summaryrefslogtreecommitdiffstats
path: root/src/filter.c
blob: 0ad82f94b371bda10a64f683606f5f6ec5fd99c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
/*
 * Copyright (c) 2009, Rambler media
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY Rambler media ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL Rambler BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "mem_pool.h"
#include "filter.h"
#include "main.h"
#include "message.h"
#include "cfg_file.h"
#include "util.h"
#include "expressions.h"
#include "settings.h"
#include "view.h"
#include "binlog.h"
#include "diff.h"
#include "classifiers/classifiers.h"
#include "tokenizers/tokenizers.h"

#ifdef WITH_LUA
#   include "lua/lua_common.h"
#endif

#define COMMON_PART_FACTOR 95

static inline                   GQuark
filter_error_quark (void)
{
	return g_quark_from_static_string ("g-filter-error-quark");
}

static void
insert_metric_result (struct worker_task *task, struct metric *metric, const gchar *symbol,
		double flag, GList * opts, gboolean single)
{
	struct metric_result           *metric_res;
	struct symbol                  *s;
	gdouble                        *weight, w;

	metric_res = g_hash_table_lookup (task->results, metric->name);

	if (metric_res == NULL) {
		/* Create new metric chain */
		metric_res = memory_pool_alloc (task->task_pool, sizeof (struct metric_result));
		metric_res->symbols = g_hash_table_new (g_str_hash, g_str_equal);
		metric_res->checked = FALSE;
		memory_pool_add_destructor (task->task_pool, (pool_destruct_func) g_hash_table_destroy, metric_res->symbols);
		metric_res->metric = metric;
		metric_res->grow_factor = 0;
		metric_res->score = 0;
		metric_res->domain_settings = NULL;
		metric_res->user_settings = NULL;
		apply_metric_settings (task, metric, metric_res);
		g_hash_table_insert (task->results, (gpointer) metric->name, metric_res);
	}
	
	weight = g_hash_table_lookup (metric->symbols, symbol);
	if (weight == NULL) {
		w = 1.0 * flag;
	}
	else {
		w = (*weight) * flag;
	}


	/* Add metric score */
	if ((s = g_hash_table_lookup (metric_res->symbols, symbol)) != NULL) {
		if (s->options && opts && opts != s->options) {
			/* Append new options */
			s->options = g_list_concat (s->options, g_list_copy(opts));
			/*
			 * Note that there is no need to add new destructor of GList as elements of appended
			 * GList are used directly, so just free initial GList
			 */
		}
		else if (opts) {
			s->options = g_list_copy (opts);
			memory_pool_add_destructor (task->task_pool, (pool_destruct_func) g_list_free, s->options);
		}
		if (!single) {
			/* Handle grow factor */
			if (metric_res->grow_factor && w > 0) {
				w *= metric_res->grow_factor;
				metric_res->grow_factor *= metric->grow_factor;
			}
			else if (w > 0) {
				metric_res->grow_factor = metric->grow_factor;
			}
			s->score += w;
			metric_res->score += w;
		}
	}
	else {
		s = memory_pool_alloc (task->task_pool, sizeof (struct symbol));
		s->score = w;

		/* Handle grow factor */
		if (metric_res->grow_factor && w > 0) {
			w *= metric_res->grow_factor;
			metric_res->grow_factor *= metric->grow_factor;
		}
		else if (w > 0) {
			metric_res->grow_factor = metric->grow_factor;
		}
		s->name = symbol;
		metric_res->score += w;

		if (opts) {
			s->options = g_list_copy (opts);
			memory_pool_add_destructor (task->task_pool, (pool_destruct_func) g_list_free, s->options);
		}
		else {
			s->options = NULL;
		}

		g_hash_table_insert (metric_res->symbols, (gpointer) symbol, s);
	}
	debug_task ("symbol %s, score %.2f, metric %s, factor: %f", symbol, s->score, metric->name, w);
	
}

static void
insert_result_common (struct worker_task *task, const gchar *symbol, double flag, GList * opts, gboolean single)
{
	struct metric                  *metric;
	struct cache_item              *item;
	GList                          *cur, *metric_list;

	metric_list = g_hash_table_lookup (task->cfg->metrics_symbols, symbol);
	if (metric_list) {
		cur = metric_list;
		
		while (cur) {
			metric = cur->data;
			insert_metric_result (task, metric, symbol, flag, opts, single);
			cur = g_list_next (cur);
		}
	}
	else {
		/* Insert symbol to default metric */
		insert_metric_result (task, task->cfg->default_metric, symbol, flag, opts, single);
	}

	/* Process cache item */
	if (task->cfg->cache) {
		cur = task->cfg->cache->static_items;
		while (cur)
		{
			item = cur->data;

			if (strcmp (item->s->symbol, symbol) == 0) {
				item->s->frequency++;
			}
			cur = g_list_next (cur);
		}
		cur = task->cfg->cache->negative_items;
		while (cur)
		{
			item = cur->data;

			if (strcmp (item->s->symbol, symbol) == 0) {
				item->s->frequency++;
			}
			cur = g_list_next (cur);
		}
	}

	if (opts != NULL) {
		/* XXX: it is not wise to destroy them here */
		g_list_free (opts);
	}
}

/* Insert result that may be increased on next insertions */
void
insert_result (struct worker_task *task, const gchar *symbol, double flag, GList * opts)
{
	insert_result_common (task, symbol, flag, opts, task->cfg->one_shot_mode);
}

/* Insert result as a single option */
void
insert_result_single (struct worker_task *task, const gchar *symbol, double flag, GList * opts)
{
	insert_result_common (task, symbol, flag, opts, TRUE);
}

/* 
 * Call perl or C module function for specified part of message 
 */
static void
call_filter_by_name (struct worker_task *task, const gchar *name, enum filter_type filt_type)
{
	struct module_ctx              *c_module;
	gint                            res = 0;

	switch (filt_type) {
	case C_FILTER:
		c_module = g_hash_table_lookup (task->cfg->c_modules, name);
		if (c_module) {
			res = 1;
			c_module->filter (task);
		}
		else {
			debug_task ("%s is not a C module", name);
		}
		break;
	case PERL_FILTER:
		res = 1;
#ifndef WITHOUT_PERL
		perl_call_filter (name, task);
#elif defined(WITH_LUA)
		lua_call_filter (name, task);
#else
		msg_err ("trying to call perl function while perl support is disabled %s", name);
#endif
		break;
	}

	debug_task ("filter name: %s, result: %d", name, (gint)res);
}

/* Return true if metric has score that is more than spam score for it */
static                          gboolean
check_metric_is_spam (struct worker_task *task, struct metric *metric)
{
	struct metric_result           *res;
	double                          ms, rs;

	res = g_hash_table_lookup (task->results, metric->name);
	if (res) {
		if (!check_metric_settings (res, &ms, &rs)) {
			ms = metric->required_score;
		}
		return res->score >= ms;
	}

	return FALSE;
}

static gint
continue_process_filters (struct worker_task *task)
{
	GList                          *cur;
	gpointer                        item = task->save.item;
	struct metric                  *metric;

	while (call_symbol_callback (task, task->cfg->cache, &item)) {
		cur = task->cfg->metrics_list;
		while (cur) {
			metric = cur->data;
			/* call_filter_by_name (task, filt->func_name, filt->type, SCRIPT_HEADER); */
			if (task->save.saved) {
				task->save.entry = cur;
				task->save.item = item;
				return 0;
			}
			else if (!task->pass_all_filters && 
						metric->action == METRIC_ACTION_REJECT && 
						check_metric_is_spam (task, metric)) {
				goto end;
			}
			cur = g_list_next (cur);
		}
	}

end:
	/* Process all statfiles */
	process_statfiles (task);
	/* Call post filters */
	lua_call_post_filters (task);
	task->state = WRITE_REPLY;

	if (task->fin_callback) {
		task->fin_callback (task->fin_arg);
	}
	else {
		rspamd_dispatcher_restore (task->dispatcher);
	}
	return 1;
}

gint
process_filters (struct worker_task *task)
{
	GList                          *cur;
	struct metric                  *metric;
	gpointer                        item = NULL;

	if (task->save.saved) {
		task->save.saved = 0;
		return continue_process_filters (task);
	}
	/* Check skip */
	if (check_skip (task->cfg->views, task)) {
		task->is_skipped = TRUE;
		task->state = WRITE_REPLY;
		msg_info ("disable check for message id <%s>, view wants spam", task->message_id);
		return 1;
	}
	/* Check want spam setting */
	if (check_want_spam (task)) {
		task->is_skipped = TRUE;
		task->state = WRITE_REPLY;
		msg_info ("disable check for message id <%s>, user wants spam", task->message_id);
		return 1;
	}

	/* Process metrics symbols */
	while (call_symbol_callback (task, task->cfg->cache, &item)) {
		/* Check reject actions */
		cur = task->cfg->metrics_list;
		while (cur) {
			metric = cur->data;
			if (task->save.saved) {
				task->save.entry = cur;
				task->save.item = item;
				return 0;
			}
			else if (!task->pass_all_filters && 
						metric->action == METRIC_ACTION_REJECT && 
						check_metric_is_spam (task, metric)) {
				task->state = WRITE_REPLY;
				return 1;
			}
			cur = g_list_next (cur);
		}
	}

	return 1;
}

struct composites_data {
	struct worker_task             *task;
	struct metric_result           *metric_res;
	GTree                          *symbols_to_remove;
};

struct symbol_remove_data {
	struct symbol                  *ms;
	gboolean                        remove_weight;
	gboolean                        remove_symbol;
};

static gint
remove_compare_data (gconstpointer a, gconstpointer b)
{
	const gchar                    *ca = a, *cb = b;

	return strcmp (ca, cb);
}

static void
composites_foreach_callback (gpointer key, gpointer value, void *data)
{
	struct composites_data         *cd = (struct composites_data *)data;
	struct expression              *expr = (struct expression *)value;
	GQueue                         *stack;
	GList                          *symbols = NULL, *s;
	gsize                           cur, op1, op2;
	gchar                           logbuf[256], *sym;
	gint                            r;
	struct symbol                  *ms;
	struct symbol_remove_data      *rd;

	stack = g_queue_new ();

	while (expr) {
		if (expr->type == EXPR_STR) {
			/* Find corresponding symbol */
			sym = expr->content.operand;
			if (*sym == '~' || *sym == '-') {
				sym ++;
			}
			if (g_hash_table_lookup (cd->metric_res->symbols, sym) == NULL) {
				cur = 0;
			}
			else {
				cur = 1;
				symbols = g_list_prepend (symbols, expr->content.operand);
			}
			g_queue_push_head (stack, GSIZE_TO_POINTER (cur));
		}
		else {
			if (g_queue_is_empty (stack)) {
				/* Queue has no operands for operation, exiting */
				g_list_free (symbols);
				g_queue_free (stack);
				return;
			}
			switch (expr->content.operation) {
			case '!':
				op1 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
				op1 = !op1;
				g_queue_push_head (stack, GSIZE_TO_POINTER (op1));
				break;
			case '&':
				op1 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
				op2 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
				g_queue_push_head (stack, GSIZE_TO_POINTER (op1 && op2));
			case '|':
				op1 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
				op2 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
				g_queue_push_head (stack, GSIZE_TO_POINTER (op1 || op2));
			default:
				expr = expr->next;
				continue;
			}
		}
		expr = expr->next;
	}
	if (!g_queue_is_empty (stack)) {
		op1 = GPOINTER_TO_SIZE (g_queue_pop_head (stack));
		if (op1) {
			/* Remove all symbols that are in composite symbol */
			s = g_list_first (symbols);
			r = rspamd_snprintf (logbuf, sizeof (logbuf), "<%s>, insert symbol %s instead of symbols: ", cd->task->message_id, key);
			while (s) {
				sym = s->data;
				if (*sym == '~' || *sym == '-') {
					ms = g_hash_table_lookup (cd->metric_res->symbols, sym + 1);
				}
				else {
					ms = g_hash_table_lookup (cd->metric_res->symbols, sym);
				}

				if (ms != NULL) {
					rd = memory_pool_alloc (cd->task->task_pool, sizeof (struct symbol_remove_data));
					rd->ms = ms;
					if (G_UNLIKELY (*sym == '~')) {
						rd->remove_weight = FALSE;
						rd->remove_symbol = TRUE;
					}
					else if (G_UNLIKELY (*sym == '-')) {
						rd->remove_symbol = FALSE;
						rd->remove_weight = FALSE;
					}
					else {
						rd->remove_symbol = TRUE;
						rd->remove_weight = TRUE;
					}
					if (!g_tree_lookup (cd->symbols_to_remove, rd)) {
						g_tree_insert (cd->symbols_to_remove, (gpointer)ms->name, rd);
					}
				}

				if (s->next) {
					r += rspamd_snprintf (logbuf + r, sizeof (logbuf) -r, "%s, ", s->data);
				}
				else {
					r += rspamd_snprintf (logbuf + r, sizeof (logbuf) -r, "%s", s->data);
				}
				s = g_list_next (s);
			}
			/* Add new symbol */
			insert_result_single (cd->task, key, 1.0, NULL);
			msg_info ("%s", logbuf);
		}
	}

	g_queue_free (stack);
	g_list_free (symbols);

	return;
}

static                          gboolean
check_autolearn (struct statfile_autolearn_params *params, struct worker_task *task)
{
	gchar                          *metric_name = DEFAULT_METRIC;
	struct metric_result           *metric_res;
	GList                          *cur;

	if (params->metric != NULL) {
		metric_name = (gchar *)params->metric;
	}

	/* First check threshold */
	metric_res = g_hash_table_lookup (task->results, metric_name);
	if (metric_res == NULL) {
		if (params->symbols == NULL && params->threshold_max > 0) {
			/* For ham messages */
			return TRUE;
		}
		debug_task ("metric %s has no results", metric_name);
		return FALSE;
	}
	else {
		/* Process score of metric */
		if ((params->threshold_min != 0 && metric_res->score > params->threshold_min) || (params->threshold_max != 0 && metric_res->score < params->threshold_max)) {
			/* Now check for specific symbols */
			if (params->symbols) {
				cur = params->symbols;
				while (cur) {
					if (g_hash_table_lookup (metric_res->symbols, cur->data) == NULL) {
						return FALSE;
					}
					cur = g_list_next (cur);
				}
			}
			/* Now allow processing of actual autolearn */
			return TRUE;
		}
	}

	return FALSE;
}

void
process_autolearn (struct statfile *st, struct worker_task *task, GTree * tokens, struct classifier *classifier, gchar *filename, struct classifier_ctx *ctx)
{
	stat_file_t                    *statfile;
	struct statfile                *unused;

	if (check_autolearn (st->autolearn, task)) {
		if (tokens) {
			/* Take care of subject */
			tokenize_subject (task, &tokens);
			msg_info ("message with id <%s> autolearned statfile '%s'", task->message_id, filename);
			
			/* Get or create statfile */
			statfile = get_statfile_by_symbol (task->worker->srv->statfile_pool, ctx->cfg,
						st->symbol, &unused, TRUE);
			
			if (statfile == NULL) {
				return;
			}

			classifier->learn_func (ctx, task->worker->srv->statfile_pool, st->symbol, tokens, TRUE, NULL, 1., NULL);
			maybe_write_binlog (ctx->cfg, st, statfile, tokens);
			statfile_pool_plan_invalidate (task->worker->srv->statfile_pool, DEFAULT_STATFILE_INVALIDATE_TIME, DEFAULT_STATFILE_INVALIDATE_JITTER);
		}
	}
}

static gboolean
composites_remove_symbols (gpointer key, gpointer value, gpointer data)
{
	struct composites_data         *cd = data;
	struct symbol_remove_data      *rd = value;

	if (rd->remove_symbol) {
		g_hash_table_remove (cd->metric_res->symbols, key);
	}
	if (rd->remove_weight) {
		cd->metric_res->score -= rd->ms->score;
	}

	return FALSE;
}

static void
composites_metric_callback (gpointer key, gpointer value, gpointer data)
{
	struct worker_task             *task = (struct worker_task *)data;
	struct composites_data         *cd = memory_pool_alloc (task->task_pool, sizeof (struct composites_data));
	struct metric_result           *metric_res = (struct metric_result *)value;

	cd->task = task;
	cd->metric_res = (struct metric_result *)metric_res;
	cd->symbols_to_remove = g_tree_new (remove_compare_data);

	/* Process hash table */
	g_hash_table_foreach (task->cfg->composite_symbols, composites_foreach_callback, cd);

	/* Remove symbols that are in composites */
	g_tree_foreach (cd->symbols_to_remove, composites_remove_symbols, cd);
	/* Free list */
	g_tree_destroy (cd->symbols_to_remove);
}

void
make_composites (struct worker_task *task)
{
	g_hash_table_foreach (task->results, composites_metric_callback, task);
}

static void
classifiers_callback (gpointer value, void *arg)
{
	struct worker_task             *task = arg;
	struct classifier_config       *cl = value;
	struct classifier_ctx          *ctx;
	struct mime_text_part          *text_part, *p1, *p2;
	struct statfile                *st;
	GTree                          *tokens = NULL;
	GList                          *cur;
	f_str_t                         c;
	gchar                          *header = NULL;
	gint                           *dist = NULL, diff;
	gboolean                        is_twopart = FALSE;
	
	if ((header = g_hash_table_lookup (cl->opts, "header")) != NULL) {
		cur = message_get_header (task->task_pool, task->message, header, FALSE);
		if (cur) {
			memory_pool_add_destructor (task->task_pool, (pool_destruct_func)g_list_free, cur);
		}
	}
	else {
		cur = g_list_first (task->text_parts);
		dist =  memory_pool_get_variable (task->task_pool, "parts_distance");
		if (cur != NULL && cur->next != NULL && cur->next->next == NULL) {
			is_twopart = TRUE;
		}
	}
	ctx = cl->classifier->init_func (task->task_pool, cl);

	if ((tokens = g_hash_table_lookup (task->tokens, cl->tokenizer)) == NULL) {
		while (cur != NULL) {
			if (header) {
				c.len = strlen (cur->data);
				if (c.len > 0) {
					c.begin = cur->data;
					if (!cl->tokenizer->tokenize_func (cl->tokenizer, task->task_pool, &c, &tokens, FALSE, FALSE, NULL)) {
						msg_info ("cannot tokenize input");
						return;
					}
				}
			}
			else {
				text_part = (struct mime_text_part *)cur->data;
				if (text_part->is_empty) {
					cur = g_list_next (cur);
					continue;
				}
				if (dist != NULL && cur->next == NULL) {
					/* Compare part's content */

					if (*dist >= COMMON_PART_FACTOR) {
						msg_info ("message <%s> has two common text parts, ignore the last one", task->message_id);
						break;
					}
				}
				else if (cur->next == NULL && is_twopart) {
					p1 = cur->prev->data;
					p2 = text_part;
					if (p1->diff_str != NULL && p2->diff_str != NULL) {
						diff = compare_diff_distance (p1->diff_str, p2->diff_str);
					}
					else {
						diff = fuzzy_compare_parts (p1, p2);
					}
					if (diff >= COMMON_PART_FACTOR) {
						msg_info ("message <%s> has two common text parts, ignore the last one", task->message_id);
						break;
					}
				}
				c.begin = text_part->content->data;
				c.len = text_part->content->len;
				/* Tree would be freed at task pool freeing */
				if (!cl->tokenizer->tokenize_func (cl->tokenizer, task->task_pool, &c, &tokens,
						FALSE, text_part->is_utf, text_part->urls_offset)) {
					msg_info ("cannot tokenize input");
					return;
				}
			}
			cur = g_list_next (cur);
		}
		g_hash_table_insert (task->tokens, cl->tokenizer, tokens);
	}

	if (tokens == NULL) {
		return;
	}

	/* Take care of subject */
	tokenize_subject (task, &tokens);
	cl->classifier->classify_func (ctx, task->worker->srv->statfile_pool, tokens, task);

	/* Autolearning */
	cur = g_list_first (cl->statfiles);
	while (cur) {
		st = cur->data;
		if (st->autolearn) {
			if (check_autolearn (st->autolearn, task)) {
				/* Process autolearn */
				process_autolearn (st, task, tokens, cl->classifier, st->path, ctx);
			}
		}
		cur = g_list_next (cur);
	}
}


void
process_statfiles (struct worker_task *task)
{

	if (task->is_skipped) {
		return;
	}

	if (task->tokens == NULL) {
		task->tokens = g_hash_table_new (g_direct_hash, g_direct_equal);
		memory_pool_add_destructor (task->task_pool, (pool_destruct_func)g_hash_table_destroy, task->tokens);
	}

	g_list_foreach (task->cfg->classifiers, classifiers_callback, task);

	/* Process results */
	make_composites (task);
}

static void
insert_metric_header (gpointer metric_name, gpointer metric_value, gpointer data)
{
	struct worker_task             *task = (struct worker_task *)data;
	gint                            r = 0;
	/* Try to be rfc2822 compatible and avoid long headers with folding */
	gchar                           header_name[128], outbuf[1000];
	GList                          *symbols = NULL, *cur;
	struct metric_result           *metric_res = (struct metric_result *)metric_value;
	double                          ms, rs;

	rspamd_snprintf (header_name, sizeof (header_name), "X-Spam-%s", metric_res->metric->name);

	if (!check_metric_settings (metric_res, &ms, &rs)) {
		ms = metric_res->metric->required_score;
	}
	if (metric_res->score >= ms) {
		r += rspamd_snprintf (outbuf + r, sizeof (outbuf) - r, "yes; %.2f/%.2f/%.2f; ", metric_res->score, ms, rs);
	}
	else {
		r += rspamd_snprintf (outbuf + r, sizeof (outbuf) - r, "no; %.2f/%.2f/%.2f; ", metric_res->score, ms, rs);
	}

	symbols = g_hash_table_get_keys (metric_res->symbols);
	cur = symbols;
	while (cur) {
		if (g_list_next (cur) != NULL) {
			r += rspamd_snprintf (outbuf + r, sizeof (outbuf) - r, "%s,", (gchar *)cur->data);
		}
		else {
			r += rspamd_snprintf (outbuf + r, sizeof (outbuf) - r, "%s", (gchar *)cur->data);
		}
		cur = g_list_next (cur);
	}
	g_list_free (symbols);
#ifdef GMIME24
	g_mime_object_append_header (GMIME_OBJECT (task->message), header_name, outbuf);
#else
	g_mime_message_add_header (task->message, header_name, outbuf);
#endif

}

void
insert_headers (struct worker_task *task)
{
	g_hash_table_foreach (task->results, insert_metric_header, task);
}

gboolean
check_action_str (const gchar *data, gint *result)
{
	if (g_ascii_strncasecmp (data, "reject", sizeof ("reject") - 1) == 0) {
		*result = METRIC_ACTION_REJECT;
	}
	else if (g_ascii_strncasecmp (data, "greylist", sizeof ("greylist") - 1) == 0) {
		*result = METRIC_ACTION_GREYLIST;
	}
	else if (g_ascii_strncasecmp (data, "add_header", sizeof ("add_header") - 1) == 0) {
		*result = METRIC_ACTION_ADD_HEADER;
	}
	else if (g_ascii_strncasecmp (data, "rewrite_subject", sizeof ("rewrite_subject") - 1) == 0) {
		*result = METRIC_ACTION_REWRITE_SUBJECT;
	}
	else {
		return FALSE;
	}
	return TRUE;
}

const gchar *
str_action_metric (enum rspamd_metric_action action)
{
	switch (action) {
	case METRIC_ACTION_REJECT:
		return "reject";
	case METRIC_ACTION_SOFT_REJECT:
		return "soft reject";
	case METRIC_ACTION_REWRITE_SUBJECT:
		return "rewrite subject";
	case METRIC_ACTION_ADD_HEADER:
		return "add header";
	case METRIC_ACTION_GREYLIST:
		return "greylist";
	case METRIC_ACTION_NOACTION:
		return "no action";
	}

	return "unknown action";
}

gint
check_metric_action (double score, double required_score, struct metric *metric)
{
	GList                          *cur;
	struct metric_action           *action, *selected_action = NULL;
	double                          max_score = 0;

	if (score >= required_score) {
		return metric->action;
	}
	else if (metric->actions == NULL) {
		return METRIC_ACTION_NOACTION;
	}
	else {
		cur = metric->actions;
		while (cur) {
			action = cur->data;
			if (score >= action->score && action->score > max_score) {
				selected_action = action;
				max_score = action->score;
			}
			cur = g_list_next (cur);
		}
		if (selected_action) {
			return selected_action->action;
		}
		else {
			return METRIC_ACTION_NOACTION;
		}
	}
}

gboolean
learn_task (const gchar *statfile, struct worker_task *task, GError **err)
{
	GList                          *cur, *ex;
	struct classifier_config       *cl;
	struct classifier_ctx          *cls_ctx;
	gchar                          *s;
	f_str_t                         c;
	GTree                          *tokens = NULL;
	struct statfile                *st;
	stat_file_t                    *stf;
	gdouble                         sum;
	struct mime_text_part          *part, *p1, *p2;
	gboolean                        is_utf = FALSE, is_twopart = FALSE;
	gint                            diff;


	/* Load classifier by symbol */
	cl = g_hash_table_lookup (task->cfg->classifiers_symbols, statfile);
	if (cl == NULL) {
		g_set_error (err, filter_error_quark(), 1, "Statfile %s is not configured in any classifier", statfile);
		return FALSE;
	}

	/* If classifier has 'header' option just classify header of this type */
	if ((s = g_hash_table_lookup (cl->opts, "header")) != NULL) {
		cur = message_get_header (task->task_pool, task->message, s, FALSE);
		if (cur) {
			memory_pool_add_destructor (task->task_pool, (pool_destruct_func)g_list_free, cur);
		}
	}
	else {
		/* Classify message otherwise */
		cur = g_list_first (task->text_parts);
		if (cur != NULL && cur->next != NULL && cur->next->next == NULL) {
			is_twopart = TRUE;
		}
	}

	/* Get tokens from each element */
	while (cur) {
		if (s != NULL) {
			c.len = strlen (cur->data);
			c.begin = cur->data;
			ex = NULL;
		}
		else {
			part = cur->data;
			/* Skip empty parts */
			if (part->is_empty) {
				cur = g_list_next (cur);
				continue;
			}
			c.begin = part->content->data;
			c.len = part->content->len;
			is_utf = part->is_utf;
			ex = part->urls_offset;
			if (is_twopart && cur->next == NULL) {
				/* Compare part's content */
				p1 = cur->prev->data;
				p2 = part;
				if (p1->diff_str != NULL && p2->diff_str != NULL) {
					diff = compare_diff_distance (p1->diff_str, p2->diff_str);
				}
				else {
					diff = fuzzy_compare_parts (p1, p2);
				}
				if (diff >= COMMON_PART_FACTOR) {
					msg_info ("message <%s> has two common text parts, ignore the last one", task->message_id);
					break;
				}
			}
		}
		/* Get tokens */
		if (!cl->tokenizer->tokenize_func (
				cl->tokenizer, task->task_pool,
				&c, &tokens, FALSE, is_utf, ex)) {
			g_set_error (err, filter_error_quark(), 2, "Cannot tokenize message");
			return FALSE;
		}
		cur = g_list_next (cur);
	}

	/* Handle messages without text */
	if (tokens == NULL) {
		g_set_error (err, filter_error_quark(), 3, "Cannot tokenize message, no text data");
		msg_info ("learn failed for message <%s>, no tokens to extract", task->message_id);
		return FALSE;
	}

	/* Take care of subject */
	tokenize_subject (task, &tokens);

	/* Init classifier */
	cls_ctx = cl->classifier->init_func (
			task->task_pool, cl);
	/* Get or create statfile */
	stf = get_statfile_by_symbol (task->worker->srv->statfile_pool,
			cl, statfile, &st, TRUE);

	/* Learn */
	if (stf== NULL || !cl->classifier->learn_func (
			cls_ctx, task->worker->srv->statfile_pool,
			statfile, tokens, TRUE, &sum,
			1.0, err)) {
		if (*err) {
			msg_info ("learn failed for message <%s>, learn error: %s", task->message_id, (*err)->message);
			return FALSE;
		}
		else {
			g_set_error (err, filter_error_quark(), 4, "Learn failed, unknown learn classifier error");
			msg_info ("learn failed for message <%s>, unknown learn error", task->message_id);
			return FALSE;
		}
	}
	/* Increase statistics */
	task->worker->srv->stat->messages_learned++;

	maybe_write_binlog (cl, st, stf, tokens);
	msg_info ("learn success for message <%s>, for statfile: %s, sum weight: %.2f",
			task->message_id, statfile, sum);
	statfile_pool_plan_invalidate (task->worker->srv->statfile_pool,
			DEFAULT_STATFILE_INVALIDATE_TIME,
			DEFAULT_STATFILE_INVALIDATE_JITTER);

	return TRUE;
}

gboolean
learn_task_spam (struct classifier_config *cl, struct worker_task *task, gboolean is_spam, GError **err)
{
	GList                          *cur, *ex;
	struct classifier_ctx          *cls_ctx;
	f_str_t                         c;
	GTree                          *tokens = NULL;
	struct mime_text_part          *part, *p1, *p2;
	gboolean                        is_utf = FALSE, is_twopart = FALSE;
	gint                            diff;

	cur = g_list_first (task->text_parts);
	if (cur != NULL && cur->next != NULL && cur->next->next == NULL) {
		is_twopart = TRUE;
	}

	/* Get tokens from each element */
	while (cur) {
		part = cur->data;
		/* Skip empty parts */
		if (part->is_empty) {
			cur = g_list_next (cur);
			continue;
		}
		c.begin = part->content->data;
		c.len = part->content->len;
		is_utf = part->is_utf;
		ex = part->urls_offset;
		if (is_twopart && cur->next == NULL) {
			/*
			 * Compare part's content
			 * Note: here we don't have filters proceeded this message, so using pool variable is a bad idea
			 */
			p1 = cur->prev->data;
			p2 = part;
			if (p1->diff_str != NULL && p2->diff_str != NULL) {
				diff = compare_diff_distance (p1->diff_str, p2->diff_str);
			}
			else {
				diff = fuzzy_compare_parts (p1, p2);
			}
			if (diff >= COMMON_PART_FACTOR) {
				msg_info ("message <%s> has two common text parts, ignore the last one", task->message_id);
				break;
			}
		}
		/* Get tokens */
		if (!cl->tokenizer->tokenize_func (
				cl->tokenizer, task->task_pool,
				&c, &tokens, FALSE, is_utf, ex)) {
			g_set_error (err, filter_error_quark(), 2, "Cannot tokenize message");
			return FALSE;
		}
		cur = g_list_next (cur);
	}

	/* Handle messages without text */
	if (tokens == NULL) {
		g_set_error (err, filter_error_quark(), 3, "Cannot tokenize message, no text data");
		msg_info ("learn failed for message <%s>, no tokens to extract", task->message_id);
		return FALSE;
	}

	/* Take care of subject */
	tokenize_subject (task, &tokens);

	/* Init classifier */
	cls_ctx = cl->classifier->init_func (
			task->task_pool, cl);
	/* Learn */
	if (!cl->classifier->learn_spam_func (
			cls_ctx, task->worker->srv->statfile_pool,
			tokens, task, is_spam, err)) {
		if (*err) {
			msg_info ("learn failed for message <%s>, learn error: %s", task->message_id, (*err)->message);
			return FALSE;
		}
		else {
			g_set_error (err, filter_error_quark(), 4, "Learn failed, unknown learn classifier error");
			msg_info ("learn failed for message <%s>, unknown learn error", task->message_id);
			return FALSE;
		}
	}
	/* Increase statistics */
	task->worker->srv->stat->messages_learned++;

	msg_info ("learn success for message <%s>",
			task->message_id);
	statfile_pool_plan_invalidate (task->worker->srv->statfile_pool,
			DEFAULT_STATFILE_INVALIDATE_TIME,
			DEFAULT_STATFILE_INVALIDATE_JITTER);

	return TRUE;
}

/* 
 * vi:ts=4 
 */