1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
/*-
* Copyright 2021 Vsevolod Stakhov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RSPAMD_UTIL_HXX
#define RSPAMD_UTIL_HXX
#pragma once
#include <memory>
#include <array>
#include <string_view>
#include <optional>
#include <tuple>
#include <algorithm>
/*
* Common C++ utilities
*/
namespace rspamd {
/*
* Creates std::array from a standard C style array with automatic size calculation
*/
template <typename... Ts>
constexpr auto array_of(Ts&&... t) -> std::array<typename std::decay_t<typename std::common_type_t<Ts...>>, sizeof...(Ts)>
{
using T = typename std::decay_t<typename std::common_type_t<Ts...>>;
return {{ std::forward<T>(t)... }};
}
template<class C, class K, class V = typename C::mapped_type, typename std::enable_if_t<
std::is_constructible_v<typename C::key_type, K>
&& std::is_constructible_v<typename C::mapped_type, V>, bool> = false>
constexpr auto find_map(const C &c, const K &k) -> std::optional<std::reference_wrapper<const V>>
{
auto f = c.find(k);
if (f != c.end()) {
return std::cref<V>(f->second);
}
return std::nullopt;
}
template <typename _It>
inline constexpr auto make_string_view_from_it(_It begin, _It end)
{
using result_type = std::string_view;
return result_type{((begin != end) ? &*begin : nullptr),
(typename result_type::size_type)std::max(std::distance(begin, end),
(typename result_type::difference_type)0)
};
}
/**
* Iterate over lines in a string, newline characters are dropped
* @tparam S
* @tparam F
* @param input
* @param functor
* @return
*/
template<class S, class F, typename std::enable_if_t<std::is_invocable_v<F, std::string_view> &&
std::is_constructible_v<std::string_view, S>, bool> = true>
inline auto string_foreach_line(const S &input, const F &functor)
{
auto it = input.begin();
auto end = input.end();
while (it != end) {
auto next = std::find(it, end, '\n');
while (next >= it && (*next == '\n' || *next == '\r')) {
--next;
}
functor(make_string_view_from_it(it, next));
it = next;
if (it != end) {
++it;
}
}
}
template<class S, typename std::enable_if_t<std::is_constructible_v<std::string_view, S>, bool> = true>
inline auto string_split_on(const S &input, std::string_view::value_type chr) -> std::pair<std::string_view, std::string_view>
{
auto pos = std::find(std::begin(input), std::end(input), chr);
if (pos != input.end()) {
auto first = std::string_view{std::begin(input), static_cast<std::size_t>(std::distance(std::begin(input), pos))};
while (*pos == chr && pos != input.end()) {
++pos;
}
auto last = std::string_view{pos, std::end(input)};
return {first, last};
}
return {std::string_view{input}, std::string_view{}};
}
/**
* Enumerate for range loop
*/
template <typename T,
typename TIter = decltype(std::begin(std::declval<T>())),
typename = decltype(std::end(std::declval<T>()))>
constexpr auto enumerate(T && iterable)
{
struct iterator
{
size_t i;
TIter iter;
bool operator != (const iterator & other) const { return iter != other.iter; }
void operator ++ () { ++i; ++iter; }
auto operator * () const { return std::tie(i, *iter); }
};
struct iterable_wrapper
{
T iterable;
auto begin() { return iterator{ 0, std::begin(iterable) }; }
auto end() { return iterator{ 0, std::end(iterable) }; }
};
return iterable_wrapper{ std::forward<T>(iterable) };
}
/**
* Allocator that cleans up memory in a secure way on destruction
* @tparam T
*/
template <class T> class secure_mem_allocator : public std::allocator<T>
{
public:
using value_type = typename std::allocator<T>::value_type;
using size_type = typename std::allocator<T>::size_type;
template<class U> struct rebind { typedef secure_mem_allocator<U> other; };
secure_mem_allocator() noexcept = default;
secure_mem_allocator(const secure_mem_allocator &_) noexcept : std::allocator<T>(_) {}
template <class U> explicit secure_mem_allocator(const secure_mem_allocator<U>&) noexcept {}
void deallocate(value_type *p, size_type num) noexcept {
rspamd_explicit_memzero((void *)p, num);
std::allocator<T>::deallocate(p, num);
}
};
}
#endif //RSPAMD_UTIL_HXX
|