1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
--[[
Copyright (c) 2020, Vsevolod Stakhov <vsevolod@highsecure.ru>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--
local fun = require "fun"
local lua_redis = require "lua_redis"
local lua_settings = require "lua_settings"
local lua_util = require "lua_util"
local meta_functions = require "lua_meta"
local rspamd_kann = require "rspamd_kann"
local rspamd_logger = require "rspamd_logger"
local rspamd_tensor = require "rspamd_tensor"
local rspamd_util = require "rspamd_util"
local ucl = require "ucl"
local N = 'neural'
-- Used in prefix to avoid wrong ANN to be loaded
local plugin_ver = '2'
-- Module vars
local default_options = {
train = {
max_trains = 1000,
max_epoch = 1000,
max_usages = 10,
max_iterations = 25, -- Torch style
mse = 0.001,
autotrain = true,
train_prob = 1.0,
learn_threads = 1,
learn_mode = 'balanced', -- Possible values: balanced, proportional
learning_rate = 0.01,
classes_bias = 0.0, -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias)
spam_skip_prob = 0.0, -- proportional mode: spam skip probability (0-1)
ham_skip_prob = 0.0, -- proportional mode: ham skip probability
store_pool_only = false, -- store tokens in cache only (disables autotrain);
-- neural_vec_mpack stores vector of training data in messagepack neural_profile_digest stores profile digest
},
watch_interval = 60.0,
lock_expire = 600,
learning_spawned = false,
ann_expire = 60 * 60 * 24 * 2, -- 2 days
hidden_layer_mult = 1.5, -- number of neurons in the hidden layer
roc_enabled = false, -- Use ROC to find the best possible thresholds for ham and spam. If spam_score_threshold or ham_score_threshold is defined, it takes precedence over ROC thresholds.
roc_misclassification_cost = 0.5, -- Cost of misclassifying a spam message (must be 0..1).
spam_score_threshold = nil, -- neural score threshold for spam (must be 0..1 or nil to disable)
ham_score_threshold = nil, -- neural score threshold for ham (must be 0..1 or nil to disable)
flat_threshold_curve = false, -- use binary classification 0/1 when threshold is reached
symbol_spam = 'NEURAL_SPAM',
symbol_ham = 'NEURAL_HAM',
max_inputs = nil, -- when PCA is used
blacklisted_symbols = {}, -- list of symbols skipped in neural processing
}
-- Rule structure:
-- * static config fields (see `default_options`)
-- * prefix - name or defined prefix
-- * settings - table of settings indexed by settings id, -1 is used when no settings defined
-- Rule settings element defines elements for specific settings id:
-- * symbols - static symbols profile (defined by config or extracted from symcache)
-- * name - name of settings id
-- * digest - digest of all symbols
-- * ann - dynamic ANN configuration loaded from Redis
-- * train - train data for ANN (e.g. the currently trained ANN)
-- Settings ANN table is loaded from Redis and represents dynamic profile for ANN
-- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically
-- * version - version of ANN loaded from redis
-- * redis_key - name of ANN key in Redis
-- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols)
-- * distance - distance between set.symbols and set.ann.symbols
-- * ann - kann object
local settings = {
rules = {},
prefix = 'rn', -- Neural network default prefix
max_profiles = 3, -- Maximum number of NN profiles stored
}
-- Get module & Redis configuration
local module_config = rspamd_config:get_all_opt(N)
settings = lua_util.override_defaults(settings, module_config)
local redis_params = lua_redis.parse_redis_server('neural')
-- Lua script that checks if we can store a new training vector
-- Uses the following keys:
-- key1 - ann key
-- returns nspam,nham (or nil if locked)
local redis_lua_script_vectors_len = [[
local prefix = KEYS[1]
local locked = redis.call('HGET', prefix, 'lock')
if locked then
local host = redis.call('HGET', prefix, 'hostname') or 'unknown'
return string.format('%s:%s', host, locked)
end
local nspam = 0
local nham = 0
local ret = redis.call('LLEN', prefix .. '_spam')
if ret then nspam = tonumber(ret) end
ret = redis.call('LLEN', prefix .. '_ham')
if ret then nham = tonumber(ret) end
return {nspam,nham}
]]
-- Lua script to invalidate ANNs by rank
-- Uses the following keys
-- key1 - prefix for keys
-- key2 - number of elements to leave
local redis_lua_script_maybe_invalidate = [[
local card = redis.call('ZCARD', KEYS[1])
local lim = tonumber(KEYS[2])
if card > lim then
local to_delete = redis.call('ZRANGE', KEYS[1], 0, card - lim - 1)
for _,k in ipairs(to_delete) do
local tb = cjson.decode(k)
redis.call('DEL', tb.redis_key)
-- Also train vectors
redis.call('DEL', tb.redis_key .. '_spam')
redis.call('DEL', tb.redis_key .. '_ham')
end
redis.call('ZREMRANGEBYRANK', KEYS[1], 0, card - lim - 1)
return to_delete
else
return {}
end
]]
-- Lua script to invalidate ANN from redis
-- Uses the following keys
-- key1 - prefix for keys
-- key2 - current time
-- key3 - key expire
-- key4 - hostname
local redis_lua_script_maybe_lock = [[
local locked = redis.call('HGET', KEYS[1], 'lock')
local now = tonumber(KEYS[2])
if locked then
locked = tonumber(locked)
local expire = tonumber(KEYS[3])
if now > locked and (now - locked) < expire then
return {tostring(locked), redis.call('HGET', KEYS[1], 'hostname') or 'unknown'}
end
end
redis.call('HSET', KEYS[1], 'lock', tostring(now))
redis.call('HSET', KEYS[1], 'hostname', KEYS[4])
return 1
]]
-- Lua script to save and unlock ANN in redis
-- Uses the following keys
-- key1 - prefix for ANN
-- key2 - prefix for profile
-- key3 - compressed ANN
-- key4 - profile as JSON
-- key5 - expire in seconds
-- key6 - current time
-- key7 - old key
-- key8 - ROC Thresholds
-- key9 - optional PCA
local redis_lua_script_save_unlock = [[
local now = tonumber(KEYS[6])
redis.call('ZADD', KEYS[2], now, KEYS[4])
redis.call('HSET', KEYS[1], 'ann', KEYS[3])
redis.call('DEL', KEYS[1] .. '_spam')
redis.call('DEL', KEYS[1] .. '_ham')
redis.call('HDEL', KEYS[1], 'lock')
redis.call('HDEL', KEYS[7], 'lock')
redis.call('EXPIRE', KEYS[1], tonumber(KEYS[5]))
redis.call('HSET', KEYS[1], 'roc_thresholds', KEYS[8])
if KEYS[9] then
redis.call('HSET', KEYS[1], 'pca', KEYS[9])
end
return 1
]]
local redis_script_id = {}
local function load_scripts()
redis_script_id.vectors_len = lua_redis.add_redis_script(redis_lua_script_vectors_len,
redis_params)
redis_script_id.maybe_invalidate = lua_redis.add_redis_script(redis_lua_script_maybe_invalidate,
redis_params)
redis_script_id.maybe_lock = lua_redis.add_redis_script(redis_lua_script_maybe_lock,
redis_params)
redis_script_id.save_unlock = lua_redis.add_redis_script(redis_lua_script_save_unlock,
redis_params)
end
local function create_ann(n, nlayers, rule)
-- We ignore number of layers so far when using kann
local nhidden = math.floor(n * (rule.hidden_layer_mult or 1.0) + 1.0)
local t = rspamd_kann.layer.input(n)
t = rspamd_kann.transform.relu(t)
t = rspamd_kann.layer.dense(t, nhidden);
t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.ceb_neg)
return rspamd_kann.new.kann(t)
end
-- Fills ANN data for a specific settings element
local function fill_set_ann(set, ann_key)
if not set.ann then
set.ann = {
symbols = set.symbols,
distance = 0,
digest = set.digest,
redis_key = ann_key,
version = 0,
}
end
end
-- This function takes all inputs, applies PCA transformation and returns the final
-- PCA matrix as rspamd_tensor
local function learn_pca(inputs, max_inputs)
local scatter_matrix = rspamd_tensor.scatter_matrix(rspamd_tensor.fromtable(inputs))
local eigenvals = scatter_matrix:eigen()
-- scatter matrix is not filled with eigenvectors
lua_util.debugm(N, 'eigenvalues: %s', eigenvals)
local w = rspamd_tensor.new(2, max_inputs, #scatter_matrix[1])
for i=1,max_inputs do
w[i] = scatter_matrix[#scatter_matrix - i + 1]
end
lua_util.debugm(N, 'pca matrix: %s', w)
return w
end
-- This function computes optimal threshold using ROC for the given set of inputs.
-- Returns a threshold that minimizes:
-- alpha * (false_positive_rate) + beta * (false_negative_rate)
-- Where alpha is cost of false positive result
-- beta is cost of false negative result
local function get_roc_thresholds(ann, inputs, outputs, alpha, beta)
-- Sorts list x and list y based on the values in list x.
local sort_relative = function(x, y)
local r = {}
assert(#x == #y)
local n = #x
local a = {}
local b = {}
for i=1,n do
r[i] = i
end
local cmp = function(p, q) return p < q end
table.sort(r, function(p, q) return cmp(x[p], x[q]) end)
for i=1,n do
a[i] = x[r[i]]
b[i] = y[r[i]]
end
return a, b
end
local function get_scores(nn, input_vectors)
local scores = {}
for i=1,#inputs do
local score = nn:apply1(input_vectors[i], nn.pca)[1]
scores[#scores+1] = score
end
return scores
end
local fpr = {}
local fnr = {}
local scores = get_scores(ann, inputs)
scores, outputs = sort_relative(scores, outputs)
local n_samples = #outputs
local n_spam = 0
local n_ham = 0
local ham_count_ahead = {}
local spam_count_ahead = {}
local ham_count_behind = {}
local spam_count_behind = {}
ham_count_ahead[n_samples + 1] = 0
spam_count_ahead[n_samples + 1] = 0
for i=n_samples,1,-1 do
if outputs[i][1] == 0 then
n_ham = n_ham + 1
ham_count_ahead[i] = 1
spam_count_ahead[i] = 0
else
n_spam = n_spam + 1
ham_count_ahead[i] = 0
spam_count_ahead[i] = 1
end
ham_count_ahead[i] = ham_count_ahead[i] + ham_count_ahead[i + 1]
spam_count_ahead[i] = spam_count_ahead[i] + spam_count_ahead[i + 1]
end
for i=1,n_samples do
if outputs[i][1] == 0 then
ham_count_behind[i] = 1
spam_count_behind[i] = 0
else
ham_count_behind[i] = 0
spam_count_behind[i] = 1
end
if i ~= 1 then
ham_count_behind[i] = ham_count_behind[i] + ham_count_behind[i - 1]
spam_count_behind[i] = spam_count_behind[i] + spam_count_behind[i - 1]
end
end
for i=1,n_samples do
fpr[i] = 0
fnr[i] = 0
if (ham_count_ahead[i + 1] + ham_count_behind[i]) ~= 0 then
fpr[i] = ham_count_ahead[i + 1] / (ham_count_ahead[i + 1] + ham_count_behind[i])
end
if (spam_count_behind[i] + spam_count_ahead[i + 1]) ~= 0 then
fnr[i] = spam_count_behind[i] / (spam_count_behind[i] + spam_count_ahead[i + 1])
end
end
local p = n_spam / (n_spam + n_ham)
local cost = {}
local min_cost_idx = 0
local min_cost = math.huge
for i=1,n_samples do
cost[i] = ((1 - p) * alpha * fpr[i]) + (p * beta * fnr[i])
if min_cost >= cost[i] then
min_cost = cost[i]
min_cost_idx = i
end
end
return scores[min_cost_idx]
end
-- This function is intended to extend lock for ANN during training
-- It registers periodic that increases locked key each 30 seconds unless
-- `set.learning_spawned` is set to `true`
local function register_lock_extender(rule, set, ev_base, ann_key)
rspamd_config:add_periodic(ev_base, 30.0,
function()
local function redis_lock_extend_cb(_err, _)
if _err then
rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s',
ann_key, _err)
else
rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds',
ann_key)
end
end
if set.learning_spawned then
lua_redis.redis_make_request_taskless(ev_base,
rspamd_config,
rule.redis,
nil,
true, -- is write
redis_lock_extend_cb, --callback
'HINCRBY', -- command
{ann_key, 'lock', '30'}
)
else
lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false")
return false -- do not plan any more updates
end
return true
end
)
end
local function can_push_train_vector(rule, task, learn_type, nspam, nham)
local train_opts = rule.train
local coin = math.random()
if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then
rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin)
return false
end
if train_opts.learn_mode == 'balanced' then
-- Keep balanced training set based on number of spam and ham samples
if learn_type == 'spam' then
if nspam <= train_opts.max_trains then
if nspam > nham then
-- Apply sampling
local skip_rate = 1.0 - nham / (nspam + 1)
if coin < skip_rate - train_opts.classes_bias then
rspamd_logger.infox(task,
'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
learn_type,
skip_rate - train_opts.classes_bias,
nspam, nham)
return false
end
end
return true
else -- Enough learns
rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s',
learn_type,
nspam)
end
else
if nham <= train_opts.max_trains then
if nham > nspam then
-- Apply sampling
local skip_rate = 1.0 - nspam / (nham + 1)
if coin < skip_rate - train_opts.classes_bias then
rspamd_logger.infox(task,
'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored',
learn_type,
skip_rate - train_opts.classes_bias,
nspam, nham)
return false
end
end
return true
else
rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type,
nham)
end
end
else
-- Probabilistic learn mode, we just skip learn if we already have enough samples or
-- if our coin drop is less than desired probability
if learn_type == 'spam' then
if nspam <= train_opts.max_trains then
if train_opts.spam_skip_prob then
if coin <= train_opts.spam_skip_prob then
rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
coin, train_opts.spam_skip_prob)
return false
end
return true
end
else
rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type,
nspam, train_opts.max_trains)
end
else
if nham <= train_opts.max_trains then
if train_opts.ham_skip_prob then
if coin <= train_opts.ham_skip_prob then
rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type,
coin, train_opts.ham_skip_prob)
return false
end
return true
end
else
rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type,
nham, train_opts.max_trains)
end
end
end
return false
end
-- Closure generator for unlock function
local function gen_unlock_cb(rule, set, ann_key)
return function (err)
if err then
rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s',
rule.prefix, set.name, ann_key, err)
else
lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s',
rule.prefix, set.name, ann_key)
end
end
end
-- Used to generate new ANN key for specific profile
local function new_ann_key(rule, set, version)
local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix,
rule.prefix, set.name, set.digest:sub(1, 8), tostring(version))
return ann_key
end
local function redis_ann_prefix(rule, settings_name)
-- We also need to count metatokens:
local n = meta_functions.version
return string.format('%s%d_%s_%d_%s',
settings.prefix, plugin_ver, rule.prefix, n, settings_name)
end
-- This function receives training vectors, checks them, spawn learning and saves ANN in Redis
local function spawn_train(params)
-- Check training data sanity
-- Now we need to join inputs and create the appropriate test vectors
local n = #params.set.symbols +
meta_functions.rspamd_count_metatokens()
-- Now we can train ann
local train_ann = create_ann(params.rule.max_inputs or n, 3, params.rule)
if #params.ham_vec + #params.spam_vec < params.rule.train.max_trains / 2 then
-- Invalidate ANN as it is definitely invalid
-- TODO: add invalidation
assert(false)
else
local inputs, outputs = {}, {}
-- Used to show parsed vectors in a convenient format (for debugging only)
local function debug_vec(t)
local ret = {}
for i,v in ipairs(t) do
if v ~= 0 then
ret[#ret + 1] = string.format('%d=%.2f', i, v)
end
end
return ret
end
-- Make training set by joining vectors
-- KANN automatically shuffles those samples
-- 1.0 is used for spam and -1.0 is used for ham
-- It implies that output layer can express that (e.g. tanh output)
for _,e in ipairs(params.spam_vec) do
inputs[#inputs + 1] = e
outputs[#outputs + 1] = {1.0}
--rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e))
end
for _,e in ipairs(params.ham_vec) do
inputs[#inputs + 1] = e
outputs[#outputs + 1] = {-1.0}
--rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e))
end
-- Called in child process
local function train()
local log_thresh = params.rule.train.max_iterations / 10
local seen_nan = false
local function train_cb(iter, train_cost, value_cost)
if (iter * (params.rule.train.max_iterations / log_thresh)) % (params.rule.train.max_iterations) == 0 then
if train_cost ~= train_cost and not seen_nan then
-- We have nan :( try to log lot's of stuff to dig into a problem
seen_nan = true
rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s',
params.rule.prefix, params.set.name,
value_cost)
for i,e in ipairs(inputs) do
lua_util.debugm(N, rspamd_config, 'train vector %s -> %s',
debug_vec(e), outputs[i][1])
end
end
rspamd_logger.infox(rspamd_config,
"ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s",
params.rule.prefix, params.set.name,
params.ann_key,
iter,
train_cost,
value_cost)
end
end
lua_util.debugm(N, rspamd_config, "subprocess to learn ANN %s:%s has been started",
params.rule.prefix, params.set.name)
local pca
if params.rule.max_inputs then
-- Train PCA in the main process, presumably it is not that long
lua_util.debugm(N, rspamd_config, "start PCA train for ANN %s:%s",
params.rule.prefix, params.set.name)
pca = learn_pca(inputs, params.rule.max_inputs)
end
lua_util.debugm(N, rspamd_config, "start neural train for ANN %s:%s",
params.rule.prefix, params.set.name)
local ret,err = pcall(train_ann.train1, train_ann,
inputs, outputs, {
lr = params.rule.train.learning_rate,
max_epoch = params.rule.train.max_iterations,
cb = train_cb,
pca = pca
})
if not ret then
rspamd_logger.errx(rspamd_config, "cannot train ann %s:%s: %s",
params.rule.prefix, params.set.name, err)
return nil
else
lua_util.debugm(N, rspamd_config, "finished neural train for ANN %s:%s",
params.rule.prefix, params.set.name)
end
local roc_thresholds = {}
if params.rule.roc_enabled then
local spam_threshold = get_roc_thresholds(train_ann,
inputs,
outputs,
1 - params.rule.roc_misclassification_cost,
params.rule.roc_misclassification_cost)
local ham_threshold = get_roc_thresholds(train_ann,
inputs,
outputs,
params.rule.roc_misclassification_cost,
1 - params.rule.roc_misclassification_cost)
roc_thresholds = {spam_threshold, ham_threshold}
rspamd_logger.messagex("ROC thresholds: (spam_threshold: %s, ham_threshold: %s)",
roc_thresholds[1], roc_thresholds[2])
end
if not seen_nan then
-- Convert to strings as ucl cannot rspamd_text properly
local pca_data
if pca then
pca_data = tostring(pca:save())
end
local out = {
ann_data = tostring(train_ann:save()),
pca_data = pca_data,
roc_thresholds = roc_thresholds,
}
local final_data = ucl.to_format(out, 'msgpack')
lua_util.debugm(N, rspamd_config, "subprocess for ANN %s:%s returned %s bytes",
params.rule.prefix, params.set.name, #final_data)
return final_data
else
return nil
end
end
params.set.learning_spawned = true
local function redis_save_cb(err)
if err then
rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s',
params.rule.prefix, params.set.name, params.ann_key, err)
lua_redis.redis_make_request_taskless(params.ev_base,
rspamd_config,
params.rule.redis,
nil,
false, -- is write
gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
'HDEL', -- command
{params.ann_key, 'lock'}
)
else
rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s',
params.rule.prefix, params.set.name, params.set.ann.redis_key)
end
end
local function ann_trained(err, data)
params.set.learning_spawned = false
if err then
rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s',
params.rule.prefix, params.set.name, err)
lua_redis.redis_make_request_taskless(params.ev_base,
rspamd_config,
params.rule.redis,
nil,
true, -- is write
gen_unlock_cb(params.rule, params.set, params.ann_key), --callback
'HDEL', -- command
{params.ann_key, 'lock'}
)
else
local parser = ucl.parser()
local ok, parse_err = parser:parse_text(data, 'msgpack')
assert(ok, parse_err)
local parsed = parser:get_object()
local ann_data = rspamd_util.zstd_compress(parsed.ann_data)
local pca_data = parsed.pca_data
local roc_thresholds = parsed.roc_thresholds
fill_set_ann(params.set, params.ann_key)
if pca_data then
params.set.ann.pca = rspamd_tensor.load(pca_data)
pca_data = rspamd_util.zstd_compress(pca_data)
end
if roc_thresholds then
params.set.ann.roc_thresholds = roc_thresholds
end
-- Deserialise ANN from the child process
ann_trained = rspamd_kann.load(parsed.ann_data)
local version = (params.set.ann.version or 0) + 1
params.set.ann.version = version
params.set.ann.ann = ann_trained
params.set.ann.symbols = params.set.symbols
params.set.ann.redis_key = new_ann_key(params.rule, params.set, version)
local profile = {
symbols = params.set.symbols,
digest = params.set.digest,
redis_key = params.set.ann.redis_key,
version = version
}
local profile_serialized = ucl.to_format(profile, 'json-compact', true)
local roc_thresholds_serialized = ucl.to_format(roc_thresholds, 'json-compact', true)
rspamd_logger.infox(rspamd_config,
'trained ANN %s:%s, %s bytes (%s compressed); %s rows in pca (%sb compressed); redis key: %s (old key %s)',
params.rule.prefix, params.set.name,
#data, #ann_data,
#(params.set.ann.pca or {}), #(pca_data or {}),
params.set.ann.redis_key, params.ann_key)
lua_redis.exec_redis_script(redis_script_id.save_unlock,
{ev_base = params.ev_base, is_write = true},
redis_save_cb,
{profile.redis_key,
redis_ann_prefix(params.rule, params.set.name),
ann_data,
profile_serialized,
tostring(params.rule.ann_expire),
tostring(os.time()),
params.ann_key, -- old key to unlock...
roc_thresholds_serialized,
pca_data,
})
end
end
if params.rule.max_inputs then
fill_set_ann(params.set, params.ann_key)
end
params.worker:spawn_process{
func = train,
on_complete = ann_trained,
proctitle = string.format("ANN train for %s/%s", params.rule.prefix, params.set.name),
}
-- Spawn learn and register lock extension
params.set.learning_spawned = true
register_lock_extender(params.rule, params.set, params.ev_base, params.ann_key)
return
end
end
-- This function is used to adjust profiles and allowed setting ids for each rule
-- It must be called when all settings are already registered (e.g. at post-init for config)
local function process_rules_settings()
local function process_settings_elt(rule, selt)
local profile = rule.profile[selt.name]
if profile then
-- Use static user defined profile
-- Ensure that we have an array...
lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s",
rule.prefix, selt.name, profile)
if not profile[1] then profile = lua_util.keys(profile) end
selt.symbols = profile
else
lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)",
rule.prefix, selt.name)
end
local function filter_symbols_predicate(sname)
if settings.blacklisted_symbols and settings.blacklisted_symbols[sname] then
return false
end
local fl = rspamd_config:get_symbol_flags(sname)
if fl then
fl = lua_util.list_to_hash(fl)
return not (fl.nostat or fl.idempotent or fl.skip or fl.composite)
end
return false
end
-- Generic stuff
if not profile then
-- Do filtering merely if we are using a dynamic profile
selt.symbols = fun.totable(fun.filter(filter_symbols_predicate, selt.symbols))
end
table.sort(selt.symbols)
selt.digest = lua_util.table_digest(selt.symbols)
selt.prefix = redis_ann_prefix(rule, selt.name)
rspamd_logger.messagex(rspamd_config,
'use NN prefix for rule %s; settings id "%s"; symbols digest: "%s"',
selt.prefix, selt.name, selt.digest)
lua_redis.register_prefix(selt.prefix, N,
string.format('NN prefix for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'zlist',
})
-- Versions
lua_redis.register_prefix(selt.prefix .. '_\\d+', N,
string.format('NN storage for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'hash',
})
lua_redis.register_prefix(selt.prefix .. '_\\d+_spam', N,
string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
selt.prefix, selt.name), {
persistent = true,
type = 'list',
})
lua_redis.register_prefix(selt.prefix .. '_\\d+_ham', N,
string.format('NN learning set (spam) for rule "%s"; settings id "%s"',
rule.prefix, selt.name), {
persistent = true,
type = 'list',
})
end
for k,rule in pairs(settings.rules) do
if not rule.allowed_settings then
rule.allowed_settings = {}
elseif rule.allowed_settings == 'all' then
-- Extract all settings ids
rule.allowed_settings = lua_util.keys(lua_settings.all_settings())
end
-- Convert to a map <setting_id> -> true
rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings)
-- Check if we can work without settings
if k == 'default' or type(rule.default) ~= 'boolean' then
rule.default = true
end
rule.settings = {}
if rule.default then
local default_settings = {
symbols = lua_settings.default_symbols(),
name = 'default'
}
process_settings_elt(rule, default_settings)
rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32
end
-- Now, for each allowed settings, we store sorted symbols + digest
-- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest }
for s,_ in pairs(rule.allowed_settings) do
-- Here, we have a name, set of symbols and
local settings_id = s
if type(settings_id) ~= 'number' then
settings_id = lua_settings.numeric_settings_id(s)
end
local selt = lua_settings.settings_by_id(settings_id)
local nelt = {
symbols = selt.symbols, -- Already sorted
name = selt.name
}
process_settings_elt(rule, nelt)
for id,ex in pairs(rule.settings) do
if type(ex) == 'table' then
if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then
-- Equal symbols, add reference
lua_util.debugm(N, rspamd_config,
'added reference from settings id %s to %s; same symbols',
nelt.name, ex.name)
rule.settings[settings_id] = id
nelt = nil
end
end
end
if nelt then
rule.settings[settings_id] = nelt
lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s',
nelt.name, settings_id, rule.prefix)
end
end
end
end
-- Extract settings element for a specific settings id
local function get_rule_settings(task, rule)
local sid = task:get_settings_id() or -1
local set = rule.settings[sid]
if not set then return nil end
while type(set) == 'number' do
-- Reference to another settings!
set = rule.settings[set]
end
return set
end
local function result_to_vector(task, profile)
if not profile.zeros then
-- Fill zeros vector
local zeros = {}
for i=1,meta_functions.count_metatokens() do
zeros[i] = 0.0
end
for _,_ in ipairs(profile.symbols) do
zeros[#zeros + 1] = 0.0
end
profile.zeros = zeros
end
local vec = lua_util.shallowcopy(profile.zeros)
local mt = meta_functions.rspamd_gen_metatokens(task)
for i,v in ipairs(mt) do
vec[i] = v
end
task:process_ann_tokens(profile.symbols, vec, #mt, 0.1)
return vec
end
return {
can_push_train_vector = can_push_train_vector,
create_ann = create_ann,
default_options = default_options,
gen_unlock_cb = gen_unlock_cb,
get_rule_settings = get_rule_settings,
load_scripts = load_scripts,
module_config = module_config,
new_ann_key = new_ann_key,
plugin_ver = plugin_ver,
process_rules_settings = process_rules_settings,
redis_ann_prefix = redis_ann_prefix,
redis_params = redis_params,
redis_script_id = redis_script_id,
result_to_vector = result_to_vector,
settings = settings,
spawn_train = spawn_train,
}
|