aboutsummaryrefslogtreecommitdiffstats
path: root/src/classifiers/winnow.c
blob: 32c17e8bcc0230b57dfe9929e143c62bed03bc6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
/*
 * Copyright (c) 2009, Rambler media
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY Rambler media ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL Rambler BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Winnow classifier
 */

#include "classifiers.h"
#include "tokenizers/tokenizers.h"
#include "main.h"
#include "filter.h"
#include "cfg_file.h"
#include "lua/lua_common.h"

#define WINNOW_PROMOTION 1.23
#define WINNOW_DEMOTION 0.83

#define MEDIAN_WINDOW_SIZE 5

#define MAX_WEIGHT G_MAXDOUBLE / 2.



#define MAX_LEARN_ITERATIONS 100

static inline GQuark
winnow_error_quark (void)
{
	return g_quark_from_static_string ("winnow-error");
}

struct winnow_callback_data {
	statfile_pool_t                *pool;
	struct classifier_ctx          *ctx;
	stat_file_t                    *file;
	stat_file_t                    *learn_file;
	long double                     sum;
	long double 					start;
	double                          multiplier;
	guint32                         count;
	guint32                         new_blocks;
	gboolean                        in_class;
	gboolean                        do_demote;
	gboolean                        fresh_run;
	time_t                          now;
};

static const double max_common_weight = MAX_WEIGHT * WINNOW_DEMOTION;



static                          gboolean
winnow_classify_callback (gpointer key, gpointer value, gpointer data)
{
	token_node_t                   *node = key;
	struct winnow_callback_data    *cd = data;
	double                           v;

	/* Consider that not found blocks have value 1 */
	v = statfile_pool_get_block (cd->pool, cd->file, node->h1, node->h2, cd->now);
	if (fabs (v) > ALPHA) {
		cd->sum += v;
	}
	else {
		cd->sum += 1.0;
		cd->new_blocks ++;
	}

	cd->count++;

	return FALSE;
}

static                          gboolean
winnow_learn_callback (gpointer key, gpointer value, gpointer data)
{
	token_node_t                   *node = key;
	struct winnow_callback_data    *cd = data;
	double                          v, c;
	
	c = (cd->in_class) ? WINNOW_PROMOTION * cd->multiplier : WINNOW_DEMOTION / cd->multiplier;

	/* Consider that not found blocks have value 1 */
	v = statfile_pool_get_block (cd->pool, cd->file, node->h1, node->h2, cd->now);
	if (fabs (v) < ALPHA) {
		/* Block not found, insert new */
		cd->start += 1;
		if (cd->file == cd->learn_file) {
			statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, c);
			node->value = c;
			cd->new_blocks ++;
		}
	}
	else {
		cd->start += v;
		/* Here we just increase the extra value of block */
		if (cd->fresh_run) {
			node->extra = 0;
		}
		else {
			node->extra ++;
		}
		node->value = v;
		
		if (node->extra > 1) {
			/* 
			 * Assume that this node is common for several statfiles, so
			 * decrease its weight proportianally
			 */
			if (node->value > max_common_weight) {
				/* Static fluctuation */
				statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, 0.);
				node->value = 0.;
			}
			else if (node->value > WINNOW_PROMOTION * cd->multiplier) {
				/* Try to decrease its value */
				/* XXX: it is more intelligent to add some adaptive filter here */
				if (cd->file == cd->learn_file) {
					if (node->value > max_common_weight / 2.) {
						node->value *= c;
					}
					else {
						/* 
						 * Too high token value that exists also in other
						 * statfiles, may be statistic error, so decrease it
						 * slightly
						 */
						node->value *= WINNOW_DEMOTION;
					}
				}
				else {
					node->value = WINNOW_DEMOTION / cd->multiplier;
				}
				statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, node->value);
			} 
		}
		else if (cd->file == cd->learn_file) {
			/* New block or block that is in only one statfile */
			/* Set some limit on growing */
			if (v > MAX_WEIGHT) {
				node->value = v;
			}
			else {
				node->value *= c;
			}
			statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, node->value);
		}
		else if (cd->do_demote) {
			/* Demote blocks in file */
			node->value *= WINNOW_DEMOTION / cd->multiplier;
			statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, node->value);
		}
	}


	cd->sum += node->value;

	cd->count++;

	return FALSE;
}

struct classifier_ctx          *
winnow_init (memory_pool_t * pool, struct classifier_config *cfg)
{
	struct classifier_ctx          *ctx = memory_pool_alloc (pool, sizeof (struct classifier_ctx));

	ctx->pool = pool;
	ctx->cfg = cfg;

	return ctx;
}

gboolean
winnow_classify (struct classifier_ctx *ctx, statfile_pool_t * pool, GTree * input, struct worker_task *task)
{
	struct winnow_callback_data     data;
	char                           *sumbuf, *value;
	long double                     res = 0., max = 0.;
	GList                          *cur;
	struct statfile                *st, *sel = NULL;
	int                             nodes, minnodes;

	g_assert (pool != NULL);
	g_assert (ctx != NULL);

	data.pool = pool;
	data.now = time (NULL);
	data.ctx = ctx;
    
	if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) {
		minnodes = strtol (value, NULL, 10);
		nodes = g_tree_nnodes (input);
		if (nodes > FEATURE_WINDOW_SIZE) {
			nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE;
		}
		if (nodes < minnodes) {
			msg_info ("do not classify message as it has too few tokens: %d, while %d min", nodes, minnodes);
			return FALSE;
		}
	}

	cur = call_classifier_pre_callbacks (ctx->cfg, task, FALSE, FALSE);
	if (cur) {
		memory_pool_add_destructor (task->task_pool, (pool_destruct_func)g_list_free, cur);
	}
	else {
		cur = ctx->cfg->statfiles;
	}

	while (cur) {
		st = cur->data;
		data.sum = 0;
		data.count = 0;
		data.new_blocks = 0;
		if ((data.file = statfile_pool_is_open (pool, st->path)) == NULL) {
			if ((data.file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) {
				msg_warn ("cannot open %s, skip it", st->path);
				cur = g_list_next (cur);
				continue;
			}
		}

		if (data.file != NULL) {
			g_tree_foreach (input, winnow_classify_callback, &data);
		}

		if (data.count != 0) {
			res = data.sum / (double)data.count;
		}
		else {
			res = 0;
		}
		if (res > max) {
			max = res;
			sel = st;
		}
		cur = g_list_next (cur);
	}

	if (sel != NULL) {
#ifdef WITH_LUA
        max = call_classifier_post_callbacks (ctx->cfg, task, max);
#endif
#ifdef HAVE_TANHL
        max = tanhl (max);
#else
        /*
         * As some implementations of libm does not support tanhl, try to use
         * tanh
         */
        max = tanh ((double) max);
#endif
		sumbuf = memory_pool_alloc (task->task_pool, 32);
		rspamd_snprintf (sumbuf, 32, "%.2F", max);
		cur = g_list_prepend (NULL, sumbuf);
		insert_result (task, sel->symbol, max, cur);
	}

	return TRUE;
}

GList *
winnow_weights (struct classifier_ctx *ctx, statfile_pool_t * pool, GTree * input, struct worker_task *task)
{
	struct winnow_callback_data     data;
	long double                     res = 0.;
	GList                          *cur, *resl = NULL;
	struct statfile                *st;
	struct classify_weight         *w;
	char                           *value;
	int                             nodes, minnodes;

	g_assert (pool != NULL);
	g_assert (ctx != NULL);

	data.pool = pool;
	data.now = time (NULL);
	data.ctx = ctx;

	if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) {
		minnodes = strtol (value, NULL, 10);
		nodes = g_tree_nnodes (input);
		if (nodes > FEATURE_WINDOW_SIZE) {
			nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE;
		}
		if (nodes < minnodes) {
			msg_info ("do not classify message as it has too few tokens: %d, while %d min", nodes, minnodes);
			return NULL;
		}
	}
    
	cur = ctx->cfg->statfiles;
	while (cur) {
		st = cur->data;
		data.sum = 0;
		data.count = 0;
		if ((data.file = statfile_pool_is_open (pool, st->path)) == NULL) {
			if ((data.file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) {
				msg_warn ("cannot open %s, skip it", st->path);
				cur = g_list_next (cur);
				continue;
			}
		}

		if (data.file != NULL) {
			g_tree_foreach (input, winnow_classify_callback, &data);
		}

		w = memory_pool_alloc0 (task->task_pool, sizeof (struct classify_weight));
		if (data.count != 0) {
			res = data.sum / (double)data.count;
		}
		else {
			res = 0;
		}
		w->name = st->symbol;
		w->weight = res;
		resl = g_list_prepend (resl, w);
		cur = g_list_next (cur);
	}
	
	if (resl != NULL) {
		memory_pool_add_destructor (task->task_pool, (pool_destruct_func)g_list_free, resl);
	}

	return resl;

}


gboolean
winnow_learn (struct classifier_ctx *ctx, statfile_pool_t *pool, const char *symbol,
		GTree * input, int in_class, double *sum, double multiplier, GError **err)
{
	struct winnow_callback_data     data = {
		.file = NULL,
		.multiplier = multiplier
	};
	char                           *value;
	int                             nodes, minnodes, iterations = 0;
	struct statfile                *st, *sel_st = NULL;
	stat_file_t                    *sel = NULL, *to_learn;
	long double                     res = 0., max = 0., start_value = 0., end_value = 0.;
	double                          learn_threshold = 0.0;
	GList                          *cur, *to_demote = NULL;
	gboolean                        force_learn = FALSE;

	g_assert (pool != NULL);
	g_assert (ctx != NULL);

	data.pool = pool;
	data.in_class = in_class;
	data.now = time (NULL);
	data.ctx = ctx;


	if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) {
		minnodes = strtol (value, NULL, 10);
		nodes = g_tree_nnodes (input);
		if (nodes > FEATURE_WINDOW_SIZE) {
			nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE;
		}
		if (nodes < minnodes) {
			msg_info ("do not learn message as it has too few tokens: %d, while %d min", nodes, minnodes);
			if (sum != NULL) {
				*sum = 0;
			}
			g_set_error (err,
	                   winnow_error_quark(),		/* error domain */
	                   1,            				/* error code */
	                   "message contains too few tokens: %d, while min is %d",
	                   nodes, minnodes);
			return FALSE;
		}
	}
	if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "learn_threshold")) != NULL) {
		learn_threshold = strtod (value, NULL);
	}
	
	if (learn_threshold <= 1.0 && learn_threshold >= 0) {
		/* Classify message and check target statfile score */
		cur = ctx->cfg->statfiles;
		while (cur) {
			/* Open or create all statfiles inside classifier */
			st = cur->data;
			if (statfile_pool_is_open (pool, st->path) == NULL) {
				if (statfile_pool_open (pool, st->path, st->size, FALSE) == NULL) {
					msg_warn ("cannot open %s", st->path);
					if (statfile_pool_create (pool, st->path, st->size) == -1) {
						msg_err ("cannot create statfile %s", st->path);
						g_set_error (err,
								winnow_error_quark(),		/* error domain */
								1,            				/* error code */
								"cannot create statfile: %s",
								st->path);
						return FALSE;
					}
					if (statfile_pool_open (pool, st->path, st->size, FALSE) == NULL) {
						g_set_error (err,
								winnow_error_quark(),		/* error domain */
								1,            				/* error code */
								"open statfile %s after creation",
								st->path);
						msg_err ("cannot open statfile %s after creation", st->path);
						return FALSE;
					}
				}
			}
			if (strcmp (st->symbol, symbol) == 0) {
				sel_st = st;

			}
			cur = g_list_next (cur);
		}

		if (sel_st == NULL) {
			g_set_error (err,
					winnow_error_quark(),		/* error domain */
					1,            				/* error code */
					"cannot find statfile for symbol %s",
					symbol);
			msg_err ("cannot find statfile for symbol %s", symbol);
			return FALSE;
		}

		to_learn = statfile_pool_is_open (pool, sel_st->path);
		if (to_learn == NULL) {
			g_set_error (err,
					winnow_error_quark(),		/* error domain */
					1,            				/* error code */
					"statfile %s is not opened this maybe if your statfile pool is too small to handle all statfiles",
					sel_st->path);
			return FALSE;
		}
		/* Check target statfile */
		data.file = to_learn;
		data.sum = 0;
		data.count = 0;
		data.new_blocks = 0;
		g_tree_foreach (input, winnow_classify_callback, &data);
		if (data.count > 0) {
			max = data.sum / (double)data.count;
		}
		else {
			max = 0;
		}
		/* If most of blocks are not presented in targeted statfile do forced learn */
		if (max < 1 + learn_threshold) {
			force_learn = TRUE;
		}
		/* Check other statfiles */
		while (cur) {
			st = cur->data;
			data.sum = 0;
			data.count = 0;
			if ((data.file = statfile_pool_is_open (pool, st->path)) == NULL) {
				g_set_error (err,
						winnow_error_quark(),		/* error domain */
						1,            				/* error code */
						"statfile %s is not opened this maybe if your statfile pool is too small to handle all statfiles",
						st->path);
				return FALSE;
			}
			g_tree_foreach (input, winnow_classify_callback, &data);
			if (data.count != 0) {
				res = data.sum / data.count;
			}
			else {
				res = 0;
			}
			if (to_learn != data.file && res - max > 1 - learn_threshold) {
				/* Demote tokens in this statfile */
				to_demote = g_list_prepend (to_demote, data.file);
			}
			cur = g_list_next (cur);
		}
	}
	else {
		msg_err ("learn threshold is more than 1 or less than 0, so cannot do learn, please check your configuration");
		g_set_error (err,
				winnow_error_quark(),		/* error domain */
				1,            				/* error code */
				"bad learn_threshold setting: %.2f",
				learn_threshold);
		return FALSE;
	}
	/* If to_demote list is empty this message is already classified correctly */
	if (max > WINNOW_PROMOTION && to_demote == NULL && !force_learn) {
		msg_info ("this message is already of class %s with threshold %.2f and weight %.2F",
				sel_st->symbol, learn_threshold, max);
		goto end;
	}
	data.learn_file = to_learn;
	end_value = max;
	do {
		cur = ctx->cfg->statfiles;
		data.fresh_run = TRUE;
		while (cur) {
			st = cur->data;
			data.sum = 0;
			data.count = 0;
			data.new_blocks = 0;
			data.start = 0;
			if ((data.file = statfile_pool_is_open (pool, st->path)) == NULL) {
				return FALSE;
			}
			if (to_demote != NULL && g_list_find (to_demote, data.file) != NULL) {
				data.do_demote = TRUE;
			}
			else {
				data.do_demote = FALSE;
			}

			statfile_pool_lock_file (pool, data.file);
			g_tree_foreach (input, winnow_learn_callback, &data);
			statfile_pool_unlock_file (pool, data.file);
			if (data.count != 0) {
				res = data.sum / data.count;
			}
			else {
				res = 0;
			}
			if (res > max) {
				max = res;
				sel = data.file;
			}
			if (data.file == to_learn) {
				if (data.count > 0) {
					start_value = data.start / data.count;
				}
				end_value = res;
			}
			cur = g_list_next (cur);
			data.fresh_run = FALSE;
		}

		data.multiplier *= WINNOW_PROMOTION;
		msg_info ("learn iteration %d for statfile %s: %G -> %G, multiplier: %.2f", iterations + 1, symbol,
				start_value, end_value, data.multiplier);
	} while ((in_class ? sel != to_learn : sel == to_learn)  && iterations ++ < MAX_LEARN_ITERATIONS);
	
	if (iterations >= MAX_LEARN_ITERATIONS) {
		msg_warn ("learning statfile %s  was not fully successfull: iterations count is limited to %d, final sum is %G", 
				sel_st->symbol, MAX_LEARN_ITERATIONS, max);
		g_set_error (err,
				winnow_error_quark(),		/* error domain */
				1,            				/* error code */
				"learning statfile %s  was not fully successfull: iterations count is limited to %d",
				sel_st->symbol, MAX_LEARN_ITERATIONS);
		return FALSE;
	}
	else {
		msg_info ("learned statfile %s successfully with %d iterations and sum %G", sel_st->symbol, iterations + 1, max);
	}


end:
	if (sum) {
#ifdef HAVE_TANHL
        *sum = (double)tanhl (max);
#else
        /*
         * As some implementations of libm does not support tanhl, try to use
         * tanh
         */
        *sum = tanh ((double) max);
#endif
	}
	return TRUE;
}

gboolean
winnow_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool,
		GTree *input, struct worker_task *task, gboolean is_spam, GError **err)
{
	g_set_error (err,
					winnow_error_quark(),		/* error domain */
					1,            				/* error code */
					"learn spam is not supported for winnow"
					);
	return FALSE;
}