summaryrefslogtreecommitdiffstats
path: root/contrib/torch/nn/lib/THNN/generic/SpatialUpSamplingNearest.c
blob: b4699ff3ef7140e007b1962ec3ec059ce6792cbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#ifndef TH_GENERIC_FILE
#define TH_GENERIC_FILE "generic/SpatialUpSamplingNearest.c"
#else


static inline void THNN_(SpatialUpSamplingNearest_shapeCheck)
     (THTensor *input, THTensor *gradOutput,
      int scale_factor) {
  THArgCheck(input != NULL, 2, "4D input tensor expected but got NULL");
  THArgCheck(scale_factor > 1, 4,
	     "scale_factor must be greater than 1, but got: %d", scale_factor);
  THNN_ARGCHECK(input->nDimension == 3 || input->nDimension == 4, 2, input,
		"3D or 4D input tensor expected but got: %s");
  if (input->nDimension == 3) {
    int nChannels    = THTensor_(size)(input, 0);
    int inputHeight  = THTensor_(size)(input, 1);
    int inputWidth   = THTensor_(size)(input, 2);
    int outputHeight = inputHeight * scale_factor;
    int outputWidth  = inputWidth  * scale_factor;
    if (gradOutput != NULL) {
      THNN_CHECK_DIM_SIZE(gradOutput, 3, 0, nChannels);
      THNN_CHECK_DIM_SIZE(gradOutput, 3, 1, outputHeight);
      THNN_CHECK_DIM_SIZE(gradOutput, 3, 2, outputWidth);
    }
  } else {
    int nBatch       = THTensor_(size)(input, 0);
    int nChannels    = THTensor_(size)(input, 1);
    int inputHeight  = THTensor_(size)(input, 2);
    int inputWidth   = THTensor_(size)(input, 3);
    int outputHeight = inputHeight * scale_factor;
    int outputWidth  = inputWidth  * scale_factor;
    if (gradOutput != NULL) {
      THNN_CHECK_DIM_SIZE(gradOutput, 4, 0, nBatch);
      THNN_CHECK_DIM_SIZE(gradOutput, 4, 1, nChannels);
      THNN_CHECK_DIM_SIZE(gradOutput, 4, 2, outputHeight);
      THNN_CHECK_DIM_SIZE(gradOutput, 4, 3, outputWidth);
    }
  }
}

void THNN_(SpatialUpSamplingNearest_updateOutput)(
    THNNState *state,
    THTensor *input,
    THTensor *output,
    int scale_factor)
{
  THNN_(SpatialUpSamplingNearest_shapeCheck)(input, NULL, scale_factor);
  int inputHeight = THTensor_(size)(input, input->nDimension-2);
  int inputWidth  = THTensor_(size)(input,  input->nDimension-1);
  int outputHeight = inputHeight * scale_factor;
  int outputWidth = inputWidth * scale_factor;

  if (input->nDimension == 3) {
    THTensor_(resize3d)(output,
			THTensor_(size)(input, 0),
			outputHeight, outputWidth);
  } else {
    THTensor_(resize4d)(output,
			THTensor_(size)(input, 0),
			THTensor_(size)(input, 1),
			outputHeight, outputWidth);
  }

  int dW = scale_factor;
  int dH = scale_factor;
  int xDim = input->nDimension-2;
  int yDim = input->nDimension-1;

  // dims
  int idim = input->nDimension;
  int osz0 = output->size[0];
  int osz1 = output->size[1];
  int osz2 = output->size[2];
  int osz3 = 1;
  if (idim > 3) {
    osz3 = output->size[3];
  }

  // get strides
  long *is = input->stride;
  long *os = output->stride;

  // get raw pointers
  real *pin = THTensor_(data)(input);
  real *pout = THTensor_(data)(output);

  // perform the upsampling
  int i0, i1, i2, i3, isrc, idst;
  int iout[4];  // Output indices
  int iin[4];  // Input indices

  for (i0 = 0; i0 < osz0; i0++) {
    iout[0] = i0;
    iin[0] = i0;
    for (i1 = 0; i1 < osz1; i1++) {
      iout[1] = i1;
      iin[1] = i1;
      for (i2 = 0; i2 < osz2; i2++) {
        iout[2] = i2;
        iin[2] = i2;
        for (i3 = 0; i3 < osz3; i3++) {
          iout[3] = i3;
          iin[3] = i3;

          // set the indices for the upsampled dimensions
          iin[xDim] = iout[xDim] / dW;
          iin[yDim] = iout[yDim] / dH;

          idst = i0*os[0] + i1*os[1] + i2*os[2];
          isrc = iin[0]*is[0] + iin[1]*is[1] + iin[2]*is[2];
          if (idim > 3) {
            idst += i3*os[3];
            isrc += iin[3]*is[3];
          }

          pout[idst] = pin[isrc];
        }
      }
    }
  }
}

void THNN_(SpatialUpSamplingNearest_updateGradInput)(
    THNNState *state,
    THTensor *input,
    THTensor *gradOutput,
    THTensor *gradInput,
    int scale_factor)
{
  THNN_(SpatialUpSamplingNearest_shapeCheck)(input, gradOutput, scale_factor);
  THTensor_(resizeAs)(gradInput, input);

  int dW = scale_factor;
  int dH = scale_factor;
  int xDim = gradInput->nDimension-2;
  int yDim = gradInput->nDimension-1;

  // dims
  int idim = gradInput->nDimension;  // Guaranteed to be between 3 and 5
  int isz0 = gradInput->size[0];
  int isz1 = gradInput->size[1];
  int isz2 = gradInput->size[2];
  int isz3 = 1;
  if (idim > 3) {
    isz3 = gradInput->size[3];
  }

  // get strides
  long *is = gradInput->stride;
  long *os = gradOutput->stride;

  // get raw pointers
  real *pin = THTensor_(data)(gradInput);
  real *pout = THTensor_(data)(gradOutput);

  // perform the upsampling
  int i0, i1, i2, i3, isrc, idst, x, y;
  int iin[4];  // Input indices
  int iout[4];  // Output indices

  THTensor_(zero)(gradInput);

  for (i0 = 0; i0 < isz0; i0++) {
    iin[0] = i0;
    iout[0] = i0;
    for (i1 = 0; i1 < isz1; i1++) {
      iin[1] = i1;
      iout[1] = i1;
      for (i2 = 0; i2 < isz2; i2++) {
        iin[2] = i2;
        iout[2] = i2;
        for (i3 = 0; i3 < isz3; i3++) {
          iin[3] = i3;
          iout[3] = i3;

          idst = i0*is[0] + i1*is[1] + i2*is[2];
          if (idim > 3) {
            idst += i3*is[3];
          }

          // Now accumulate the gradients from gradOutput
          for (y = 0; y < dH; y++) {
            for (x = 0; x < dW; x++) {
              iout[xDim] = dW * iin[xDim] + x;
              iout[yDim] = dH * iin[yDim] + y;
              isrc = iout[0]*os[0] + iout[1]*os[1] + iout[2]*os[2];
              if (idim > 3) {
                isrc += iout[3]*os[3];
              }
              pin[idst] += pout[isrc];
            }
          }
        }
      }
    }
  }
}

#endif