summaryrefslogtreecommitdiffstats
path: root/src/plugins/lua/fann_scores.lua
blob: c1c3d80c02dd64cf15090b173c14a42f13fecb00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
--[[
Copyright (c) 2015, Vsevolod Stakhov <vsevolod@highsecure.ru>

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]]--

-- This plugin is a concept of FANN scores adjustment
-- NOT FOR PRODUCTION USE so far

local rspamd_logger = require "rspamd_logger"
local rspamd_fann = require "rspamd_fann"
local rspamd_util = require "rspamd_util"
local fann_symbol_spam = 'FANN_SPAM'
local fann_symbol_ham = 'FANN_HAM'
require "fun" ()
local ucl = require "ucl"

local module_log_id = 0x100
-- Module vars
-- ANNs indexed by settings id
local data = {
  ['0'] = {
    fann_mtime = 0,
    ntrains = 0,
    epoch = 0,
  }
}

local fann_file
local max_trains = 1000
local max_epoch = 100
local use_settings = false


-- Metafunctions
local function fann_size_function(task)
  local sizes = {
    100,
    200,
    500,
    1000,
    2000,
    4000,
    10000,
    20000,
    30000,
    100000,
    200000,
    400000,
    800000,
    1000000,
    2000000,
    8000000,
  }

  local size = task:get_size()
  for i = 1,#sizes do
    if sizes[i] >= size then
      return {i / #sizes}
    end
  end

  return {0}
end

local function fann_images_function(task)
  local images = task:get_images()
  local ntotal = 0
  local njpg = 0
  local npng = 0
  local nlarge = 0
  local nsmall = 0

  if images then
    for _,img in ipairs(images) do
      if img:get_type() == 'png' then
        npng = npng + 1
      elseif img:get_type() == 'jpeg' then
        njpg = njpg + 1
      end

      local w = img:get_width()
      local h = img:get_height()

      if w > 0 and h > 0 then
        if w + h > 256 then
          nlarge = nlarge + 1
        else
          nsmall = nsmall + 1
        end
      end

      ntotal = ntotal + 1
    end
  end
  if ntotal > 0 then
    njpg = njpg / ntotal
    npng = npng / ntotal
    nlarge = nlarge / ntotal
    nsmall = nsmall / ntotal
  end
  return {ntotal,njpg,npng,nlarge,nsmall}
end

local function fann_nparts_function(task)
  local nattachments = 0
  local ntextparts = 0
  local totalparts = 1

  local tp = task:get_text_parts()
  if tp then
    ntextparts = #tp
  end

  local parts = task:get_parts()

  if parts then
    for _,p in ipairs(parts) do
      if p:get_filename() then
        nattachments = nattachments + 1
      end
      totalparts = totalparts + 1
    end
  end

  return {ntextparts/totalparts, nattachments/totalparts}
end

local function fann_encoding_function(task)
  local nutf = 0
  local nother = 0

  local tp = task:get_text_parts()
  if tp then
    for _,p in ipairs(tp) do
      if p:is_utf() then
        nutf = nutf + 1
      else
        nother = nother + 1
      end
    end
  end

  return {nutf, nother}
end

local function fann_recipients_function(task)
  local nmime = 0
  local nsmtp = 0

  if task:has_recipients('mime') then
    nmime = #(task:get_recipients('mime'))
  end
  if task:has_recipients('smtp') then
    nsmtp = #(task:get_recipients('smtp'))
  end

  if nmime > 0 then nmime = 1.0 / nmime end
  if nsmtp > 0 then nsmtp = 1.0 / nsmtp end

  return {nmime,nsmtp}
end

local function fann_received_function(task)
  local ret = 0
  local rh = task:get_received_headers()

  if rh and #rh > 0 then
    ret = 1 / #rh
  end

  return {ret}
end

local function fann_urls_function(task)
  if task:has_urls() then
    return {1.0 / #(task:get_urls())}
  end

  return {0}
end

local function fann_attachments_function(task)
end

local metafunctions = {
  {
    cb = fann_size_function,
    ninputs = 1,
  },
  {
    cb = fann_images_function,
    ninputs = 5,
    -- 1 - number of images,
    -- 2 - number of png images,
    -- 3 - number of jpeg images
    -- 4 - number of large images (> 128 x 128)
    -- 5 - number of small images (< 128 x 128)
  },
  {
    cb = fann_nparts_function,
    ninputs = 2,
    -- 1 - number of text parts
    -- 2 - number of attachments
  },
  {
    cb = fann_encoding_function,
    ninputs = 2,
    -- 1 - number of utf parts
    -- 2 - number of non-utf parts
  },
  {
    cb = fann_recipients_function,
    ninputs = 2,
    -- 1 - number of mime rcpt
    -- 2 - number of smtp rcpt
  },
  {
    cb = fann_received_function,
    ninputs = 1,
  },
  {
    cb = fann_urls_function,
    ninputs = 1,
  },
}

local function gen_metatokens(task)
  local metatokens = {}
  for _,mt in ipairs(metafunctions) do
    local ct = mt.cb(task)

    for _,tok in ipairs(ct) do
      table.insert(metatokens, tok)
    end
  end

  return metatokens
end

local function count_metatokens()
  local total = 0
  for _,mt in ipairs(metafunctions) do
    total = total + mt.ninputs
  end

  return total
end

local function symbols_to_fann_vector(syms, scores)
  local learn_data = {}
  local matched_symbols = {}
  local n = rspamd_config:get_symbols_count()

  each(function(s, score)
     matched_symbols[s + 1] = rspamd_util.tanh(score)
  end, zip(syms, scores))

  for i=1,n do
    if matched_symbols[i] then
      learn_data[i] = matched_symbols[i]
    else
      learn_data[i] = 0
    end
  end

  return learn_data
end

local function gen_fann_file(id)
  if use_settings then
    return fann_file .. id
  else
    return fann_file
  end
end

local function load_fann(id)
  local fname = gen_fann_file(id)
  local err,st = rspamd_util.stat(fname)

  if err then
    return false
  end

  local fd = rspamd_util.lock_file(fname)
  data[id].fann = rspamd_fann.load(fname)
  rspamd_util.unlock_file(fd) -- closes fd

  if data[id].fann then
    local n = rspamd_config:get_symbols_count() + count_metatokens()

    if n ~= data[id].fann:get_inputs() then
      rspamd_logger.infox(rspamd_config, 'fann has incorrect number of inputs: %s, %s symbols' ..
      ' is found in the cache; removing', data[id].fann:get_inputs(), n)
      data[id].fann = nil

      local ret,err = rspamd_util.unlink(fname)
      if not ret then
        rspamd_logger.errx(rspamd_config, 'cannot remove invalid fann from %s: %s',
          fname, err)
      end
    else
      rspamd_logger.infox(rspamd_config, 'loaded fann from %s', fname)
      return true
    end
  else
    rspamd_logger.infox(rspamd_config, 'fann is invalid: "%s"; removing', fname)
    local ret,err = rspamd_util.unlink(fname)
    if not ret then
      rspamd_logger.errx(rspamd_config, 'cannot remove invalid fann from %s: %s',
        fname, err)
    end
  end

  return false
end

local function check_fann(id)
  if data[id].fann then
    local n = rspamd_config:get_symbols_count() + count_metatokens()

    if n ~= data[id].fann:get_inputs() then
      rspamd_logger.infox(rspamd_config, 'fann has incorrect number of inputs: %s, %s symbols' ..
      ' is found in the cache', data[id].fann:get_inputs(), n)
      data[id].fann = nil
    end
  end

  local fname = gen_fann_file(id)
  local err,st = rspamd_util.stat(fname)

  if not err then
    local mtime = st['mtime']

    if mtime > data[id].fann_mtime then
      rspamd_logger.infox(rspamd_config, 'have more fresh version of fann ' ..
        'file: %s -> %s, need to reload %s', data[id].fann_mtime, mtime, fname)
      data[id].fann_mtime = mtime
      data[id].fann = nil
    end
  end
end

local function fann_scores_filter(task)
  local id = '0'
  if use_settings then
   local sid = task:get_settings_id()
   if sid then
    id = tostring(sid)
   end
  end

  check_fann(id)

  if data[id].fann then
    local symbols,scores = task:get_symbols_numeric()
    local fann_data = symbols_to_fann_vector(symbols, scores)
    local mt = gen_metatokens(task)

    for _,tok in ipairs(mt) do
      table.insert(fann_data, tok)
    end

    local out = data[id].fann:test(fann_data)
    local result = rspamd_util.tanh(2 * (out[1] - 0.5))
    local symscore = string.format('%.3f', out[1])
    rspamd_logger.infox(task, 'fann score: %s', symscore)

    if result > 0 then
      task:insert_result(fann_symbol_spam, result, symscore, id)
    else
      task:insert_result(fann_symbol_ham, -(result), symscore, id)
    end
  else
    if load_fann(id) then
      fann_scores_filter(task)
    end
  end
end

local function create_train_fann(n, id)
  data[id].fann_train = rspamd_fann.create(3, n, n / 2, 1)
  data[id].ntrains = 0
  data[id].epoch = 0
end

local function fann_train_callback(score, required_score, results, cf, id, opts, extra)
  local n = cf:get_symbols_count() + count_metatokens()
  local fname = gen_fann_file(id)

  if not data[id].fann_train then
    create_train_fann(n, id)
  end

  if data[id].fann_train:get_inputs() ~= n then
    rspamd_logger.infox(cf, 'fann has incorrect number of inputs: %s, %s symbols' ..
      ' is found in the cache', data[id].fann_train:get_inputs(), n)
    create_train_fann(n, id)
  end

  if data[id].ntrains > max_trains then
    -- Store fann on disk
    local res = false

    local err,st = rspamd_util.stat(fname)
    if err then
      local fd,err = rspamd_util.create_file(fname)
      if not fd then
        rspamd_logger.errx(cf, 'cannot save fann in %s: %s', fname, err)
      else
        rspamd_util.lock_file(fname, fd)
        res = data[id].fann_train:save(fname)
        rspamd_util.unlock_file(fd) -- Closes fd as well
      end
    else
      local fd = rspamd_util.lock_file(fname)
      res = data[id].fann_train:save(fname)
      rspamd_util.unlock_file(fd) -- Closes fd as well
    end

    if not res then
      rspamd_logger.errx(cf, 'cannot save fann in %s', fname)
    else
      data[id].exist = true
      data[id].ntrains = 0
      data[id].epoch = data[id].epoch + 1
    end
  else
    if not data[id].checked then
      data[id].checked = true
      local err,st = rspamd_util.stat(fname)
      if err then
        data[id].exist = false
      end
    end
    if not data[id].exist then
      rspamd_logger.infox(cf, 'not enough trains for fann %s, %s left', fname,
        max_trains - data[id].ntrains)
    end
  end

  if data[id].epoch > max_epoch then
    -- Re-create fann
    rspamd_logger.infox(cf, 'create new fann in %s after %s epoches', fname,
      max_epoch)
    create_train_fann(n, id)
  end

  local learn_spam, learn_ham = false, false
  if opts['spam_score'] then
    learn_spam = score >= opts['spam_score']
  else
    learn_spam = score >= required_score
  end
  if opts['ham_score'] then
    learn_ham = score <= opts['ham_score']
  else
    learn_ham = score < 0
  end

  if learn_spam or learn_ham then
    local learn_data = symbols_to_fann_vector(
      map(function(r) return r[1] end, results),
      map(function(r) return r[2] end, results)
    )
    -- Add filtered meta tokens
    each(function(e) table.insert(learn_data, e) end, extra)

    if learn_spam then
      data[id].fann_train:train(learn_data, {1.0})
    else
      data[id].fann_train:train(learn_data, {0.0})
    end

    data[id].ntrains = data[id].ntrains + 1
  end
end

-- Initialization part

local opts = rspamd_config:get_all_opt("fann_scores")
if not (opts and type(opts) == 'table') then
  rspamd_logger.infox(rspamd_config, 'Module is unconfigured')
  return
end

if not rspamd_fann.is_enabled() then
  rspamd_logger.errx(rspamd_config, 'fann is not compiled in rspamd, this ' ..
    'module is eventually disabled')

  return
else
  if not opts['fann_file'] then
    rspamd_logger.warnx(rspamd_config, 'fann_scores module requires ' ..
      '`fann_file` to be specified')
  else
    fann_file = opts['fann_file']
    use_settings = opts['use_settings']
    rspamd_config:set_metric_symbol({
      name = fann_symbol_spam,
      score = 3.0,
      description = 'Neural network SPAM',
      group = 'fann'
    })
    local id = rspamd_config:register_symbol({
      name = fann_symbol_spam,
      type = 'postfilter',
      priority = 5,
      callback = fann_scores_filter
    })
    rspamd_config:set_metric_symbol({
      name = fann_symbol_ham,
      score = -2.0,
      description = 'Neural network HAM',
      group = 'fann'
    })
    rspamd_config:register_symbol({
      name = fann_symbol_ham,
      type = 'virtual',
      parent = id
    })
    if opts['train'] then
      rspamd_config:add_on_load(function(cfg)
        if opts['train']['max_train'] then
          max_trains = opts['train']['max_train']
        end
        if opts['train']['max_epoch'] then
          max_epoch = opts['train']['max_epoch']
        end
        cfg:register_worker_script("log_helper",
          function(score, req_score, results, cf, id, extra)
            -- map (snd x) (filter (fst x == module_id) extra)
            local extra_fann = map(function(e) return e[2] end,
              filter(function(e) return e[1] == module_log_id end, extra))
            if use_settings then
              fann_train_callback(score, req_score, results, cf,
                tostring(id), opts['train'], extra_fann)
            else
              fann_train_callback(score, req_score, results, cf, '0',
                opts['train'], extra_fann)
            end
        end)
      end)
      rspamd_plugins["fann_score"] = {
        log_callback = function(task)
          return totable(map(
            function(tok) return {module_log_id, tok} end,
            gen_metatokens(task)))
        end
      }
    end
  end
end

local redis_params
local classifier_config = {
  key = 'neural_net',
  neurons = 200,
  layers = 3,
}

local current_classify_ann = {
  loaded = false,
  version = 0,
  spam_learned = 0,
  ham_learned = 0
}

redis_params = rspamd_parse_redis_server('fann_scores')

local function maybe_load_fann(task, continue_cb, call_if_fail)
  local function load_fann()
    local function redis_fann_load_cb(task, err, data)
      if not err and type(data) == 'table' and type(data[2]) == 'string' then
        local version = tonumber(data[1])
        local err,ann_data = rspamd_util.zstd_decompress(data[2])
        local ann

        if err or not ann_data then
          rspamd_logger.errx(task, 'cannot decompress ann: %s', err)
        else
          ann = rspamd_fann.load_data(ann_data)
        end

        if ann then
          current_classify_ann.loaded = true
          current_classify_ann.version = version
          current_classify_ann.ann = ann
          if type(data[3]) == 'string' then
            current_classify_ann.spam_learned = tonumber(data[3])
          else
            current_classify_ann.spam_learned = 0
          end
          if type(data[4]) == 'string' then
            current_classify_ann.ham_learned = tonumber(data[4])
          else
            current_classify_ann.ham_learned = 0
          end
          rspamd_logger.infox(task, "loaded fann classifier version %s (%s spam, %s ham), %s MSE",
            version, current_classify_ann.spam_learned,
            current_classify_ann.ham_learned,
            ann:get_mse())
          continue_cb(task, true)
        elseif call_if_fail then
          continue_cb(task, false)
        end
      elseif call_if_fail then
        continue_cb(task, false)
      end
    end

    local key = classifier_config.key
    local ret,_,_ = rspamd_redis_make_request(task,
      redis_params, -- connect params
      key, -- hash key
      false, -- is write
      redis_fann_load_cb, --callback
      'HMGET', -- command
      {key, 'version', 'data', 'spam', 'ham'} -- arguments
    )
  end

  local function check_fann()
    local function redis_fann_check_cb(task, err, data)
      if not err and type(data) == 'string' then
        local version = tonumber(data)

        if version <= current_classify_ann.version then
          continue_cb(task, true)
        else
          load_fann()
        end
      end
    end

    local key = classifier_config.key
    local ret,_,_ = rspamd_redis_make_request(task,
      redis_params, -- connect params
      key, -- hash key
      false, -- is write
      redis_fann_check_cb, --callback
      'HGET', -- command
      {key, 'version'} -- arguments
    )
  end

  if not current_classify_ann.loaded then
    load_fann()
  else
    check_fann()
  end
end

local function tokens_to_vector(tokens)
  local vec = totable(map(function(tok) return tok[1] end, tokens))
  local ret = {}
  local ntok = #vec
  local neurons = classifier_config.neurons
  for i = 1,neurons do
    ret[i] = 0
  end
  each(function(e)
    local n = (e % neurons) + 1
    ret[n] = ret[n] + 1
  end, vec)
  local norm = 0
  for i = 1,neurons do
    if ret[i] > norm then
      norm = ret[i]
    end
  end
  for i = 1,neurons do
    if ret[i] ~= 0 and norm > 0 then
      ret[i] = ret[i] / norm
    end
  end

  return ret
end

local function add_metatokens(task, vec)
    local mt = gen_metatokens(task)
    for _,tok in ipairs(mt) do
      table.insert(vec, tok)
    end
end

local function create_fann()
  local layers = {}
  local mt_size = count_metatokens()
  local neurons = classifier_config.neurons + mt_size

  for i = 1,classifier_config.layers - 1 do
    layers[i] = math.floor(neurons / i)
  end

  table.insert(layers, 1)

  local ann = rspamd_fann.create(classifier_config.layers, layers)
  current_classify_ann.loaded = true
  current_classify_ann.version = 0
  current_classify_ann.ann = ann
  current_classify_ann.spam_learned = 0
  current_classify_ann.ham_learned = 0
end

local function save_fann(task, is_spam)
  local function redis_fann_save_cb(task, err, data)
    if err then
      rspamd_logger.errx(task, "cannot save neural net to redis: %s", err)
    end
  end

  local data = current_classify_ann.ann:data()
  local key = classifier_config.key
  current_classify_ann.version = current_classify_ann.version + 1

  if is_spam then
    current_classify_ann.spam_learned = current_classify_ann.spam_learned + 1
  else
    current_classify_ann.ham_learned = current_classify_ann.ham_learned + 1
  end
  local ret,conn,_ = rspamd_redis_make_request(task,
    redis_params, -- connect params
    key, -- hash key
    true, -- is write
    redis_fann_save_cb, --callback
    'HMSET', -- command
    {
      key,
      'data', rspamd_util.zstd_compress(data),
    }) -- arguments

  if conn then
    conn:add_cmd('HINCRBY', {key, 'version', 1})
    if is_spam then
      conn:add_cmd('HINCRBY', {key, 'spam', 1})
      rspamd_logger.errx(task, 'hui')
    else
      conn:add_cmd('HINCRBY', {key, 'ham', 1})
      rspamd_logger.errx(task, 'pezda')
    end
  end
end

if redis_params then
  rspamd_classifiers['neural'] = {
    classify = function(task, classifier, tokens)
      local function classify_cb(task)
        local min_learns = classifier:get_param('min_learns')

        if min_learns then
          min_learns = tonumber(min_learns)
        end

        if min_learns and min_learns > 0 then
          if current_classify_ann.ham_learned < min_learns or
            current_classify_ann.spam_learned < min_learns then

             rspamd_logger.infox(task, 'fann classifier has not enough learns: (%s spam, %s ham), %s required',
              current_classify_ann.spam_learned, current_classify_ann.ham_learned,
              min_learns)
            return
          end
        end

        -- Perform classification
        local vec = tokens_to_vector(tokens)
        add_metatokens(task, vec)
        local out = current_classify_ann.ann:test(vec)
        local result = rspamd_util.tanh(2 * (out[1]))
        local symscore = string.format('%.3f', out[1])
        rspamd_logger.infox(task, 'fann classifier score: %s', symscore)

        if result > 0 then
          each(function(st)
              task:insert_result(st:get_symbol(), result, symscore)
            end,
            filter(function(st)
              return st:is_spam()
            end, classifier:get_statfiles())
          )
        else
          each(function(st)
              task:insert_result(st:get_symbol(), -result, symscore)
            end,
            filter(function(st)
              return not st:is_spam()
            end, classifier:get_statfiles())
          )
        end
      end
      maybe_load_fann(task, classify_cb, false)
    end,

    learn = function(task, classifier, tokens, is_spam, is_unlearn)
      local function learn_cb(task, is_loaded)
        if not is_loaded then
          create_fann()
        end
        local vec = tokens_to_vector(tokens)
        add_metatokens(task, vec)

        if is_spam then
          current_classify_ann.ann:train(vec, {1.0})
          rspamd_logger.infox(task, "learned ANN spam, MSE: %s",
            current_classify_ann.ann:get_mse())
        else
          current_classify_ann.ann:train(vec, {-1.0})
          rspamd_logger.infox(task, "learned ANN ham, MSE: %s",
            current_classify_ann.ann:get_mse())
        end

        save_fann(task, is_spam)
      end
      maybe_load_fann(task, learn_cb, true)
    end,
  }
end