1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
/*-
* Copyright 2016 Vsevolod Stakhov
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "lua_common.h"
#ifdef WITH_FANN
#include <fann.h>
#endif
/***
* @module rspamd_fann
* This module enables [fann](http://libfann.github.io) interaction in rspamd
* Please note, that this module works merely if you have `ENABLE_FANN=ON` option
* definition when building rspamd
*/
/*
* Fann functions
*/
LUA_FUNCTION_DEF (fann, is_enabled);
LUA_FUNCTION_DEF (fann, create);
LUA_FUNCTION_DEF (fann, load);
/*
* Fann methods
*/
LUA_FUNCTION_DEF (fann, train);
LUA_FUNCTION_DEF (fann, test);
LUA_FUNCTION_DEF (fann, save);
LUA_FUNCTION_DEF (fann, get_inputs);
LUA_FUNCTION_DEF (fann, get_outputs);
LUA_FUNCTION_DEF (fann, dtor);
static const struct luaL_reg fannlib_f[] = {
LUA_INTERFACE_DEF (fann, is_enabled),
LUA_INTERFACE_DEF (fann, create),
LUA_INTERFACE_DEF (fann, load),
{NULL, NULL}
};
static const struct luaL_reg fannlib_m[] = {
LUA_INTERFACE_DEF (fann, train),
LUA_INTERFACE_DEF (fann, test),
LUA_INTERFACE_DEF (fann, save),
LUA_INTERFACE_DEF (fann, get_inputs),
LUA_INTERFACE_DEF (fann, get_outputs),
{"__gc", lua_fann_dtor},
{"__tostring", rspamd_lua_class_tostring},
{NULL, NULL}
};
#ifdef WITH_FANN
struct fann *
rspamd_lua_check_fann (lua_State *L, gint pos)
{
void *ud = luaL_checkudata (L, pos, "rspamd{fann}");
luaL_argcheck (L, ud != NULL, pos, "'fann' expected");
return ud ? *((struct fann **) ud) : NULL;
}
#endif
/***
* @function rspamd_fann.is_enabled()
* Checks if fann is enabled for this rspamd build
* @return {boolean} true if fann is enabled
*/
static gint
lua_fann_is_enabled (lua_State *L)
{
#ifdef WITH_FANN
lua_pushboolean (L, true);
#else
lua_pushboolean (L, false);
#endif
return 1;
}
/***
* @function rspamd_fann.create(nlayers, [layer1, ... layern])
* Creates new neural network with `nlayers` that contains `layer1`...`layern`
* neurons in each layer
* @param {number} nlayers number of layers
* @param {number} layerI number of neurons in each layer
* @return {fann} fann object
*/
static gint
lua_fann_create (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f, **pfann;
guint nlayers, *layers, i;
nlayers = luaL_checknumber (L, 1);
if (nlayers > 0) {
layers = g_malloc (nlayers * sizeof (layers[0]));
for (i = 0; i < nlayers; i ++) {
layers[i] = luaL_checknumber (L, i + 2);
}
f = fann_create_standard_array (nlayers, layers);
if (f != NULL) {
pfann = lua_newuserdata (L, sizeof (gpointer));
*pfann = f;
rspamd_lua_setclass (L, "rspamd{fann}", -1);
}
else {
lua_pushnil (L);
}
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
/***
* @function rspamd_fann.load(file)
* Loads neural network from the file
* @param {string} file filename where fann is stored
* @return {fann} fann object
*/
static gint
lua_fann_load (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f, **pfann;
const gchar *fname;
fname = luaL_checkstring (L, 1);
if (fname != NULL) {
f = fann_create_from_file (fname);
if (f != NULL) {
pfann = lua_newuserdata (L, sizeof (gpointer));
*pfann = f;
rspamd_lua_setclass (L, "rspamd{fann}", -1);
}
else {
lua_pushnil (L);
}
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
/**
* @method rspamd_fann:train(inputs, outputs)
* Trains neural network with samples. Inputs and outputs should be tables of
* equal size, each row in table should be N inputs and M outputs, e.g.
* {0, 1, 1} -> {0}
* {1, 0, 0} -> {1}
* @param {table/table} inputs input samples
* @param {table/table} outputs output samples
* @return {number} number of samples learned
*/
static gint
lua_fann_train (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
guint ninputs, noutputs, i, j, cur_len;
float *cur_input, *cur_output;
gint ret = 0;
if (f != NULL) {
/* First check sanity, call for table.getn for that */
ninputs = rspamd_lua_table_size (L, 2);
noutputs = rspamd_lua_table_size (L, 3);
if (ninputs != noutputs) {
msg_err ("bad number of inputs(%d) and output(%d) args for train",
ninputs, noutputs);
}
else {
for (i = 0; i < ninputs; i ++) {
/* Push table with inputs */
lua_rawgeti (L, 2, i + 1);
cur_len = rspamd_lua_table_size (L, -1);
if (cur_len != fann_get_num_input (f)) {
msg_err (
"bad number of input samples: %d, %d expected",
cur_len,
fann_get_num_input (f));
lua_pop (L, 1);
continue;
}
cur_input = g_malloc (cur_len * sizeof (gint));
for (j = 0; j < cur_len; j ++) {
lua_rawgeti (L, -1, j + 1);
cur_input[i] = lua_tonumber (L, -1);
lua_pop (L, 1);
}
lua_pop (L, 1); /* Inputs table */
/* Push table with outputs */
lua_rawgeti (L, 3, i + 1);
cur_len = rspamd_lua_table_size (L, -1);
if (cur_len != fann_get_num_output (f)) {
msg_err (
"bad number of output samples: %d, %d expected",
cur_len,
fann_get_num_output (f));
lua_pop (L, 1);
g_free (cur_input);
continue;
}
cur_output = g_malloc (cur_len * sizeof (gint));
for (j = 0; j < cur_len; j++) {
lua_rawgeti (L, -1, j + 1);
cur_output[i] = lua_tonumber (L, -1);
lua_pop (L, 1);
}
lua_pop (L, 1); /* Outputs table */
fann_train (f, cur_input, cur_output);
g_free (cur_input);
g_free (cur_output);
ret ++;
}
}
}
lua_pushnumber (L, ret);
return 1;
#endif
}
/**
* @method rspamd_fann:test(inputs)
* Tests neural network with samples. Inputs is a single sample of input data.
* The function returns table of results, e.g.:
* {0, 1, 1} -> {0}
* @param {table} inputs input sample
* @return {table/number} outputs values
*/
static gint
lua_fann_test (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
guint ninputs, noutputs, i, tbl_idx = 2;
float *cur_input, *cur_output;
if (f != NULL) {
/* First check sanity, call for table.getn for that */
if (lua_isnumber (L, 2)) {
ninputs = lua_tonumber (L, 2);
tbl_idx = 3;
}
else {
ninputs = rspamd_lua_table_size (L, 2);
if (ninputs == 0) {
msg_err ("empty inputs number");
lua_pushnil (L);
return 1;
}
}
cur_input = g_slice_alloc (ninputs * sizeof (gint));
for (i = 0; i < ninputs; i++) {
lua_rawgeti (L, tbl_idx, i + 1);
cur_input[i] = lua_tonumber (L, -1);
lua_pop (L, 1);
}
cur_output = fann_run (f, cur_input);
noutputs = fann_get_num_output (f);
lua_createtable (L, noutputs, 0);
for (i = 0; i < noutputs; i ++) {
lua_pushnumber (L, cur_output[i]);
lua_rawseti (L, -2, i + 1);
}
g_slice_free1 (ninputs * sizeof (gint), cur_input);
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
/***
* @method rspamd_fann:get_inputs()
* Returns number of inputs for neural network
* @return {number} number of inputs
*/
static gint
lua_fann_get_inputs (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
if (f != NULL) {
lua_pushnumber (L, fann_get_num_input (f));
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
/***
* @method rspamd_fann:get_outputs()
* Returns number of outputs for neural network
* @return {number} number of outputs
*/
static gint
lua_fann_get_outputs (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
if (f != NULL) {
lua_pushnumber (L, fann_get_num_output (f));
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
/***
* @method rspamd_fann:save(fname)
* Save fann to file named 'fname'
* @param {string} fname filename to save fann into
* @return {boolean} true if ann has been saved
*/
static gint
lua_fann_save (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
const gchar *fname = luaL_checkstring (L, 2);
if (f != NULL && fname != NULL) {
if (fann_save (f, fname) == 0) {
lua_pushboolean (L, true);
}
else {
msg_err ("cannot save ANN to %s: %s", fname, strerror (errno));
lua_pushboolean (L, false);
}
}
else {
lua_pushnil (L);
}
return 1;
#endif
}
static gint
lua_fann_dtor (lua_State *L)
{
#ifndef WITH_FANN
return 0;
#else
struct fann *f = rspamd_lua_check_fann (L, 1);
if (f) {
fann_destroy (f);
}
return 0;
#endif
}
static gint
lua_load_fann (lua_State * L)
{
lua_newtable (L);
luaL_register (L, NULL, fannlib_f);
return 1;
}
void
luaopen_fann (lua_State * L)
{
rspamd_lua_new_class (L, "rspamd{fann}", fannlib_m);
lua_pop (L, 1);
rspamd_lua_add_preload (L, "rspamd_fann", lua_load_fann);
}
|