1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
|
--[[
Copyright (c) 2024, Vsevolod Stakhov <vsevolod@rspamd.com>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
]] --
local N = "gpt"
local E = {}
if confighelp then
rspamd_config:add_example(nil, 'gpt',
"Performs postfiltering using GPT model",
[[
gpt {
# Supported types: openai
type = "openai";
# Your key to access the API
api_key = "xxx";
# Model name
model = "gpt-3.5-turbo";
# Maximum tokens to generate
max_tokens = 1000;
# Temperature for sampling
temperature = 0.7;
# Top p for sampling
top_p = 0.9;
# Timeout for requests
timeout = 10s;
# Prompt for the model (use default if not set)
prompt = "xxx";
# Custom condition (lua function)
condition = "xxx";
# Autolearn if gpt classified
autolearn = true;
# Reply conversion (lua code)
reply_conversion = "xxx";
# URL for the API
url = "https://api.openai.com/v1/chat/completions";
}
]])
return
end
local lua_util = require "lua_util"
local rspamd_http = require "rspamd_http"
local rspamd_logger = require "rspamd_logger"
local ucl = require "ucl"
local fun = require "fun"
-- Exclude checks if one of those is found
local default_symbols_to_except = {
BAYES_SPAM = 0.9, -- We already know that it is a spam, so we can safely skip it, but no same logic for HAM!
WHITELIST_SPF = -1,
WHITELIST_DKIM = -1,
WHITELIST_DMARC = -1,
FUZZY_DENIED = -1,
REPLY = -1,
BOUNCE = -1,
}
local settings = {
type = 'openai',
api_key = nil,
model = 'gpt-3.5-turbo',
max_tokens = 1000,
temperature = 0.7,
top_p = 0.9,
timeout = 10,
prompt = nil,
condition = nil,
autolearn = false,
url = 'https://api.openai.com/v1/chat/completions',
symbols_to_except = default_symbols_to_except,
}
local function default_condition(task)
-- Check result
-- 1) Skip passthrough
-- 2) Skip already decided as spam
-- 3) Skip already decided as ham
local result = task:get_metric_result()
if result then
if result.passthrough then
return false, 'passthrough'
end
local score = result.score
local action = result.action
if action == 'reject' and result.npositive > 1 then
return true, 'already decided as spam'
end
if action == 'no action' and score < 0 then
return true, 'negative score, already decided as ham'
end
end
-- We also exclude some symbols
for s, required_weight in pairs(settings.symbols_to_except) do
if task:has_symbol(s) then
if required_weight > 0 then
-- Also check score
local sym = task:get_symbol(s)
-- Must exist as we checked it before with `has_symbol`
if math.abs(sym.weight) >= required_weight then
return false, 'skip as "' .. s .. '" is found (weight: ' .. sym.weight .. ')'
end
lua_util.debugm(N, task, 'symbol %s has weight %s, but required %s', s,
sym.weight, required_weight)
else
return false, 'skip as "' .. s .. '" is found'
end
end
end
-- Check if we have text at all
local mp = task:get_parts() or {}
local sel_part
for _, mime_part in ipairs(mp) do
if mime_part:is_text() then
local part = mime_part:get_text()
if part:is_html() then
-- We prefer html content
sel_part = part
elseif not sel_part then
sel_part = part
end
end
end
if not sel_part then
return false, 'no text part found'
end
-- Check limits and size sanity
local nwords = sel_part:get_words_count()
if nwords < 5 then
return false, 'less than 5 words'
end
if nwords > settings.max_tokens then
-- We need to truncate words (sometimes get_words_count returns a different number comparing to `get_words`)
local words = sel_part:get_words('norm')
nwords = #words
if nwords > settings.max_tokens then
return true, table.concat(words, ' ', 1, settings.max_tokens)
end
end
return true, sel_part:get_content_oneline()
end
local function default_conversion(task, input)
local parser = ucl.parser()
local res, err = parser:parse_string(input)
if not res then
rspamd_logger.errx(task, 'cannot parse reply: %s', err)
return
end
local reply = parser:get_object()
if not reply then
rspamd_logger.errx(task, 'cannot get object from reply')
return
end
if type(reply.choices) ~= 'table' or type(reply.choices[1]) ~= 'table' then
rspamd_logger.errx(task, 'no choices in reply')
return
end
local first_message = reply.choices[1].message.content
if not first_message then
rspamd_logger.errx(task, 'no content in the first message')
return
end
parser = ucl.parser()
res, err = parser:parse_string(first_message)
if not res then
rspamd_logger.errx(task, 'cannot parse JSON gpt reply: %s', err)
return
end
reply = parser:get_object()
if type(reply) == 'table' and reply.probability then
local spam_score = tonumber(reply.probability)
if type(reply.usage) == 'table' then
rspamd_logger.infox(task, 'usage: %s tokens', reply.usage.total_tokens)
end
return spam_score
end
rspamd_logger.errx(task, 'cannot convert spam score: %s', first_message)
return
end
local function openai_gpt_check(task)
local ret, content = settings.condition(task)
if not ret then
rspamd_logger.info(task, "skip checking gpt as the condition is not met: %s", content)
return
end
if not content then
lua_util.debugm(N, task, "no content to send to gpt classification")
return
end
lua_util.debugm(N, task, "sending content to gpt: %s", content)
local upstream
local function on_reply(err, code, body)
if err then
rspamd_logger.errx(task, 'request failed: %s', err)
upstream:fail()
return
end
upstream:ok()
lua_util.debugm(N, task, "got reply: %s", body)
if code ~= 200 then
rspamd_logger.errx(task, 'bad reply: %s', body)
return
end
local reply = settings.reply_conversion(task, body)
if not reply then
return
end
if reply > 0.75 then
task:insert_result('GPT_SPAM', (reply - 0.75) * 4, tostring(reply))
if settings.autolearn then
task:set_flag("learn_spam")
end
elseif reply < 0.25 then
task:insert_result('GPT_HAM', (0.25 - reply) * 4, tostring(reply))
if settings.autolearn then
task:set_flag("learn_ham")
end
else
lua_util.debugm(N, task, "uncertain result: %s", reply)
end
end
local url_content = "Url domains: no urls found"
if task:has_urls() then
local urls = lua_util.extract_specific_urls { task = task, limit = 5, esld_limit = 1 }
url_content = "Url domains: " .. table.concat(fun.totable(fun.map(function(u)
return u:get_tld() or ''
end, urls or {})), ', ')
end
local from_or_empty = ((task:get_from('mime') or E)[1] or E)
local from_content = string.format('From: %s <%s>', from_or_empty.name, from_or_empty.addr)
lua_util.debugm(N, task, "gpt urls: %s", url_content)
lua_util.debugm(N, task, "gpt from: %s", from_content)
local body = {
model = settings.model,
max_tokens = settings.max_tokens,
temperature = settings.temperature,
top_p = settings.top_p,
messages = {
{
role = 'system',
content = settings.prompt
},
{
role = 'user',
content = 'Subject: ' .. task:get_subject() or '',
},
{
role = 'user',
content = from_content,
},
{
role = 'user',
content = url_content,
},
{
role = 'user',
content = content
}
}
}
upstream = settings.upstreams:get_upstream_round_robin()
local http_params = {
url = settings.url,
mime_type = 'application/json',
timeout = settings.timeout,
log_obj = task,
callback = on_reply,
headers = {
['Authorization'] = 'Bearer ' .. settings.api_key,
},
keepalive = true,
body = ucl.to_format(body, 'json-compact', true),
task = task,
upstream = upstream,
use_gzip = true,
}
rspamd_http.request(http_params)
end
local function gpt_check(task)
return settings.specific_check(task)
end
local opts = rspamd_config:get_all_opt('gpt')
if opts then
settings = lua_util.override_defaults(settings, opts)
if not settings.api_key then
rspamd_logger.warnx(rspamd_config, 'no api_key is specified, disabling module')
lua_util.disable_module(N, "config")
return
end
if settings.condition then
settings.condition = load(settings.condition)()
else
settings.condition = default_condition
end
if settings.reply_conversion then
settings.reply_conversion = load(settings.reply_conversion)()
else
settings.reply_conversion = default_conversion
end
if not settings.prompt then
settings.prompt = "You will be provided with the email message, " ..
"and your task is to classify its probability to be spam, " ..
"output result as JSON with 'probability' field."
end
if settings.type == 'openai' then
settings.specific_check = openai_gpt_check
else
rspamd_logger.warnx(rspamd_config, 'unsupported gpt type: %s', settings.type)
lua_util.disable_module(N, "config")
return
end
settings.upstreams = lua_util.http_upstreams_by_url(rspamd_config:get_mempool(), settings.url)
local id = rspamd_config:register_symbol({
name = 'GPT_CHECK',
type = 'postfilter',
callback = gpt_check,
priority = lua_util.symbols_priorities.medium,
augmentations = { string.format("timeout=%f", settings.timeout or 0.0) },
})
rspamd_config:register_symbol({
name = 'GPT_SPAM',
type = 'virtual',
parent = id,
score = 5.0,
})
rspamd_config:register_symbol({
name = 'GPT_HAM',
type = 'virtual',
parent = id,
score = -2.0,
})
end
|