1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
/* Copyright (c) 2015, Vsevolod Stakhov
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "stat_api.h"
#include "main.h"
#include "stat_internal.h"
#include "libmime/message.h"
#include "libmime/images.h"
#include "libserver/html.h"
#include "lua/lua_common.h"
#include <utlist.h>
#define RSPAMD_CLASSIFY_OP 0
#define RSPAMD_LEARN_OP 1
#define RSPAMD_UNLEARN_OP 2
static const gint similarity_treshold = 80;
struct preprocess_cb_data {
struct rspamd_task *task;
GList *classifier_runtimes;
struct rspamd_tokenizer_runtime *tok;
guint results_count;
gboolean unlearn;
gboolean spam;
};
static void
rspamd_stat_tokenize_header (struct rspamd_task *task,
struct rspamd_tokenizer_runtime *tok,
const gchar *name, const gchar *prefix, GArray *ar)
{
struct raw_header *rh, *cur;
rspamd_fstring_t str;
rh = g_hash_table_lookup (task->raw_headers, name);
if (rh != NULL) {
LL_FOREACH (rh, cur) {
if (cur->name != NULL) {
str.begin = cur->name;
str.len = strlen (cur->name);
g_array_append_val (ar, str);
}
if (cur->decoded != NULL) {
str.begin = cur->decoded;
str.len = strlen (cur->decoded);
g_array_append_val (ar, str);
}
else if (cur->value != NULL) {
str.begin = cur->value;
str.len = strlen (cur->value);
g_array_append_val (ar, str);
}
}
msg_debug ("added stat tokens for header '%s'", name);
}
}
static void
rspamd_stat_tokenize_parts_metadata (struct rspamd_task *task,
struct rspamd_tokenizer_runtime *tok)
{
struct rspamd_image *img;
struct mime_part *part;
struct mime_text_part *tp;
GList *cur;
GArray *ar;
rspamd_fstring_t elt;
guint i;
ar = g_array_sized_new (FALSE, FALSE, sizeof (elt), 4);
/* Insert images */
cur = g_list_first (task->images);
while (cur) {
img = cur->data;
/* If an image has a linked HTML part, then we push its details to the stat */
if (img->html_image) {
elt.begin = (gchar *)"image";
elt.len = 5;
g_array_append_val (ar, elt);
elt.begin = (gchar *)&img->html_image->height;
elt.len = sizeof (img->html_image->height);
g_array_append_val (ar, elt);
elt.begin = (gchar *)&img->html_image->width;
elt.len = sizeof (img->html_image->width);
g_array_append_val (ar, elt);
elt.begin = (gchar *)&img->type;
elt.len = sizeof (img->type);
g_array_append_val (ar, elt);
if (img->filename) {
elt.begin = (gchar *)img->filename;
elt.len = strlen (elt.begin);
g_array_append_val (ar, elt);
}
msg_debug ("added stat tokens for image '%s'", img->html_image->src);
}
cur = g_list_next (cur);
}
/* Process mime parts */
for (i = 0; i < task->parts->len; i ++) {
part = g_ptr_array_index (task->parts, i);
if (GMIME_IS_MULTIPART (part->mime)) {
elt.begin = (gchar *)g_mime_multipart_get_boundary (
GMIME_MULTIPART (part->mime));
if (elt.begin) {
elt.len = strlen (elt.begin);
msg_debug ("added stat tokens for mime boundary '%s'", elt.begin);
g_array_append_val (ar, elt);
}
}
}
/* Process text parts metadata */
for (i = 0; i < task->text_parts->len; i ++) {
tp = g_ptr_array_index (task->text_parts, i);
if (tp->language != NULL && tp->language[0] != '\0') {
elt.begin = (gchar *)tp->language;
elt.len = strlen (elt.begin);
msg_debug ("added stat tokens for part language '%s'", elt.begin);
g_array_append_val (ar, elt);
}
if (tp->real_charset != NULL) {
elt.begin = (gchar *)tp->real_charset;
elt.len = strlen (elt.begin);
msg_debug ("added stat tokens for part charset '%s'", elt.begin);
g_array_append_val (ar, elt);
}
}
cur = g_list_first (task->cfg->classify_headers);
while (cur) {
rspamd_stat_tokenize_header (task, tok, cur->data, "UA:", ar);
cur = g_list_next (cur);
}
tok->tokenizer->tokenize_func (tok,
task->task_pool,
ar,
TRUE,
"META:");
g_array_free (ar, TRUE);
}
/*
* Tokenize task using the tokenizer specified
*/
static void
rspamd_stat_process_tokenize (struct rspamd_stat_ctx *st_ctx,
struct rspamd_task *task, struct rspamd_tokenizer_runtime *tok)
{
struct mime_text_part *part;
GArray *words;
gchar *sub;
guint i;
gint *pdiff;
gboolean compat;
compat = tok->tokenizer->is_compat (tok);
pdiff = rspamd_mempool_get_variable (task->task_pool, "parts_distance");
for (i = 0; i < task->text_parts->len; i ++) {
part = g_ptr_array_index (task->text_parts, i);
if (!IS_PART_EMPTY (part) && part->words != NULL) {
if (compat) {
tok->tokenizer->tokenize_func (tok, task->task_pool,
part->words, IS_PART_UTF (part), NULL);
}
else {
tok->tokenizer->tokenize_func (tok, task->task_pool,
part->normalized_words, IS_PART_UTF (part), NULL);
}
}
if (pdiff != NULL && *pdiff > similarity_treshold) {
msg_debug ("message has two common parts (%d%%), so skip the last one",
*pdiff);
break;
}
}
if (task->subject != NULL) {
sub = task->subject;
}
else {
sub = (gchar *)g_mime_message_get_subject (task->message);
}
if (sub != NULL) {
words = rspamd_tokenize_text (sub, strlen (sub), TRUE, 0, NULL, compat,
FALSE);
if (words != NULL) {
tok->tokenizer->tokenize_func (tok,
task->task_pool,
words,
TRUE,
"SUBJECT");
g_array_free (words, TRUE);
}
}
rspamd_stat_tokenize_parts_metadata (task, tok);
}
static struct rspamd_tokenizer_runtime *
rspamd_stat_get_tokenizer_runtime (struct rspamd_tokenizer_config *cf,
struct rspamd_stat_ctx *st_ctx,
struct rspamd_task *task,
struct rspamd_classifier_runtime *cl_runtime,
gpointer conf, gsize conf_len)
{
struct rspamd_tokenizer_runtime *tok = NULL;
const gchar *name;
if (cf == NULL || cf->name == NULL) {
name = RSPAMD_DEFAULT_TOKENIZER;
cf->name = name;
}
else {
name = cf->name;
}
tok = rspamd_mempool_alloc (task->task_pool, sizeof (*tok));
tok->tokenizer = rspamd_stat_get_tokenizer (name);
tok->tkcf = cf;
if (tok->tokenizer == NULL) {
return NULL;
}
if (!tok->tokenizer->load_config (task->task_pool, tok, conf, conf_len)) {
return NULL;
}
tok->tokens = g_tree_new (token_node_compare_func);
rspamd_mempool_add_destructor (task->task_pool,
(rspamd_mempool_destruct_t)g_tree_destroy, tok->tokens);
tok->name = name;
rspamd_stat_process_tokenize (st_ctx, task, tok);
cl_runtime->tok = tok;
return tok;
}
static gboolean
preprocess_init_stat_token (gpointer k, gpointer v, gpointer d)
{
rspamd_token_t *t = (rspamd_token_t *)v;
struct preprocess_cb_data *cbdata = (struct preprocess_cb_data *)d;
struct rspamd_statfile_runtime *st_runtime;
struct rspamd_classifier_runtime *cl_runtime;
struct rspamd_token_result *res;
GList *cur, *curst;
gint i = 0;
t->results = g_array_sized_new (FALSE, TRUE,
sizeof (struct rspamd_token_result), cbdata->results_count);
g_array_set_size (t->results, cbdata->results_count);
rspamd_mempool_add_destructor (cbdata->task->task_pool,
rspamd_array_free_hard, t->results);
cur = g_list_first (cbdata->classifier_runtimes);
while (cur) {
cl_runtime = (struct rspamd_classifier_runtime *)cur->data;
if (cl_runtime->clcf->min_tokens > 0 &&
(guint32)g_tree_nnodes (cbdata->tok->tokens) < cl_runtime->clcf->min_tokens) {
/* Skip this classifier */
msg_debug ("<%s> contains less tokens than required for %s classifier: "
"%ud < %ud", cbdata->task->message_id, cl_runtime->clcf->name,
g_tree_nnodes (cbdata->tok->tokens),
cl_runtime->clcf->min_tokens);
cur = g_list_next (cur);
cl_runtime->skipped = TRUE;
continue;
}
curst = cl_runtime->st_runtime;
while (curst) {
st_runtime = (struct rspamd_statfile_runtime *)curst->data;
res = &g_array_index (t->results, struct rspamd_token_result, i);
res->cl_runtime = cl_runtime;
res->st_runtime = st_runtime;
if (cl_runtime->backend->process_token (cbdata->task, t, res,
cl_runtime->backend->ctx)) {
if (cl_runtime->clcf->max_tokens > 0 &&
cl_runtime->processed_tokens > cl_runtime->clcf->max_tokens) {
msg_debug ("<%s> contains more tokens than allowed for %s classifier: "
"%ud > %ud", cbdata->task, cl_runtime->clcf->name,
cl_runtime->processed_tokens,
cl_runtime->clcf->max_tokens);
return TRUE;
}
}
i ++;
curst = g_list_next (curst);
}
cur = g_list_next (cur);
}
return FALSE;
}
static GList*
rspamd_stat_preprocess (struct rspamd_stat_ctx *st_ctx,
struct rspamd_task *task,
lua_State *L, gint op, gboolean spam, GError **err)
{
struct rspamd_classifier_config *clcf;
struct rspamd_statfile_config *stcf;
struct rspamd_classifier_runtime *cl_runtime;
struct rspamd_statfile_runtime *st_runtime;
struct rspamd_stat_backend *bk;
gpointer backend_runtime, tok_config;
GList *cur, *st_list = NULL, *curst;
GList *cl_runtimes = NULL;
guint result_size = 0, start_pos = 0, end_pos = 0;
gsize conf_len;
struct preprocess_cb_data cbdata;
cur = g_list_first (task->cfg->classifiers);
while (cur) {
clcf = (struct rspamd_classifier_config *)cur->data;
st_list = NULL;
if (clcf->pre_callbacks != NULL) {
st_list = rspamd_lua_call_cls_pre_callbacks (clcf, task, FALSE,
FALSE, L);
}
if (st_list != NULL) {
rspamd_mempool_add_destructor (task->task_pool,
(rspamd_mempool_destruct_t)g_list_free, st_list);
}
else {
st_list = clcf->statfiles;
}
/* Now init runtime values */
cl_runtime = rspamd_mempool_alloc0 (task->task_pool, sizeof (*cl_runtime));
cl_runtime->cl = rspamd_stat_get_classifier (clcf->classifier);
if (cl_runtime->cl == NULL) {
g_set_error (err, rspamd_stat_quark(), 500,
"classifier %s is not defined", clcf->classifier);
g_list_free (cl_runtimes);
return NULL;
}
cl_runtime->clcf = clcf;
bk = rspamd_stat_get_backend (clcf->backend);
if (bk == NULL) {
g_set_error (err, rspamd_stat_quark(), 500,
"backend %s is not defined", clcf->backend);
g_list_free (cl_runtimes);
return NULL;
}
cl_runtime->backend = bk;
curst = st_list;
while (curst != NULL) {
stcf = (struct rspamd_statfile_config *)curst->data;
/* On learning skip statfiles that do not belong to class */
if (op == RSPAMD_LEARN_OP && (spam != stcf->is_spam)) {
curst = g_list_next (curst);
continue;
}
backend_runtime = bk->runtime (task, stcf, op != RSPAMD_CLASSIFY_OP,
bk->ctx);
if (backend_runtime == NULL) {
if (op != RSPAMD_CLASSIFY_OP) {
/* Assume backend absence as fatal error */
g_set_error (err, rspamd_stat_quark(), 500,
"cannot open backend for statfile %s", stcf->symbol);
g_list_free (cl_runtimes);
return NULL;
}
else {
/* Just skip this element */
msg_warn ("backend of type %s does not exist: %s",
clcf->backend, stcf->symbol);
curst = g_list_next (curst);
continue;
}
}
tok_config = bk->load_tokenizer_config (backend_runtime,
&conf_len);
if (cl_runtime->tok == NULL) {
cl_runtime->tok = rspamd_stat_get_tokenizer_runtime (clcf->tokenizer,
st_ctx, task, cl_runtime, tok_config, conf_len);
if (cl_runtime->tok == NULL) {
g_set_error (err, rspamd_stat_quark(), 500,
"cannot initialize tokenizer for statfile %s", stcf->symbol);
g_list_free (cl_runtimes);
return NULL;
}
}
if (!cl_runtime->tok->tokenizer->compatible_config (
cl_runtime->tok, tok_config, conf_len)) {
g_set_error (err, rspamd_stat_quark(), 500,
"incompatible tokenizer for statfile %s", stcf->symbol);
g_list_free (cl_runtimes);
return NULL;
}
st_runtime = rspamd_mempool_alloc0 (task->task_pool,
sizeof (*st_runtime));
st_runtime->st = stcf;
st_runtime->backend_runtime = backend_runtime;
if (stcf->is_spam) {
cl_runtime->total_spam += bk->total_learns (task, backend_runtime,
bk->ctx);
}
else {
cl_runtime->total_ham += bk->total_learns (task, backend_runtime,
bk->ctx);
}
cl_runtime->st_runtime = g_list_prepend (cl_runtime->st_runtime,
st_runtime);
result_size ++;
curst = g_list_next (curst);
end_pos ++;
}
if (cl_runtime->st_runtime != NULL) {
rspamd_mempool_add_destructor (task->task_pool,
(rspamd_mempool_destruct_t)g_list_free,
cl_runtime->st_runtime);
cl_runtimes = g_list_prepend (cl_runtimes, cl_runtime);
}
/* Set positions in the results array */
cl_runtime->start_pos = start_pos;
cl_runtime->end_pos = end_pos;
msg_debug ("added runtime for %s classifier from %ud to %ud",
clcf->name, start_pos, end_pos);
start_pos = end_pos;
/* Next classifier */
cur = g_list_next (cur);
}
if (cl_runtimes != NULL) {
rspamd_mempool_add_destructor (task->task_pool,
(rspamd_mempool_destruct_t)g_list_free,
cl_runtimes);
cbdata.results_count = result_size;
cbdata.classifier_runtimes = cl_runtimes;
cbdata.task = task;
cbdata.tok = cl_runtime->tok;
g_tree_foreach (cbdata.tok->tokens, preprocess_init_stat_token,
&cbdata);
}
return cl_runtimes;
}
rspamd_stat_result_t
rspamd_stat_classify (struct rspamd_task *task, lua_State *L, GError **err)
{
struct rspamd_stat_ctx *st_ctx;
struct rspamd_statfile_runtime *st_run;
struct rspamd_classifier_runtime *cl_run;
struct classifier_ctx *cl_ctx;
GList *cl_runtimes;
GList *cur, *curst;
gboolean ret = RSPAMD_STAT_PROCESS_OK;
st_ctx = rspamd_stat_get_ctx ();
g_assert (st_ctx != NULL);
/* Initialize classifiers and statfiles runtime */
if ((cl_runtimes = rspamd_stat_preprocess (st_ctx, task, L,
RSPAMD_CLASSIFY_OP, FALSE, err)) == NULL) {
return RSPAMD_STAT_PROCESS_OK;
}
cur = cl_runtimes;
while (cur) {
cl_run = (struct rspamd_classifier_runtime *)cur->data;
cl_run->stage = RSPAMD_STAT_STAGE_PRE;
if (cl_run->cl) {
cl_ctx = cl_run->cl->init_func (task->task_pool, cl_run->clcf);
if (cl_ctx != NULL) {
cl_run->cl->classify_func (cl_ctx, cl_run->tok->tokens,
cl_run, task);
}
}
cur = g_list_next (cur);
}
/* XXX: backend runtime post-processing */
/* Post-processing */
cur = cl_runtimes;
while (cur) {
cl_run = (struct rspamd_classifier_runtime *)cur->data;
cl_run->stage = RSPAMD_STAT_STAGE_POST;
if (cl_run->skipped) {
cur = g_list_next (cur);
continue;
}
if (cl_run->cl) {
if (cl_ctx != NULL) {
if (cl_run->cl->classify_func (cl_ctx, cl_run->tok->tokens,
cl_run, task)) {
ret = RSPAMD_STAT_PROCESS_OK;
}
}
}
curst = cl_run->st_runtime;
while (curst) {
st_run = curst->data;
cl_run->backend->finalize_process (task,
st_run->backend_runtime,
cl_run->backend->ctx);
curst = g_list_next (curst);
}
cur = g_list_next (cur);
}
return ret;
}
static gboolean
rspamd_stat_learn_token (gpointer k, gpointer v, gpointer d)
{
rspamd_token_t *t = (rspamd_token_t *)v;
struct preprocess_cb_data *cbdata = (struct preprocess_cb_data *)d;
struct rspamd_statfile_runtime *st_runtime;
struct rspamd_classifier_runtime *cl_runtime;
struct rspamd_token_result *res;
GList *cur, *curst;
gint i = 0;
cur = g_list_first (cbdata->classifier_runtimes);
while (cur) {
cl_runtime = (struct rspamd_classifier_runtime *)cur->data;
if (cl_runtime->clcf->min_tokens > 0 &&
(guint32)g_tree_nnodes (cbdata->tok->tokens) < cl_runtime->clcf->min_tokens) {
/* Skip this classifier */
msg_debug ("<%s> contains less tokens than required for %s classifier: "
"%ud < %ud", cbdata->task->message_id, cl_runtime->clcf->name,
g_tree_nnodes (cbdata->tok->tokens),
cl_runtime->clcf->min_tokens);
cur = g_list_next (cur);
continue;
}
curst = cl_runtime->st_runtime;
while (curst) {
res = &g_array_index (t->results, struct rspamd_token_result, i);
st_runtime = (struct rspamd_statfile_runtime *)curst->data;
if (cl_runtime->backend->learn_token (cbdata->task, t, res,
cl_runtime->backend->ctx)) {
cl_runtime->processed_tokens ++;
if (cl_runtime->clcf->max_tokens > 0 &&
cl_runtime->processed_tokens > cl_runtime->clcf->max_tokens) {
msg_debug ("<%s> contains more tokens than allowed for %s classifier: "
"%ud > %ud", cbdata->task, cl_runtime->clcf->name,
cl_runtime->processed_tokens,
cl_runtime->clcf->max_tokens);
return TRUE;
}
}
i ++;
curst = g_list_next (curst);
}
cur = g_list_next (cur);
}
return FALSE;
}
rspamd_stat_result_t
rspamd_stat_learn (struct rspamd_task *task, gboolean spam, lua_State *L,
GError **err)
{
struct rspamd_stat_ctx *st_ctx;
struct rspamd_classifier_runtime *cl_run;
struct rspamd_statfile_runtime *st_run;
struct classifier_ctx *cl_ctx;
struct preprocess_cb_data cbdata;
GList *cl_runtimes;
GList *cur, *curst;
gboolean ret = RSPAMD_STAT_PROCESS_ERROR, unlearn = FALSE;
gulong nrev;
rspamd_learn_t learn_res = RSPAMD_LEARN_OK;
guint i;
gboolean learned = FALSE;
st_ctx = rspamd_stat_get_ctx ();
g_assert (st_ctx != NULL);
cur = g_list_first (task->cfg->classifiers);
/* Check whether we have learned that file */
for (i = 0; i < st_ctx->caches_count; i ++) {
learn_res = st_ctx->caches[i].process (task, spam,
st_ctx->caches[i].ctx);
if (learn_res == RSPAMD_LEARN_INGORE) {
/* Do not learn twice */
g_set_error (err, rspamd_stat_quark (), 404, "<%s> has been already "
"learned as %s, ignore it", task->message_id,
spam ? "spam" : "ham");
return RSPAMD_STAT_PROCESS_ERROR;
}
else if (learn_res == RSPAMD_LEARN_UNLEARN) {
unlearn = TRUE;
}
}
/* Initialize classifiers and statfiles runtime */
if ((cl_runtimes = rspamd_stat_preprocess (st_ctx, task, L,
unlearn ? RSPAMD_UNLEARN_OP : RSPAMD_LEARN_OP, spam, err)) == NULL) {
return RSPAMD_STAT_PROCESS_ERROR;
}
cur = cl_runtimes;
while (cur) {
cl_run = (struct rspamd_classifier_runtime *)cur->data;
if (cl_run->cl && !cl_run->skipped) {
cl_ctx = cl_run->cl->init_func (task->task_pool, cl_run->clcf);
if (cl_ctx != NULL) {
if (cl_run->cl->learn_spam_func (cl_ctx, cl_run->tok->tokens,
cl_run, task, spam, err)) {
msg_debug ("learned %s classifier %s", spam ? "spam" : "ham",
cl_run->clcf->name);
ret = RSPAMD_STAT_PROCESS_OK;
learned = TRUE;
cbdata.classifier_runtimes = cur;
cbdata.task = task;
cbdata.tok = cl_run->tok;
cbdata.unlearn = unlearn;
cbdata.spam = spam;
g_tree_foreach (cl_run->tok->tokens, rspamd_stat_learn_token,
&cbdata);
curst = g_list_first (cl_run->st_runtime);
while (curst) {
st_run = (struct rspamd_statfile_runtime *)curst->data;
if (unlearn && spam != st_run->st->is_spam) {
nrev = cl_run->backend->dec_learns (task,
st_run->backend_runtime,
cl_run->backend->ctx);
msg_debug ("unlearned %s, new revision: %ul",
st_run->st->symbol, nrev);
}
else {
nrev = cl_run->backend->inc_learns (task,
st_run->backend_runtime,
cl_run->backend->ctx);
msg_debug ("learned %s, new revision: %ul",
st_run->st->symbol, nrev);
}
cl_run->backend->finalize_learn (task,
st_run->backend_runtime,
cl_run->backend->ctx);
curst = g_list_next (curst);
}
}
else {
return RSPAMD_STAT_PROCESS_ERROR;
}
}
}
cur = g_list_next (cur);
}
if (!learned) {
g_set_error (err, rspamd_stat_quark (), 500, "message cannot be learned"
" for any classifier defined");
}
return ret;
}
rspamd_stat_result_t rspamd_stat_statistics (struct rspamd_task *task,
struct rspamd_config *cfg,
guint64 *total_learns,
ucl_object_t **target)
{
struct rspamd_classifier_config *clcf;
struct rspamd_statfile_config *stcf;
struct rspamd_stat_backend *bk;
gpointer backend_runtime;
GList *cur, *st_list = NULL, *curst;
ucl_object_t *res = NULL, *elt;
guint64 learns = 0;
if (cfg != NULL && cfg->classifiers != NULL) {
res = ucl_object_typed_new (UCL_ARRAY);
cur = g_list_first (cfg->classifiers);
while (cur) {
clcf = (struct rspamd_classifier_config *)cur->data;
st_list = clcf->statfiles;
curst = st_list;
while (curst != NULL) {
stcf = (struct rspamd_statfile_config *)curst->data;
bk = rspamd_stat_get_backend (clcf->backend);
if (bk == NULL) {
msg_warn ("backend of type %s is not defined", clcf->backend);
curst = g_list_next (curst);
continue;
}
backend_runtime = bk->runtime (task, stcf, FALSE, bk->ctx);
learns += bk->total_learns (task, backend_runtime, bk->ctx);
elt = bk->get_stat (backend_runtime, bk->ctx);
if (elt != NULL) {
ucl_array_append (res, elt);
}
curst = g_list_next (curst);
}
/* Next classifier */
cur = g_list_next (cur);
}
if (total_learns != NULL) {
*total_learns = learns;
}
}
if (*target) {
*target = res;
}
return RSPAMD_STAT_PROCESS_OK;
}
|