1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
--[[ A plain implementation of SGD
ARGS:
- `opfunc` : a function that takes a single input (X), the point
of a evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `config` : a table with configuration parameters for the optimizer
- `config.learningRate` : learning rate
- `config.learningRateDecay` : learning rate decay
- `config.weightDecay` : weight decay
- `config.weightDecays` : vector of individual weight decays
- `config.momentum` : momentum
- `config.dampening` : dampening for momentum
- `config.nesterov` : enables Nesterov momentum
- `config.learningRates` : vector of individual learning rates
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state.evalCounter` : evaluation counter (optional: 0, by default)
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
(Clement Farabet, 2012)
]]
function optim.sgd(opfunc, x, config, state)
-- (0) get/update state
local config = config or {}
local state = state or config
local lr = config.learningRate or 1e-3
local lrd = config.learningRateDecay or 0
local wd = config.weightDecay or 0
local mom = config.momentum or 0
local damp = config.dampening or mom
local nesterov = config.nesterov or false
local lrs = config.learningRates
local wds = config.weightDecays
state.evalCounter = state.evalCounter or 0
local nevals = state.evalCounter
assert(not nesterov or (mom > 0 and damp == 0), "Nesterov momentum requires a momentum and zero dampening")
-- (1) evaluate f(x) and df/dx
local fx,dfdx = opfunc(x)
-- (2) weight decay with single or individual parameters
if wd ~= 0 then
dfdx:add(wd, x)
elseif wds then
if not state.decayParameters then
state.decayParameters = torch.Tensor():typeAs(x):resizeAs(dfdx)
end
state.decayParameters:copy(wds):cmul(x)
dfdx:add(state.decayParameters)
end
-- (3) apply momentum
if mom ~= 0 then
if not state.dfdx then
state.dfdx = torch.Tensor():typeAs(dfdx):resizeAs(dfdx):copy(dfdx)
else
state.dfdx:mul(mom):add(1-damp, dfdx)
end
if nesterov then
dfdx:add(mom, state.dfdx)
else
dfdx = state.dfdx
end
end
-- (4) learning rate decay (annealing)
local clr = lr / (1 + nevals*lrd)
-- (5) parameter update with single or individual learning rates
if lrs then
if not state.deltaParameters then
state.deltaParameters = torch.Tensor():typeAs(x):resizeAs(dfdx)
end
state.deltaParameters:copy(lrs):cmul(dfdx)
x:add(-clr, state.deltaParameters)
else
x:add(-clr, dfdx)
end
-- (6) update evaluation counter
state.evalCounter = state.evalCounter + 1
-- return x*, f(x) before optimization
return x,{fx}
end
|