1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/*
* Copyright (c) 2009-2012, Vsevolod Stakhov
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Bayesian classifier
*/
#include "classifiers.h"
#include "tokenizers.h"
#include "main.h"
#include "filter.h"
#include "cfg_file.h"
#include "lua/lua_common.h"
#define LOCAL_PROB_DENOM 16.0
static inline GQuark
bayes_error_quark (void)
{
return g_quark_from_static_string ("bayes-error");
}
struct bayes_statfile_data {
guint64 hits;
guint64 total_hits;
double value;
struct rspamd_statfile_config *st;
};
struct bayes_callback_data {
struct classifier_ctx *ctx;
gboolean in_class;
time_t now;
struct bayes_statfile_data *statfiles;
guint32 statfiles_num;
guint64 total_spam;
guint64 total_ham;
guint64 processed_tokens;
gsize max_tokens;
double spam_probability;
double ham_probability;
};
static gboolean
bayes_learn_callback (gpointer key, gpointer value, gpointer data)
{
token_node_t *node = key;
struct bayes_callback_data *cd = data;
gint c;
guint64 v;
c = (cd->in_class) ? 1 : -1;
/* Consider that not found blocks have value 1 */
/* XXX implement getting */
if (v == 0 && c > 0) {
/* XXX: add token to the backend */
cd->processed_tokens++;
}
else if (v != 0) {
if (G_LIKELY (c > 0)) {
v++;
}
else if (c < 0) {
if (v != 0) {
v--;
}
}
/* XXX: Implement setting */
cd->processed_tokens++;
}
if (cd->max_tokens != 0 && cd->processed_tokens > cd->max_tokens) {
/* Stop learning on max tokens */
return TRUE;
}
return FALSE;
}
/**
* Returns probability of chisquare > value with specified number of freedom
* degrees
* @param value value to test
* @param freedom_deg number of degrees of freedom
* @return
*/
static gdouble
inv_chi_square (gdouble value, gint freedom_deg)
{
long double prob, sum;
gint i;
if ((freedom_deg & 1) != 0) {
msg_err ("non-odd freedom degrees count: %d", freedom_deg);
return 0;
}
value /= 2.;
errno = 0;
#ifdef HAVE_EXPL
prob = expl (-value);
#elif defined(HAVE_EXP2L)
prob = exp2l (-value * log2 (M_E));
#else
prob = exp (-value);
#endif
if (errno == ERANGE) {
msg_err ("exp overflow");
return 0;
}
sum = prob;
for (i = 1; i < freedom_deg / 2; i++) {
prob *= value / (gdouble)i;
sum += prob;
}
return MIN (1.0, sum);
}
/*
* In this callback we calculate local probabilities for tokens
*/
static gboolean
bayes_classify_callback (gpointer key, gpointer value, gpointer data)
{
token_node_t *node = key;
struct bayes_callback_data *cd = data;
guint i;
struct bayes_statfile_data *cur;
guint64 spam_count = 0, ham_count = 0, total_count = 0;
double spam_prob, spam_freq, ham_freq, bayes_spam_prob;
for (i = 0; i < cd->statfiles_num; i++) {
cur = &cd->statfiles[i];
/*
* XXX: Implement getting
*/
if (cur->value > 0) {
cur->total_hits += cur->value;
if (cur->st->is_spam) {
spam_count += cur->value;
}
else {
ham_count += cur->value;
}
total_count += cur->value;
}
}
/* Probability for this token */
if (total_count > 0) {
spam_freq = ((double)spam_count / MAX (1., (double)cd->total_spam));
ham_freq = ((double)ham_count / MAX (1., (double)cd->total_ham));
spam_prob = spam_freq / (spam_freq + ham_freq);
bayes_spam_prob = (0.5 + spam_prob * total_count) / (1. + total_count);
cd->spam_probability += log (bayes_spam_prob);
cd->ham_probability += log (1. - bayes_spam_prob);
cd->processed_tokens++;
}
if (cd->max_tokens != 0 && cd->processed_tokens > cd->max_tokens) {
/* Stop classifying on max tokens */
return TRUE;
}
return FALSE;
}
struct classifier_ctx *
bayes_init (rspamd_mempool_t *pool, struct rspamd_classifier_config *cfg)
{
struct classifier_ctx *ctx =
rspamd_mempool_alloc (pool, sizeof (struct classifier_ctx));
ctx->pool = pool;
ctx->cfg = cfg;
ctx->debug = FALSE;
return ctx;
}
gboolean
bayes_classify (struct classifier_ctx * ctx,
GTree *input,
struct rspamd_task *task,
lua_State *L)
{
struct bayes_callback_data data;
gchar *value;
gint nodes, i = 0, selected_st = -1, cnt;
gint minnodes;
guint64 maxhits = 0, rev;
double final_prob, h, s;
struct rspamd_statfile_config *st;
GList *cur;
char *sumbuf;
g_assert (ctx != NULL);
if (ctx->cfg->opts &&
(value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) {
minnodes = strtol (value, NULL, 10);
nodes = g_tree_nnodes (input);
if (nodes > FEATURE_WINDOW_SIZE) {
nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE;
}
if (nodes < minnodes) {
return FALSE;
}
}
cur = rspamd_lua_call_cls_pre_callbacks (ctx->cfg, task, FALSE, FALSE, L);
if (cur) {
rspamd_mempool_add_destructor (task->task_pool,
(rspamd_mempool_destruct_t)g_list_free, cur);
}
else {
cur = ctx->cfg->statfiles;
}
data.statfiles_num = g_list_length (cur);
data.statfiles = g_new0 (struct bayes_statfile_data, data.statfiles_num);
data.now = time (NULL);
data.ctx = ctx;
data.processed_tokens = 0;
data.spam_probability = 0;
data.ham_probability = 0;
data.total_ham = 0;
data.total_spam = 0;
if (ctx->cfg->opts &&
(value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) {
minnodes = rspamd_config_parse_limit (value, -1);
data.max_tokens = minnodes;
}
else {
data.max_tokens = 0;
}
cnt = i;
g_tree_foreach (input, bayes_classify_callback, &data);
if (data.processed_tokens == 0 || data.spam_probability == 0) {
final_prob = 0;
}
else {
h = 1 - inv_chi_square (-2. * data.spam_probability,
2 * data.processed_tokens);
s = 1 - inv_chi_square (-2. * data.ham_probability,
2 * data.processed_tokens);
final_prob = (s + 1 - h) / 2.;
}
if (data.processed_tokens > 0 && fabs (final_prob - 0.5) > 0.05) {
sumbuf = rspamd_mempool_alloc (task->task_pool, 32);
for (i = 0; i < cnt; i++) {
if ((final_prob > 0.5 && !data.statfiles[i].st->is_spam) ||
(final_prob < 0.5 && data.statfiles[i].st->is_spam)) {
continue;
}
if (data.statfiles[i].total_hits > maxhits) {
maxhits = data.statfiles[i].total_hits;
selected_st = i;
}
}
if (selected_st == -1) {
msg_err (
"unexpected classifier error: cannot select desired statfile");
}
else {
/* Calculate ham probability correctly */
if (final_prob < 0.5) {
final_prob = 1. - final_prob;
}
rspamd_snprintf (sumbuf, 32, "%.2f%%", final_prob * 100.);
cur = g_list_prepend (NULL, sumbuf);
rspamd_task_insert_result (task,
data.statfiles[selected_st].st->symbol,
final_prob,
cur);
}
}
g_free (data.statfiles);
return TRUE;
}
gboolean
bayes_learn_spam (struct classifier_ctx * ctx,
GTree *input,
struct rspamd_task *task,
gboolean is_spam,
lua_State *L,
GError **err)
{
struct bayes_callback_data data;
gchar *value;
gint nodes;
gint minnodes;
struct rspamd_statfile_config *st;
GList *cur;
gboolean skip_labels;
g_assert (ctx != NULL);
if (ctx->cfg->opts &&
(value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) {
minnodes = strtol (value, NULL, 10);
nodes = g_tree_nnodes (input);
if (nodes > FEATURE_WINDOW_SIZE) {
nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE;
}
if (nodes < minnodes) {
g_set_error (err,
bayes_error_quark (), /* error domain */
1, /* error code */
"message contains too few tokens: %d, while min is %d",
nodes, (int)minnodes);
return FALSE;
}
}
data.now = time (NULL);
data.ctx = ctx;
data.in_class = TRUE;
data.processed_tokens = 0;
if (ctx->cfg->opts &&
(value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) {
minnodes = rspamd_config_parse_limit (value, -1);
data.max_tokens = minnodes;
}
else {
data.max_tokens = 0;
}
g_tree_foreach (input, bayes_learn_callback, &data);
return TRUE;
}
|