summaryrefslogtreecommitdiffstats
path: root/contrib/torch/nn/lib/THNN/generic/MultiMarginCriterion.c
blob: 2f8f8ff58f2591d23073fd20bc112450e76410ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/MultiMarginCriterion.c"
#else

// TODO: improve error messages
void THNN_(MultiMarginCriterion_updateOutput)(
          THNNState *state,
          THTensor *input,
          THIndexTensor *target,
          THTensor *output,
          bool sizeAverage,
          int p,
          THTensor *weights,
          accreal margin_)
{
  real margin = TH_CONVERT_ACCREAL_TO_REAL(margin_);
  real *input_data, *weights_data;
  THIndex_t *target_data;
  long nframe, dim;
  long t, d;
  real sum;

  THArgCheck((input->nDimension == 1) || (input->nDimension == 2), 2,
	     "vector or matrix expected");

  if (input->nDimension == 1)
  {
    nframe = 1;
    dim = input->size[0];
  }
  else
  {
    nframe = input->size[0];
    dim = input->size[1];
    THArgCheck((target->nDimension == 1) && (target->size[0] == nframe), 3,
	       "inconsistent target size");
  }

  for (t = 0; t < nframe; t++)
  {
    THIndex_t idx = THIndexTensor_(get1d)(target, t);
    THArgCheck((idx >= TH_INDEX_BASE) && (idx < dim + TH_INDEX_BASE), 3,
	       "target out of range");
  }

  input = THTensor_(newContiguous)(input);
  target = THIndexTensor_(newContiguous)(target);
  weights = weights ? THTensor_(newContiguous)(weights) : NULL;
  input_data = THTensor_(data)(input);
  target_data = THIndexTensor_(data)(target);
  weights_data = weights ? THTensor_(data)(weights) : NULL;

  sum = 0;
  for (t = 0; t < nframe; t++)
  {
    THIndex_t target_idx = target_data[t] - TH_INDEX_BASE;
    real input_target = input_data[target_idx];
    for (d = 0; d < dim; d++)
    {
      real z = margin - input_target + input_data[d];
      if (d == target_idx)
        continue;

      if (z > 0) {
        real h = (p==1) ? z : z*z;
        if(weights_data)
          h *= weights_data[target_idx];
        sum += h;
      }
    }
    input_data += dim;
  }

  sum /= dim;
  if(sizeAverage)
    sum /= nframe;

  THTensor_(set1d)(output, 0, sum);

  THTensor_(free)(input);
  THIndexTensor_(free)(target);
  if(weights)
    THTensor_(free)(weights);
}

void THNN_(MultiMarginCriterion_updateGradInput)(
          THNNState *state,
          THTensor *input,
          THIndexTensor *target,
          THTensor *gradInput,
          bool sizeAverage,
          int p,
          THTensor *weights,
          accreal margin_)
{
  real margin = TH_CONVERT_ACCREAL_TO_REAL(margin_);
  real *input_data;
  real *gradInput_data;
  THIndex_t *target_data;
  real *weights_data;
  long nframe, dim;
  long t, d;
  real g;

  THArgCheck((input->nDimension == 1) || (input->nDimension == 2), 2,
	     "vector or matrix expected");

  if (input->nDimension == 1)
  {
    nframe = 1;
    dim = input->size[0];
  }
  else
  {
    nframe = input->size[0];
    dim = input->size[1];
    THArgCheck((target->nDimension == 1) && (target->size[0] == nframe), 3,
	       "inconsistent target size");
  }

  g = (sizeAverage ? 1./((real)(nframe*dim)) : 1./((real)dim));

  input = THTensor_(newContiguous)(input);
  target = THIndexTensor_(newContiguous)(target);
  input_data = THTensor_(data)(input);

  THTensor_(resizeAs)(gradInput, input);
  gradInput_data = THTensor_(data)(gradInput);

  target_data = THIndexTensor_(data)(target);
  weights = weights ? THTensor_(newContiguous)(weights) : NULL;
  weights_data = weights ? THTensor_(data)(weights) : NULL;

  for (t = 0; t < nframe; t++)
  {
    THIndex_t target_idx = target_data[t] - TH_INDEX_BASE;
    real input_target = input_data[target_idx];
    real gradInput_target = 0;
    for (d = 0; d < dim; d++)
    {
      real z = margin - input_target + input_data[d];
      if (d == target_idx)
        continue;

      if (z > 0)
      {
        real h = (p == 1) ? g : 2*g*z;
        if(weights_data)
          h *= weights_data[target_idx];
        gradInput_target -= h;
        gradInput_data[d] = h;
      }
      else
        gradInput_data[d] = 0;
    }
    gradInput_data[target_idx] = gradInput_target;

    input_data += dim;
    gradInput_data += dim;
  }

  THTensor_(free)(input);
  THIndexTensor_(free)(target);
  if(weights)
    THTensor_(free)(weights);
}

#endif