpatialConvolution:accGradParameters(input, gradOutput, scale)
assert(input.THNN, torch.type(input)..'.THNN backend not imported')
scale = scale or 1
backCompatibility(self)
input.THNN.SpatialConvolutionMM_accGradParameters(
input:cdata(),
gradOutput:cdata(),
self.gradWeight:cdata(),
THNN.optionalTensor(self.gradBias),
self.finput:cdata(),
self.fgradInput:cdata(),
self.kW, self.kH,
self.dW, self.dH,
self.padW, self.padH,
scale
)
end
function SpatialConvolution:type(type,tensorCache)
self.finput = self.finput and torch.Tensor()
self.fgradInput = self.fgradInput and torch.Tensor()
return parent.type(self,type,tensorCache)
end
function SpatialConvolution:__tostring__()
local s = string.format('%s(%d -> %d, %dx%d', torch.type(self),
self.nInputPlane, self.nOutputPlane, self.kW, self.kH)
if self.dW ~= 1 or self.dH ~= 1 or self.padW ~= 0 or self.padH ~= 0 then
s = s .. string.format(', %d,%d', self.dW, self.dH)
end
if (self.padW or self.padH) and (self.padW ~= 0 or self.padH ~= 0) then
s = s .. ', ' .. self.padW .. ',' .. self.padH
end
if self.bias then
return s .. ')'
else
return s .. ') without bias'
end
end
function SpatialConvolution:clearState()
nn.utils.clear(self, 'finput', 'fgradInput', '_input', '_gradOutput')
return parent.clearState(self)
end
|