1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
local TemporalSubSampling, parent = torch.class('nn.TemporalSubSampling', 'nn.Module')
function TemporalSubSampling:__init(inputFrameSize, kW, dW)
parent.__init(self)
dW = dW or 1
self.inputFrameSize = inputFrameSize
self.kW = kW
self.dW = dW
self.weight = torch.Tensor(inputFrameSize)
self.bias = torch.Tensor(inputFrameSize)
self.gradWeight = torch.Tensor(inputFrameSize)
self.gradBias = torch.Tensor(inputFrameSize)
self:reset()
end
function TemporalSubSampling:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
end
function TemporalSubSampling:updateOutput(input)
input.THNN.TemporalSubSampling_updateOutput(
input:cdata(), self.output:cdata(),
self.weight:cdata(), self.bias:cdata(),
self.kW, self.dW, self.inputFrameSize
)
return self.output
end
function TemporalSubSampling:updateGradInput(input, gradOutput)
if self.gradInput then
input.THNN.TemporalSubSampling_updateGradInput(
input:cdata(), gradOutput:cdata(), self.gradInput:cdata(),
self.weight:cdata(), self.kW, self.dW
)
return self.gradInput
end
end
function TemporalSubSampling:accGradParameters(input, gradOutput, scale)
scale = scale or 1
input.THNN.TemporalSubSampling_accGradParameters(
input:cdata(), gradOutput:cdata(), self.gradWeight:cdata(),
self.gradBias:cdata(), self.kW, self.dW, scale
)
end
|