aboutsummaryrefslogtreecommitdiffstats
path: root/src/libstat/classifiers/bayes.c
blob: abefcd7d9129f11c74b12a7c1d9a8adec752a203 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
/*-
 * Copyright 2016 Vsevolod Stakhov
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/*
 * Bayesian classifier
 */
#include "classifiers.h"
#include "rspamd.h"
#include "stat_internal.h"
#include "math.h"

#define msg_err_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_CRITICAL,              \
													   "bayes", task->task_pool->tag.uid, \
													   RSPAMD_LOG_FUNC,                   \
													   __VA_ARGS__)
#define msg_warn_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_WARNING,               \
														"bayes", task->task_pool->tag.uid, \
														RSPAMD_LOG_FUNC,                   \
														__VA_ARGS__)
#define msg_info_bayes(...) rspamd_default_log_function(G_LOG_LEVEL_INFO,                  \
														"bayes", task->task_pool->tag.uid, \
														RSPAMD_LOG_FUNC,                   \
														__VA_ARGS__)

INIT_LOG_MODULE_PUBLIC(bayes)

static inline GQuark
bayes_error_quark(void)
{
	return g_quark_from_static_string("bayes-error");
}

/**
 * Returns probability of chisquare > value with specified number of freedom
 * degrees
 * @param value value to test
 * @param freedom_deg number of degrees of freedom
 * @return
 */
static gdouble
inv_chi_square(struct rspamd_task *task, gdouble value, gint freedom_deg)
{
	double prob, sum, m;
	gint i;

	errno = 0;
	m = -value;
	prob = exp(value);

	if (errno == ERANGE) {
		/*
		 * e^x where x is large *NEGATIVE* number is OK, so we have a very strong
		 * confidence that inv-chi-square is close to zero
		 */
		msg_debug_bayes("exp overflow");

		if (value < 0) {
			return 0;
		}
		else {
			return 1.0;
		}
	}

	sum = prob;

	msg_debug_bayes("m: %f, probability: %g", m, prob);

	/*
	 * m is our confidence in class
	 * prob is e ^ x (small value since x is normally less than zero
	 * So we integrate over degrees of freedom and produce the total result
	 * from 1.0 (no confidence) to 0.0 (full confidence)
	 */
	for (i = 1; i < freedom_deg; i++) {
		prob *= m / (gdouble) i;
		sum += prob;
		msg_debug_bayes("i=%d, probability: %g, sum: %g", i, prob, sum);
	}

	return MIN(1.0, sum);
}

struct bayes_task_closure {
	double ham_prob;
	double spam_prob;
	gdouble meta_skip_prob;
	uint64_t processed_tokens;
	uint64_t total_hits;
	uint64_t text_tokens;
	struct rspamd_task *task;
};

/*
 * Mathematically we use pow(complexity, complexity), where complexity is the
 * window index
 */
static const double feature_weight[] = {0, 3125, 256, 27, 1, 0, 0, 0};

#define PROB_COMBINE(prob, cnt, weight, assumed) (((weight) * (assumed) + (cnt) * (prob)) / ((weight) + (cnt)))
/*
 * In this callback we calculate local probabilities for tokens
 */
static void
bayes_classify_token(struct rspamd_classifier *ctx,
					 rspamd_token_t *tok, struct bayes_task_closure *cl)
{
	guint i;
	gint id;
	guint spam_count = 0, ham_count = 0, total_count = 0;
	struct rspamd_statfile *st;
	struct rspamd_task *task;
	const gchar *token_type = "txt";
	double spam_prob, spam_freq, ham_freq, bayes_spam_prob, bayes_ham_prob,
		ham_prob, fw, w, val;

	task = cl->task;

#if 0
	if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_LUA_META) {
		/* Ignore lua metatokens for now */
		return;
	}
#endif

	if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_META && cl->meta_skip_prob > 0) {
		val = rspamd_random_double_fast();

		if (val <= cl->meta_skip_prob) {
			if (tok->t1 && tok->t2) {
				msg_debug_bayes(
					"token(meta) %uL <%*s:%*s> probabilistically skipped",
					tok->data,
					(int) tok->t1->original.len, tok->t1->original.begin,
					(int) tok->t2->original.len, tok->t2->original.begin);
			}

			return;
		}
	}

	for (i = 0; i < ctx->statfiles_ids->len; i++) {
		id = g_array_index(ctx->statfiles_ids, gint, i);
		st = g_ptr_array_index(ctx->ctx->statfiles, id);
		g_assert(st != NULL);
		val = tok->values[id];

		if (val > 0) {
			if (st->stcf->is_spam) {
				spam_count += val;
			}
			else {
				ham_count += val;
			}

			total_count += val;
			cl->total_hits += val;
		}
	}

	/* Probability for this token */
	if (total_count >= ctx->cfg->min_token_hits) {
		spam_freq = ((double) spam_count / MAX(1., (double) ctx->spam_learns));
		ham_freq = ((double) ham_count / MAX(1., (double) ctx->ham_learns));
		spam_prob = spam_freq / (spam_freq + ham_freq);
		ham_prob = ham_freq / (spam_freq + ham_freq);

		if (tok->flags & RSPAMD_STAT_TOKEN_FLAG_UNIGRAM) {
			fw = 1.0;
		}
		else {
			fw = feature_weight[tok->window_idx %
								G_N_ELEMENTS(feature_weight)];
		}


		w = (fw * total_count) / (1.0 + fw * total_count);

		bayes_spam_prob = PROB_COMBINE(spam_prob, total_count, w, 0.5);

		if ((bayes_spam_prob > 0.5 && bayes_spam_prob < 0.5 + ctx->cfg->min_prob_strength) ||
			(bayes_spam_prob < 0.5 && bayes_spam_prob > 0.5 - ctx->cfg->min_prob_strength)) {
			msg_debug_bayes(
				"token %uL <%*s:%*s> skipped, probability not in range: %f",
				tok->data,
				(int) tok->t1->stemmed.len, tok->t1->stemmed.begin,
				(int) tok->t2->stemmed.len, tok->t2->stemmed.begin,
				bayes_spam_prob);

			return;
		}

		bayes_ham_prob = PROB_COMBINE(ham_prob, total_count, w, 0.5);

		cl->spam_prob += log(bayes_spam_prob);
		cl->ham_prob += log(bayes_ham_prob);
		cl->processed_tokens++;

		if (!(tok->flags & RSPAMD_STAT_TOKEN_FLAG_META)) {
			cl->text_tokens++;
		}
		else {
			token_type = "meta";
		}

		if (tok->t1 && tok->t2) {
			msg_debug_bayes("token(%s) %uL <%*s:%*s>: weight: %f, cf: %f, "
							"total_count: %ud, "
							"spam_count: %ud, ham_count: %ud,"
							"spam_prob: %.3f, ham_prob: %.3f, "
							"bayes_spam_prob: %.3f, bayes_ham_prob: %.3f, "
							"current spam probability: %.3f, current ham probability: %.3f",
							token_type,
							tok->data,
							(int) tok->t1->stemmed.len, tok->t1->stemmed.begin,
							(int) tok->t2->stemmed.len, tok->t2->stemmed.begin,
							fw, w, total_count, spam_count, ham_count,
							spam_prob, ham_prob,
							bayes_spam_prob, bayes_ham_prob,
							cl->spam_prob, cl->ham_prob);
		}
		else {
			msg_debug_bayes("token(%s) %uL <?:?>: weight: %f, cf: %f, "
							"total_count: %ud, "
							"spam_count: %ud, ham_count: %ud,"
							"spam_prob: %.3f, ham_prob: %.3f, "
							"bayes_spam_prob: %.3f, bayes_ham_prob: %.3f, "
							"current spam probability: %.3f, current ham probability: %.3f",
							token_type,
							tok->data,
							fw, w, total_count, spam_count, ham_count,
							spam_prob, ham_prob,
							bayes_spam_prob, bayes_ham_prob,
							cl->spam_prob, cl->ham_prob);
		}
	}
}


gboolean
bayes_init(struct rspamd_config *cfg,
		   struct ev_loop *ev_base,
		   struct rspamd_classifier *cl)
{
	cl->cfg->flags |= RSPAMD_FLAG_CLASSIFIER_INTEGER;

	return TRUE;
}

void bayes_fin(struct rspamd_classifier *cl)
{
}

gboolean
bayes_classify(struct rspamd_classifier *ctx,
			   GPtrArray *tokens,
			   struct rspamd_task *task)
{
	double final_prob, h, s, *pprob;
	gchar sumbuf[32];
	struct rspamd_statfile *st = NULL;
	struct bayes_task_closure cl;
	rspamd_token_t *tok;
	guint i, text_tokens = 0;
	gint id;

	g_assert(ctx != NULL);
	g_assert(tokens != NULL);

	memset(&cl, 0, sizeof(cl));
	cl.task = task;

	/* Check min learns */
	if (ctx->cfg->min_learns > 0) {
		if (ctx->ham_learns < ctx->cfg->min_learns) {
			msg_info_task("not classified as ham. The ham class needs more "
						  "training samples. Currently: %ul; minimum %ud required",
						  ctx->ham_learns, ctx->cfg->min_learns);

			return TRUE;
		}
		if (ctx->spam_learns < ctx->cfg->min_learns) {
			msg_info_task("not classified as spam. The spam class needs more "
						  "training samples. Currently: %ul; minimum %ud required",
						  ctx->spam_learns, ctx->cfg->min_learns);

			return TRUE;
		}
	}

	for (i = 0; i < tokens->len; i++) {
		tok = g_ptr_array_index(tokens, i);
		if (!(tok->flags & RSPAMD_STAT_TOKEN_FLAG_META)) {
			text_tokens++;
		}
	}

	if (text_tokens == 0) {
		msg_info_task("skipped classification as there are no text tokens. "
					  "Total tokens: %ud",
					  tokens->len);

		return TRUE;
	}

	/*
	 * Skip some metatokens if we don't have enough text tokens
	 */
	if (text_tokens > tokens->len - text_tokens) {
		cl.meta_skip_prob = 0.0;
	}
	else {
		cl.meta_skip_prob = 1.0 - text_tokens / tokens->len;
	}

	for (i = 0; i < tokens->len; i++) {
		tok = g_ptr_array_index(tokens, i);

		bayes_classify_token(ctx, tok, &cl);
	}

	if (cl.processed_tokens == 0) {
		msg_info_bayes("no tokens found in bayes database "
					   "(%ud total tokens, %ud text tokens), ignore stats",
					   tokens->len, text_tokens);

		return TRUE;
	}

	if (ctx->cfg->min_tokens > 0 &&
		cl.text_tokens < (gint) (ctx->cfg->min_tokens * 0.1)) {
		msg_info_bayes("ignore bayes probability since we have "
					   "found too few text tokens: %uL (of %ud checked), "
					   "at least %d required",
					   cl.text_tokens,
					   text_tokens,
					   (gint) (ctx->cfg->min_tokens * 0.1));

		return TRUE;
	}

	if (cl.spam_prob > -300 && cl.ham_prob > -300) {
		/* Fisher value is low enough to apply inv_chi_square */
		h = 1 - inv_chi_square(task, cl.spam_prob, cl.processed_tokens);
		s = 1 - inv_chi_square(task, cl.ham_prob, cl.processed_tokens);
	}
	else {
		/* Use naive method */
		if (cl.spam_prob < cl.ham_prob) {
			h = (1.0 - exp(cl.spam_prob - cl.ham_prob)) /
				(1.0 + exp(cl.spam_prob - cl.ham_prob));
			s = 1.0 - h;
		}
		else {
			s = (1.0 - exp(cl.ham_prob - cl.spam_prob)) /
				(1.0 + exp(cl.ham_prob - cl.spam_prob));
			h = 1.0 - s;
		}
	}

	if (isfinite(s) && isfinite(h)) {
		final_prob = (s + 1.0 - h) / 2.;
		msg_debug_bayes(
			"got ham probability %.2f -> %.2f and spam probability %.2f -> %.2f,"
			" %L tokens processed of %ud total tokens;"
			" %uL text tokens found of %ud text tokens)",
			cl.ham_prob,
			h,
			cl.spam_prob,
			s,
			cl.processed_tokens,
			tokens->len,
			cl.text_tokens,
			text_tokens);
	}
	else {
		/*
		 * We have some overflow, hence we need to check which class
		 * is NaN
		 */
		if (isfinite(h)) {
			final_prob = 1.0;
			msg_debug_bayes("spam class is full: no"
							" ham samples");
		}
		else if (isfinite(s)) {
			final_prob = 0.0;
			msg_debug_bayes("ham class is full: no"
							" spam samples");
		}
		else {
			final_prob = 0.5;
			msg_warn_bayes("spam and ham classes are both full");
		}
	}

	pprob = rspamd_mempool_alloc(task->task_pool, sizeof(*pprob));
	*pprob = final_prob;
	rspamd_mempool_set_variable(task->task_pool, "bayes_prob", pprob, NULL);

	if (cl.processed_tokens > 0 && fabs(final_prob - 0.5) > 0.05) {
		/* Now we can have exactly one HAM and exactly one SPAM statfiles per classifier */
		for (i = 0; i < ctx->statfiles_ids->len; i++) {
			id = g_array_index(ctx->statfiles_ids, gint, i);
			st = g_ptr_array_index(ctx->ctx->statfiles, id);

			if (final_prob > 0.5 && st->stcf->is_spam) {
				break;
			}
			else if (final_prob < 0.5 && !st->stcf->is_spam) {
				break;
			}
		}

		/* Correctly scale HAM */
		if (final_prob < 0.5) {
			final_prob = 1.0 - final_prob;
		}

		/*
		 * Bayes p is from 0.5 to 1.0, but confidence is from 0 to 1, so
		 * we need to rescale it to display correctly
		 */
		rspamd_snprintf(sumbuf, sizeof(sumbuf), "%.2f%%",
						(final_prob - 0.5) * 200.);
		final_prob = rspamd_normalize_probability(final_prob, 0.5);
		g_assert(st != NULL);

		if (final_prob > 1 || final_prob < 0) {
			msg_err_bayes("internal error: probability %f is outside of the "
						  "allowed range [0..1]",
						  final_prob);

			if (final_prob > 1) {
				final_prob = 1.0;
			}
			else {
				final_prob = 0.0;
			}
		}

		rspamd_task_insert_result(task,
								  st->stcf->symbol,
								  final_prob,
								  sumbuf);
	}

	return TRUE;
}

gboolean
bayes_learn_spam(struct rspamd_classifier *ctx,
				 GPtrArray *tokens,
				 struct rspamd_task *task,
				 gboolean is_spam,
				 gboolean unlearn,
				 GError **err)
{
	guint i, j, total_cnt, spam_cnt, ham_cnt;
	gint id;
	struct rspamd_statfile *st;
	rspamd_token_t *tok;
	gboolean incrementing;

	g_assert(ctx != NULL);
	g_assert(tokens != NULL);

	incrementing = ctx->cfg->flags & RSPAMD_FLAG_CLASSIFIER_INCREMENTING_BACKEND;

	for (i = 0; i < tokens->len; i++) {
		total_cnt = 0;
		spam_cnt = 0;
		ham_cnt = 0;
		tok = g_ptr_array_index(tokens, i);

		for (j = 0; j < ctx->statfiles_ids->len; j++) {
			id = g_array_index(ctx->statfiles_ids, gint, j);
			st = g_ptr_array_index(ctx->ctx->statfiles, id);
			g_assert(st != NULL);

			if (!!st->stcf->is_spam == !!is_spam) {
				if (incrementing) {
					tok->values[id] = 1;
				}
				else {
					tok->values[id]++;
				}

				total_cnt += tok->values[id];

				if (st->stcf->is_spam) {
					spam_cnt += tok->values[id];
				}
				else {
					ham_cnt += tok->values[id];
				}
			}
			else {
				if (tok->values[id] > 0 && unlearn) {
					/* Unlearning */
					if (incrementing) {
						tok->values[id] = -1;
					}
					else {
						tok->values[id]--;
					}

					if (st->stcf->is_spam) {
						spam_cnt += tok->values[id];
					}
					else {
						ham_cnt += tok->values[id];
					}
					total_cnt += tok->values[id];
				}
				else if (incrementing) {
					tok->values[id] = 0;
				}
			}
		}

		if (tok->t1 && tok->t2) {
			msg_debug_bayes("token %uL <%*s:%*s>: window: %d, total_count: %d, "
							"spam_count: %d, ham_count: %d",
							tok->data,
							(int) tok->t1->stemmed.len, tok->t1->stemmed.begin,
							(int) tok->t2->stemmed.len, tok->t2->stemmed.begin,
							tok->window_idx, total_cnt, spam_cnt, ham_cnt);
		}
		else {
			msg_debug_bayes("token %uL <?:?>: window: %d, total_count: %d, "
							"spam_count: %d, ham_count: %d",
							tok->data,
							tok->window_idx, total_cnt, spam_cnt, ham_cnt);
		}
	}

	return TRUE;
}