aboutsummaryrefslogtreecommitdiffstats
path: root/sonar-server
diff options
context:
space:
mode:
authorStas Vilchik <vilchiks@gmail.com>2013-10-30 18:46:16 +0100
committerStas Vilchik <vilchiks@gmail.com>2013-10-30 18:46:16 +0100
commitaec4473391fd603b4e3c5d3cae9977a71e6dc7b5 (patch)
treeacb36bef58a23b26867ffeddee6145b74fdf403f /sonar-server
parent5ba9acd470ed4334220af011f8fec33b01d61dc2 (diff)
downloadsonarqube-aec4473391fd603b4e3c5d3cae9977a71e6dc7b5.tar.gz
sonarqube-aec4473391fd603b4e3c5d3cae9977a71e6dc7b5.zip
SONAR-4821 Migrate stack area widget from provis.js to d3.js
SONAR-4822 Drop protovis.js
Diffstat (limited to 'sonar-server')
-rw-r--r--sonar-server/src/main/webapp/WEB-INF/app/views/layouts/_head.html.erb3
-rw-r--r--sonar-server/src/main/webapp/javascripts/protovis-msie.js9
-rw-r--r--sonar-server/src/main/webapp/javascripts/protovis-sonar.js246
-rw-r--r--sonar-server/src/main/webapp/javascripts/third-party/protovis.js15328
-rw-r--r--sonar-server/src/main/webapp/javascripts/widgets/stack-area.js363
-rw-r--r--sonar-server/wro.xml4
6 files changed, 365 insertions, 15588 deletions
diff --git a/sonar-server/src/main/webapp/WEB-INF/app/views/layouts/_head.html.erb b/sonar-server/src/main/webapp/WEB-INF/app/views/layouts/_head.html.erb
index 70625e1b77d..a02adcab8fd 100644
--- a/sonar-server/src/main/webapp/WEB-INF/app/views/layouts/_head.html.erb
+++ b/sonar-server/src/main/webapp/WEB-INF/app/views/layouts/_head.html.erb
@@ -42,10 +42,9 @@
<%= javascript_include_tag 'third-party/backbone-min' %>
<%= javascript_include_tag 'third-party/jquery.ba-throttle-debounce.min.js' %>
<%= javascript_include_tag 'third-party/select2.min' %>
- <%= javascript_include_tag 'third-party/protovis' %>
- <%= javascript_include_tag 'protovis-sonar' %>
<%= javascript_include_tag 'widgets/bubble-chart' %>
<%= javascript_include_tag 'widgets/timeline' %>
+ <%= javascript_include_tag 'widgets/stack-area' %>
<%= javascript_include_tag 'select-list' %>
<%= javascript_include_tag 'application' %>
<%= javascript_include_tag 'dashboard' %>
diff --git a/sonar-server/src/main/webapp/javascripts/protovis-msie.js b/sonar-server/src/main/webapp/javascripts/protovis-msie.js
deleted file mode 100644
index 1965ae18a9f..00000000000
--- a/sonar-server/src/main/webapp/javascripts/protovis-msie.js
+++ /dev/null
@@ -1,9 +0,0 @@
-/*
- * Protovis MSIE VML shim
- * (c) 2011 DataMarket (datamarket@datamarket.com)
- *
- * Note that this library is now hosted at https://github.com/DataMarket/protovis-msie
- * but we can't upgrade due to a limitation in the timeline widget. Mouse moving is not
- * correctly detected.
- */
-pv.have_SVG=!!document.createElementNS&&!!document.createElementNS("http://www.w3.org/2000/svg","svg").createSVGRect,pv.have_VML=function(a,b,c){b=a.createElement("div"),b.innerHTML='<v:shape adj="1" />',c=b.firstChild,c.style.behavior="url(#default#VML)";return c?typeof c.adj==="object":!0}(document),!pv.have_SVG&&pv.have_VML&&function(){function B(a){var b=a;a=new A(b);for(var c=0,d=z.length;c<d;c++){var e=z[c];a[e]=b[e]}a.target||(a.target=a.srcElement||document),a.target.nodeType===3&&(a.target=a.target.parentNode),!a.relatedTarget&&a.fromElement&&(a.relatedTarget=a.fromElement===a.target?a.toElement:a.fromElement);if(a.pageX==null&&a.clientX!=null){var f=document.documentElement,g=document.body;a.pageX=a.clientX+(f&&f.scrollLeft||g&&g.scrollLeft||0)-(f&&f.clientLeft||g&&g.clientLeft||0),a.pageY=a.clientY+(f&&f.scrollTop||g&&g.scrollTop||0)-(f&&f.clientTop||g&&g.clientTop||0)}a.which==null&&(a.charCode!=null||a.keyCode!=null)&&(a.which=a.charCode!=null?a.charCode:a.keyCode),!a.metaKey&&a.ctrlKey&&(a.metaKey=a.ctrlKey),!a.which&&a.button!==undefined&&(a.which=a.button&1?1:a.button&2?3:a.button&4?2:0);return a}function A(a){if(a&&a.type){this.originalEvent=a,this.type=a.type,this.isDefaultPrevented=y;if(a.defaultPrevented||a.returnValue===!1||a.getPreventDefault&&a.getPreventDefault())this.isDefaultPrevented=x}else this.type=a;this.timeStamp=new Date*1}function m(a,b){var c=a.getElementsByTagName("stroke")[0];c||(c=j("stroke"),a.appendChild(c)),!b.stroke||b.stroke==="none"?(c.on="false",c.weight="0"):(c.on="true",c.weight=parseFloat(b["stroke-width"]||"1")/1.25,c.color=f(b.stroke)||"black",c.opacity=parseFloat(b["stroke-opacity"]||"1")||"1",c.joinstyle=v[b["stroke-linejoin"]]||"miter")}function l(a,b){var c=a.getElementsByTagName("fill")[0];c||(c=j("fill"),a.appendChild(c)),!b.fill||b.fill==="none"?c.on=!1:(c.on="true",c.color=f(b.fill),c.opacity=parseFloat(b["fill-opacity"]||"1")||"1")}function k(a,b){var c=b||{};c.translate_x=0,c.translate_y=0;if(a.transform){var d=/translate\((\d+(?:\.\d+)?)(?:,(\d+(?:\.\d+)?))?\)/.exec(a.transform);d&&d[1]&&(c.translate_x=parseFloat(d[1])),d&&d[2]&&(c.translate_y=parseFloat(d[2]));var e=/rotate\((\d+\.\d+|\d+)\)/.exec(a.transform);e&&(c.rotation=parseFloat(e[1])%360)}c.x=parseFloat(a.x||0),c.y=parseFloat(a.y||0),"width"in a&&(c.width=parseInt(a.width,10)),"height"in a&&(c.height=parseInt(a.height,10));return c}function j(a){a in i||(i[a]=document.createElement(q+a+r));return i[a].cloneNode(!1)}function h(a,b){var c=0,d=0,e=Math.round;a=a.replace(/(\d*)((\.*\d*)(e ?-?\d*))/g,"$1");if(a in g)return g[a];var f=a.match(/([MLHVCSQTAZ].*?)(?=[MLHVCSQTAZ]|$)/gi),h=[];for(var i=0,j=f.length;i<j;i++){var k=f[i],l=k.charAt(0),m=k.substring(1).split(/[, ]/);switch(l){case"M":l="m",c=e(m[0]),d=e(m[1]),m=[c,d];break;case"m":l="m",c+=e(m[0]),d+=e(m[1]),m=[c,d];break;case"A":c=e(m[5]),d=e(m[6]),l="l",m=[c,d];break;case"L":l="l",c=e(m[0]),d=e(m[1]),m=[c,d];break;case"l":l="l",c+=e(m[0]),d+=e(m[1]),m=[c,d];break;case"H":l="l",c=e(m[0]),m=[c,d];break;case"h":l="l",c+=e(m[0]),m=[c,d];break;case"V":l="l",d=e(m[0]),m=[c,d];break;case"v":l="l",d+=e(m[0]),m=[c,d];break;case"C":l="l",c=e(m[4]),d=e(m[5]),m=[c,d];break;case"c":l="l",c+=e(m[4]),d+=e(m[5]),m=[c,d];break;case"Z":case"z":l="xe",m=[];default:}h.push(l+m.join(","))}return g[a]=h.join("")+"e"}function f(a,b){!(a in c)&&(b=/^rgb\((\d+),(\d+),(\d+)\)$/i.exec(a))&&(c[a]="#"+d[b[1]]+d[b[2]]+d[b[3]]);return c[a]||a}pv.VmlScene={scale:1,events:["DOMMouseScroll","mousewheel","mousedown","mouseup","mouseover","mouseout","mousemove","click","dblclick"],implicit:{css:{font:"10px sans-serif"}}};for(var a in pv.SvgScene)a in pv.SvgScene&&typeof pv.SvgScene[a]==="function"&&!(a in pv.VmlScene)&&(pv.VmlScene[a]=pv.SvgScene[a]);pv.Scene=pv.VmlScene;var b={crosshair:1,pointer:1,move:1,hand:"pointer",text:1,wait:1,help:1,progress:1,"n-resize":1,"ne-resize":1,"nw-resize":1,"s-resize":1,"se-resize":1,"sw-resize":1,"e-resize":1,"w-resize":1},c={},d=[];for(var e=0;e<256;e++)d[e]=e===0?"00":e<16?"0"+e.toString(16):e.toString(16);var g={},i={span:document.createElement("span"),div:document.createElement("div")},n=Math.PI*2/360,o=null,p=null,q="<v:",r=' class="msvml">',s="px",t={group:1,shape:1,shapetype:1,line:1,polyline:1,curve:1,rect:1,roundrect:1,oval:1,arc:1,image:1},u={butt:"flat",round:"round",square:"square",flat:"flat"},v={bevel:"bevel",round:"round",miter:"miter"},w={g:{rewrite:"div",attr:function(a,b,c){var d=k(a);c.style.position="absolute",c.style.zoom=1,c.style.left=d.translate_x+d.x+s,c.style.top=d.translate_y+d.y+s}},line:{rewrite:"shape",attr:function(a,b,c){var d=parseFloat(a.x1||0),e=parseFloat(a.y1||0),f=parseFloat(a.x2||0),g=parseFloat(a.y2||0);c.style.top=0+s,c.style.left=0+s,c.style.width=1e3+s,c.style.height=1e3+s;var h=c.getElementsByTagName("path")[0];h||(h=j("path"),c.appendChild(h));var i=Math.round;h.v="M "+i(d)+" "+i(e)+" L "+i(f)+" "+i(g)+" E",m(c,a)}},rect:{rewrite:"rect",attr:function(a,b,c){var d=k(a),e=c.style;e.position="absolute",e.left=d.translate_x+d.x+s,e.top=d.translate_y+d.y+s,d.width&&(e.width=d.width+s),d.height&&(e.height=d.height+s),l(c,a),m(c,a)}},path:{rewrite:"shape",attr:function(a,b,c){var d=k(a);c.style.left=d.translate_x+d.x+s,c.style.top=d.translate_y+d.y+s,c.style.width=1e3+s,c.style.height=1e3+s;var e=c.getElementsByTagName("path")[0];e||(e=j("path"),c.appendChild(e)),e.v=h(a.d),l(c,a),m(c,a)}},circle:{rewrite:"oval",attr:function(a,b,c){var d=k(a),e=parseFloat(a.cx||0),f=parseFloat(a.cy||0),g=parseFloat(a.r||0);c.style.top=d.translate_y+f-g+s,c.style.left=d.translate_x+e-g+s,c.style.width=g*2+s,c.style.height=g*2+s,l(c,a),m(c,a)}},text:{rewrite:"span"},svg:{rewrite:"span",oncreate:function(a){p||(p=document.createElement("span"),p.style.cssText="position:absolute;left:-9999em;top:-9999em;padding:0;margin:0;line-height:1;display:inline-block;white-space:nowrap;",document.body.appendChild(p));if(!b){var b=document.createElement("style");b.id="protovis_vml_styles",document.documentElement.firstChild.appendChild(b),b.styleSheet.addRule(".msvml","behavior:url(#default#VML);"),b.styleSheet.addRule(".msvml_block","position:absolute;top:0;left:0;");try{document.namespaces.v||document.namespaces.add("v","urn:schemas-microsoft-com:vml")}catch(c){q="<",r=' class="msvml" xmlns="urn:schemas-microsoft.com:vml">'}}},css:"position:relative;overflow:hidden;display:inline-block;~display:block;"}},x=function(){return!0},y=function(){return!1},z=["altKey","attrChange","attrName","bubbles","button","cancelable","charCode","clientX","clientY","ctrlKey","currentTarget","data","detail","eventPhase","fromElement","handler","keyCode","layerX","layerY","metaKey","newValue","offsetX","offsetY","pageX","pageY","prevValue","relatedNode","relatedTarget","screenX","screenY","shiftKey","srcElement","target","toElement","view","wheelDelta","which"];A.prototype={preventDefault:function(){this.isDefaultPrevented=x;var a=this.originalEvent;!a||(a.preventDefault?a.preventDefault():a.returnValue=!1)},stopPropagation:function(){this.isPropagationStopped=x;var a=this.originalEvent;!a||(a.stopPropagation&&a.stopPropagation(),a.cancelBubble=!0)},stopImmediatePropagation:function(){this.isImmediatePropagationStopped=x,this.stopPropagation()},isDefaultPrevented:y,isPropagationStopped:y,isImmediatePropagationStopped:y},pv.listener=function(a,b){return a.$listener||(a.$listener=function(b){try{pv.event=B(b||window.event);if(1)return a.call(this,pv.event)}finally{delete pv.event}})},pv.listen=function(a,b,c){c=pv.listener(c,a);return a.addEventListener?a.addEventListener(b,c,!1):a.attachEvent("on"+b,c)},pv.VmlScene.updateAll=function(a){if(a.length&&a[0].reverse&&a.type!="line"&&a.type!="area"){var b=pv.extend(a);for(var c=0,d=a.length-1;d>=0;c++,d--)b[c]=a[d];a=b}this.removeSiblings(this[a.type](a))},pv.VmlScene.create=function(a){var b;if(a in w){var c=w[a]||{},d=c.rewrite||a;b=j(d),b.style.cssText=c.css||"";if(d in t||a==="span"||a==="div")b.className+=" msvml_block";"oncreate"in c&&c.oncreate(b)}else b=j(d),a in t&&(b.className+=" msvml_block");a!==d&&(b.svgtype=a);return b},pv.VmlScene.expect=function(a,c,d,e){e=e||{};var f=w[c]||{},g=f.rewrite||c;if(a){if(a.tagName.toUpperCase()!==g.toUpperCase()){var h=this.create(c);a.parentNode.replaceChild(h,a),a=h}}else a=this.create(c);f.attr&&f.attr(d,e,a),d.cursor in b&&(e.cursor=b[d.cursor]===1?d.cursor:b[d.cursor]);for(var i in e){var j=e[i];j==null?a.style.removeAttribute(i):a.style[i]=j}return a},pv.VmlScene.append=function(a,b,c){a.$scene={scenes:b,index:c},a=this.title(a,b[c]);if(!a.parentNode||a.parentNode.nodeType===11){b.$g.appendChild(a);var d=w[a.svgtype];d&&typeof d.onappend==="function"&&d.onappend(a,b[c])}return a.nextSibling},pv.VmlScene.title=function(a,b){b.title&&(a.title=b.title);return a},pv.VmlScene.dispatch=pv.listener(function(a){var b=a.target.$scene;if(b){var c=a.type;switch(c){case"DOMMouseScroll":c="mousewheel",a.wheel=-480*a.detail;break;case"mousewheel":a.wheel=(window.opera?12:1)*a.wheelDelta}pv.Mark.dispatch(c,b.scenes,b.index)&&a.preventDefault()}}),pv.VmlScene.panel=function(a){var b=a.$g,c=b&&b.firstChild;for(var d=0;d<a.length;d++){var e=a[d];if(!e.visible)continue;if(!a.parent){e.canvas.style.display="inline-block",e.canvas.style.zoom=1,b&&b.parentNode!=e.canvas&&(b=e.canvas.firstChild,c=b&&b.firstChild);if(!b){b=e.canvas.appendChild(this.create("svg"));for(var f=0;f<this.events.length;f++)b.addEventListener?b.addEventListener(this.events[f],this.dispatch,!1):b.attachEvent("on"+this.events[f],this.dispatch);c=b.firstChild}a.$g=b;var g=e.width+e.left+e.right,h=e.height+e.top+e.bottom;b.style.width=g+s,b.style.height=h+s,b.style.clip="rect(0 "+g+s+" "+h+s+" 0)"}c=this.fill(c,a,d);var i=this.scale,j=e.transform,k=e.left+j.x,l=e.top+j.y;this.scale*=j.k;for(var f=0;f<e.children.length;f++){e.children[f].$g=c=this.expect(c,"g",{transform:"translate("+k+","+l+")"+(j.k!=1?" scale("+j.k+")":"")}),this.updateAll(e.children[f]);if(!c.parentNode||c.parentNode.nodeType===11){b.appendChild(c);var m=w[c.svgtype];m&&typeof m.onappend==="function"&&m.onappend(c,a[d])}c=c.nextSibling}this.scale=i,c=this.stroke(c,a,d)}return c},pv.VmlScene.image=function(a){var b=a.$g.firstChild;for(var c=0;c<a.length;c++){var d=a[c];if(!d.visible)continue;b=this.fill(b,a,c);if(!d.image){b=new Image,b.src=d.url;var e=b.style;e.position="absolute",e.top=d.top,e.left=d.left,e.width=d.width,e.height=d.height,e.cursor=d.cursor,e.msInterpolationMode="bicubic"}b=this.append(b,a,c),b=this.stroke(b,a,c)}return b},pv.VmlScene.label=function(a){var b=a.$g.firstChild;for(var c=0;c<a.length;c++){var d=a[c];if(!d.visible)continue;var e=d.textStyle;if(!e.opacity||!d.text)continue;var g={};d.cursor&&(g.cursor=d.cursor),b=this.expect(b,"text",g,{font:d.font,textDecoration:d.textDecoration,top:d.top+s,left:d.left+s,position:"absolute",display:"block",lineHeight:1,whiteSpace:"nowrap",zoom:1,cursor:"default",color:f(e.color)||"black"});var h=180*d.textAngle/Math.PI;if(h){var i=~~h%360*n,j=Math.cos(i),k=Math.sin(i);b.style.filter="progid:DXImageTransform.Microsoft.Matrix(M11="+j.toFixed(8)+","+"M12="+ -k.toFixed(8)+","+"M21="+k.toFixed(8)+","+"M22="+j.toFixed(8)+",sizingMethod='auto expand')\";"}var l=d.text.replace(/\s+/g," ");p.style.font=d.font,p.innerText=l;var m=b.style;d.textAlign==="center"?m.marginLeft=-Math.ceil(p.offsetWidth/2)+s:d.textAlign==="right"?m.marginLeft=-(p.offsetWidth+d.textMargin)+s:d.textAlign==="left"&&(m.marginLeft=d.textMargin+s),d.textBaseline==="middle"?m.marginTop=-Math.floor(p.offsetHeight*.45)+s:d.textBaseline==="top"?m.marginTop=1+s:d.textBaseline==="bottom"&&(m.marginTop=-p.offsetHeight+s),b.innerText=l,b=this.append(b,a,c)}return b},"now"in Date||(Date.now=function(){return(new Date).valueOf()})}() \ No newline at end of file
diff --git a/sonar-server/src/main/webapp/javascripts/protovis-sonar.js b/sonar-server/src/main/webapp/javascripts/protovis-sonar.js
deleted file mode 100644
index a90a2e60528..00000000000
--- a/sonar-server/src/main/webapp/javascripts/protovis-sonar.js
+++ /dev/null
@@ -1,246 +0,0 @@
-window.SonarWidgets = {};
-
-
-//******************* STACK AREA CHART ******************* //
-
-SonarWidgets.StackArea = function (divId) {
- this.wDivId = divId;
- this.wHeight;
- this.wData;
- this.wSnapshots;
- this.wMetrics;
- this.wColors;
- this.height = function (height) {
- this.wHeight = height;
- return this;
- };
- this.data = function (data) {
- this.wData = data;
- return this;
- };
- this.snapshots = function (snapshots) {
- this.wSnapshots = snapshots;
- return this;
- };
- this.metrics = function (metrics) {
- this.wMetrics = metrics;
- return this;
- };
- this.colors = function (colors) {
- this.wColors = colors;
- return this;
- };
-};
-
-SonarWidgets.StackArea.prototype.render = function () {
-
- var trendData = this.wData;
- var metrics = this.wMetrics;
- var snapshots = this.wSnapshots;
- var colors = this.wColors;
-
- var widgetDiv = $(this.wDivId);
- var headerFont = "10.5px Arial,Helvetica,sans-serif";
-
- /* Computes the total of the trendData of each date */
- var total = [];
- for (i = 0; i < trendData[0].size(); i++) {
- total[i] = 0;
- for (j = 0; j < metrics.size(); j++) {
- total[i] += trendData[j][i].y;
- }
- total[i] = "" + Math.round(total[i] * 10) / 10;
- }
-
- /* Computes the highest Y value */
- var maxY = 0;
- for (i = 0; i < trendData[0].size(); i++) {
- var currentYSum = 0;
- for (j = 0; j < trendData.size(); j++) {
- currentYSum += trendData[j][i].y;
- }
- if (currentYSum > maxY) {
- maxY = currentYSum;
- }
- }
-
- /* Computes minimum width of left margin according to the max Y value so that the Y-axis is correctly displayed */
- var leftMargin = 25;
- var maxYLength = (Math.round(maxY) + "").length;
- // first part is for numbers and second for commas (1000-separator)
- minMargin = maxYLength * 7 + Math.floor(maxYLength / 3) * 2;
- if (minMargin > leftMargin) {
- leftMargin = minMargin;
- }
-
- /* Sizing and scales. */
- var headerHeight = 40;
- var w = widgetDiv.getOffsetParent().getWidth() - leftMargin - 40;
- var h = (this.wHeight == null ? 200 : this.wHeight) + headerHeight;
-
- var x = pv.Scale.linear(pv.blend(pv.map(trendData, function (d) {
- return d;
- })),
- function (d) {
- return d.x;
- }).range(0, w);
- var y = pv.Scale.linear(0, maxY).range(0, h - headerHeight);
- var idx_numbers = trendData[0].size();
- var idx = idx_numbers - 1;
-
- function computeIdx(xPixels) {
- var mx = x.invert(xPixels);
- var i = pv.search(trendData[0].map(function (d) {
- return d.x;
- }), mx);
- i = i < 0 ? (-i - 2) : i;
- i = i < 0 ? 0 : i;
- return i;
- }
-
- /* The root panel. */
- var vis = new pv.Panel()
- .canvas(widgetDiv)
- .width(w)
- .height(h)
- .left(leftMargin)
- .right(20)
- .bottom(30)
- .top(20)
- .strokeStyle("#CCC");
-
- /* X-axis */
- vis.add(pv.Rule)
- .data(x.ticks())
- .left(x)
- .bottom(-10)
- .height(10)
- .anchor("bottom")
- .add(pv.Label)
- .text(x.tickFormat);
-
- /* Y-axis and ticks. */
- vis.add(pv.Rule)
- .data(y.ticks(6))
- .bottom(y)
- .strokeStyle("rgba(128,128,128,.2)")
- .anchor("left")
- .add(pv.Label)
- .text(y.tickFormat);
-
- /* The stack layout */
- var area = vis.add(pv.Layout.Stack)
- .layers(trendData)
- .x(function (d) {
- return x(d.x);
- })
- .y(function (d) {
- return y(d.y);
- })
- .layer
- .add(pv.Area)
- .fillStyle(function () {
- return colors[this.parent.index % colors.size()][0];
- })
- .strokeStyle("rgba(128,128,128,.8)");
-
- /* Stack labels. */
- var firstIdx = computeIdx(w / 5);
- var lastIdx = computeIdx(w * 4 / 5);
- vis.add(pv.Panel)
- .extend(area.parent)
- .add(pv.Area)
- .extend(area)
- .fillStyle(null)
- .strokeStyle(null)
- .anchor(function () {
- return (idx == idx_numbers - 1 || idx > lastIdx) ? "right" : ((idx == 0 || idx < firstIdx) ? "left" : "center");
- })
- .add(pv.Label)
- .visible(function (d) {
- return this.index == idx && d.y != 0;
- })
- .font(function (d) {
- return Math.round(5 + Math.sqrt(y(d.y))) + "px sans-serif";
- })
- .textStyle("#DDD")
- .text(function (d) {
- return metrics[this.parent.index] + ": " + d.y;
- });
-
- /* The total cost of the selected dot in the header. */
- vis.add(pv.Label)
- .left(8)
- .top(16)
- .font(headerFont)
- .text(function () {
- return "Total: " + total[idx];
- });
-
- /* The date of the selected dot in the header. */
- vis.add(pv.Label)
- .left(w / 2)
- .top(16)
- .font(headerFont)
- .text(function () {
- return snapshots[idx].ld;
- });
-
-
- /* The event labels */
- eventColor = "rgba(75,159,213,1)";
- eventHoverColor = "rgba(202,227,242,1)";
- vis.add(pv.Line)
- .strokeStyle("rgba(0,0,0,.001)")
- .data(snapshots)
- .left(function (s) {
- return x(s.d);
- })
- .bottom(0)
- .anchor("top")
- .add(pv.Dot)
- .bottom(-6)
- .shape("triangle")
- .angle(pv.radians(180))
- .strokeStyle("grey")
- .visible(function (s) {
- return s.e.size() > 0;
- })
- .fillStyle(function () {
- return this.index === idx ? eventHoverColor : eventColor;
- })
- .add(pv.Dot)
- .radius(3)
- .visible(function (s) {
- return s.e.size() > 0 && this.index === idx;
- })
- .left(w / 2 + 8)
- .top(24)
- .shape("triangle")
- .fillStyle(function () {
- return this.index === idx ? eventHoverColor : eventColor;
- })
- .strokeStyle("grey")
- .anchor("right")
- .add(pv.Label)
- .font(headerFont)
- .text(function (s) {
- return s.e.size() === 0 ? "" : s.e[0] + ( s.e[1] ? " (... +" + (s.e.size() - 1) + ")" : "");
- });
-
- /* An invisible bar to capture events (without flickering). */
- vis.add(pv.Bar)
- .fillStyle("rgba(0,0,0,.001)")
- .width(w + 30)
- .height(h + 30)
- .event("mouseout", function () {
- i = -1;
- return vis;
- })
- .event("mousemove", function () {
- idx = computeIdx(vis.mouse().x);
- return vis;
- });
-
- vis.render();
-};
diff --git a/sonar-server/src/main/webapp/javascripts/third-party/protovis.js b/sonar-server/src/main/webapp/javascripts/third-party/protovis.js
deleted file mode 100644
index d10af80e17e..00000000000
--- a/sonar-server/src/main/webapp/javascripts/third-party/protovis.js
+++ /dev/null
@@ -1,15328 +0,0 @@
-/**
- * Protovis 3.3.1, provided under the BSD License
- *
- * @class The built-in Array class.
- * @name Array
- */
-
-/**
- * Creates a new array with the results of calling a provided function on every
- * element in this array. Implemented in Javascript 1.6.
- *
- * @function
- * @name Array.prototype.map
- * @see <a
- * href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/Map">map</a>
- * documentation.
- * @param {function} f function that produces an element of the new Array from
- * an element of the current one.
- * @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
- */
-if (!Array.prototype.map) Array.prototype.map = function(f, o) {
- var n = this.length;
- var result = new Array(n);
- for (var i = 0; i < n; i++) {
- if (i in this) {
- result[i] = f.call(o, this[i], i, this);
- }
- }
- return result;
-};
-
-/**
- * Creates a new array with all elements that pass the test implemented by the
- * provided function. Implemented in Javascript 1.6.
- *
- * @function
- * @name Array.prototype.filter
- * @see <a
- * href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/filter">filter</a>
- * documentation.
- * @param {function} f function to test each element of the array.
- * @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
- */
-if (!Array.prototype.filter) Array.prototype.filter = function(f, o) {
- var n = this.length;
- var result = new Array();
- for (var i = 0; i < n; i++) {
- if (i in this) {
- var v = this[i];
- if (f.call(o, v, i, this)) result.push(v);
- }
- }
- return result;
-};
-
-/**
- * Executes a provided function once per array element. Implemented in
- * Javascript 1.6.
- *
- * @function
- * @name Array.prototype.forEach
- * @see <a
- * href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/ForEach">forEach</a>
- * documentation.
- * @param {function} f function to execute for each element.
- * @param [o] object to use as <tt>this</tt> when executing <tt>f</tt>.
- */
-if (!Array.prototype.forEach) Array.prototype.forEach = function(f, o) {
- var n = this.length >>> 0;
- for (var i = 0; i < n; i++) {
- if (i in this) f.call(o, this[i], i, this);
- }
-};
-
-/**
- * Apply a function against an accumulator and each value of the array (from
- * left-to-right) as to reduce it to a single value. Implemented in Javascript
- * 1.8.
- *
- * @function
- * @name Array.prototype.reduce
- * @see <a
- * href="https://developer.mozilla.org/En/Core_JavaScript_1.5_Reference/Objects/Array/Reduce">reduce</a>
- * documentation.
- * @param {function} f function to execute on each value in the array.
- * @param [v] object to use as the first argument to the first call of
- * <tt>t</tt>.
- */
-if (!Array.prototype.reduce) Array.prototype.reduce = function(f, v) {
- var len = this.length;
- if (!len && (arguments.length == 1)) {
- throw new Error("reduce: empty array, no initial value");
- }
-
- var i = 0;
- if (arguments.length < 2) {
- while (true) {
- if (i in this) {
- v = this[i++];
- break;
- }
- if (++i >= len) {
- throw new Error("reduce: no values, no initial value");
- }
- }
- }
-
- for (; i < len; i++) {
- if (i in this) {
- v = f(v, this[i], i, this);
- }
- }
- return v;
-};
-/**
- * The top-level Protovis namespace. All public methods and fields should be
- * registered on this object. Note that core Protovis source is surrounded by an
- * anonymous function, so any other declared globals will not be visible outside
- * of core methods. This also allows multiple versions of Protovis to coexist,
- * since each version will see their own <tt>pv</tt> namespace.
- *
- * @namespace The top-level Protovis namespace, <tt>pv</tt>.
- */
-var pv = {};
-
-/**
- * Protovis version number. See <a href="http://semver.org">semver.org</a>.
- *
- * @type string
- * @constant
- */
-pv.version = "3.3.1";
-
-/**
- * Returns the passed-in argument, <tt>x</tt>; the identity function. This method
- * is provided for convenience since it is used as the default behavior for a
- * number of property functions.
- *
- * @param x a value.
- * @returns the value <tt>x</tt>.
- */
-pv.identity = function(x) { return x; };
-
-/**
- * Returns <tt>this.index</tt>. This method is provided for convenience for use
- * with scales. For example, to color bars by their index, say:
- *
- * <pre>.fillStyle(pv.Colors.category10().by(pv.index))</pre>
- *
- * This method is equivalent to <tt>function() this.index</tt>, but more
- * succinct. Note that the <tt>index</tt> property is also supported for
- * accessor functions with {@link pv.max}, {@link pv.min} and other array
- * utility methods.
- *
- * @see pv.Scale
- * @see pv.Mark#index
- */
-pv.index = function() { return this.index; };
-
-/**
- * Returns <tt>this.childIndex</tt>. This method is provided for convenience for
- * use with scales. For example, to color bars by their child index, say:
- *
- * <pre>.fillStyle(pv.Colors.category10().by(pv.child))</pre>
- *
- * This method is equivalent to <tt>function() this.childIndex</tt>, but more
- * succinct.
- *
- * @see pv.Scale
- * @see pv.Mark#childIndex
- */
-pv.child = function() { return this.childIndex; };
-
-/**
- * Returns <tt>this.parent.index</tt>. This method is provided for convenience
- * for use with scales. This method is provided for convenience for use with
- * scales. For example, to color bars by their parent index, say:
- *
- * <pre>.fillStyle(pv.Colors.category10().by(pv.parent))</pre>
- *
- * Tthis method is equivalent to <tt>function() this.parent.index</tt>, but more
- * succinct.
- *
- * @see pv.Scale
- * @see pv.Mark#index
- */
-pv.parent = function() { return this.parent.index; };
-
-/**
- * Stores the current event. This field is only set within event handlers.
- *
- * @type Event
- * @name pv.event
- */
-/**
- * @private Returns a prototype object suitable for extending the given class
- * <tt>f</tt>. Rather than constructing a new instance of <tt>f</tt> to serve as
- * the prototype (which unnecessarily runs the constructor on the created
- * prototype object, potentially polluting it), an anonymous function is
- * generated internally that shares the same prototype:
- *
- * <pre>function g() {}
- * g.prototype = f.prototype;
- * return new g();</pre>
- *
- * For more details, see Douglas Crockford's essay on prototypal inheritance.
- *
- * @param {function} f a constructor.
- * @returns a suitable prototype object.
- * @see Douglas Crockford's essay on <a
- * href="http://javascript.crockford.com/prototypal.html">prototypal
- * inheritance</a>.
- */
-pv.extend = function(f) {
- function g() {}
- g.prototype = f.prototype || f;
- return new g();
-};
-
-try {
- eval("pv.parse = function(x) x;"); // native support
-} catch (e) {
-
-/**
- * @private Parses a Protovis specification, which may use JavaScript 1.8
- * function expresses, replacing those function expressions with proper
- * functions such that the code can be run by a JavaScript 1.6 interpreter. This
- * hack only supports function expressions (using clumsy regular expressions, no
- * less), and not other JavaScript 1.8 features such as let expressions.
- *
- * @param {string} s a Protovis specification (i.e., a string of JavaScript 1.8
- * source code).
- * @returns {string} a conformant JavaScript 1.6 source code.
- */
- pv.parse = function(js) { // hacky regex support
- var re = new RegExp("function\\s*(\\b\\w+)?\\s*\\([^)]*\\)\\s*", "mg"), m, d, i = 0, s = "";
- while (m = re.exec(js)) {
- var j = m.index + m[0].length;
- if (js.charAt(j) != '{') {
- s += js.substring(i, j) + "{return ";
- i = j;
- for (var p = 0; p >= 0 && j < js.length; j++) {
- var c = js.charAt(j);
- switch (c) {
- case '"': case '\'': {
- while (++j < js.length && (d = js.charAt(j)) != c) {
- if (d == '\\') j++;
- }
- break;
- }
- case '[': case '(': p++; break;
- case ']': case ')': p--; break;
- case ';':
- case ',': if (p == 0) p--; break;
- }
- }
- s += pv.parse(js.substring(i, --j)) + ";}";
- i = j;
- }
- re.lastIndex = j;
- }
- s += js.substring(i);
- return s;
- };
-}
-
-/**
- * @private Computes the value of the specified CSS property <tt>p</tt> on the
- * specified element <tt>e</tt>.
- *
- * @param {string} p the name of the CSS property.
- * @param e the element on which to compute the CSS property.
- */
-pv.css = function(e, p) {
- return window.getComputedStyle
- ? window.getComputedStyle(e, null).getPropertyValue(p)
- : e.currentStyle[p];
-};
-
-/**
- * @private Reports the specified error to the JavaScript console. Mozilla only
- * allows logging to the console for privileged code; if the console is
- * unavailable, the alert dialog box is used instead.
- *
- * @param e the exception that triggered the error.
- */
-pv.error = function(e) {
- (typeof console == "undefined") ? alert(e) : console.error(e);
-};
-
-/**
- * @private Registers the specified listener for events of the specified type on
- * the specified target. For standards-compliant browsers, this method uses
- * <tt>addEventListener</tt>; for Internet Explorer, <tt>attachEvent</tt>.
- *
- * @param target a DOM element.
- * @param {string} type the type of event, such as "click".
- * @param {function} the event handler callback.
- */
-pv.listen = function(target, type, listener) {
- listener = pv.listener(listener);
- return target.addEventListener
- ? target.addEventListener(type, listener, false)
- : target.attachEvent("on" + type, listener);
-};
-
-/**
- * @private Returns a wrapper for the specified listener function such that the
- * {@link pv.event} is set for the duration of the listener's invocation. The
- * wrapper is cached on the returned function, such that duplicate registrations
- * of the wrapped event handler are ignored.
- *
- * @param {function} f an event handler.
- * @returns {function} the wrapped event handler.
- */
-pv.listener = function(f) {
- return f.$listener || (f.$listener = function(e) {
- try {
- pv.event = e;
- return f.call(this, e);
- } finally {
- delete pv.event;
- }
- });
-};
-
-/**
- * @private Returns true iff <i>a</i> is an ancestor of <i>e</i>. This is useful
- * for ignoring mouseout and mouseover events that are contained within the
- * target element.
- */
-pv.ancestor = function(a, e) {
- while (e) {
- if (e == a) return true;
- e = e.parentNode;
- }
- return false;
-};
-
-/** @private Returns a locally-unique positive id. */
-pv.id = function() {
- var id = 1; return function() { return id++; };
-}();
-
-/** @private Returns a function wrapping the specified constant. */
-pv.functor = function(v) {
- return typeof v == "function" ? v : function() { return v; };
-};
-/*
- * Parses the Protovis specifications on load, allowing the use of JavaScript
- * 1.8 function expressions on browsers that only support JavaScript 1.6.
- *
- * @see pv.parse
- */
-pv.listen(window, "load", function() {
- /*
- * Note: in Firefox any variables declared here are visible to the eval'd
- * script below. Even worse, any global variables declared by the script
- * could overwrite local variables here (such as the index, `i`)! To protect
- * against this, all variables are explicitly scoped on a pv.$ object.
- */
- pv.$ = {i:0, x:document.getElementsByTagName("script")};
- for (; pv.$.i < pv.$.x.length; pv.$.i++) {
- pv.$.s = pv.$.x[pv.$.i];
- if (pv.$.s.type == "text/javascript+protovis") {
- try {
- window.eval(pv.parse(pv.$.s.text));
- } catch (e) {
- pv.error(e);
- }
- }
- }
- delete pv.$;
- });
-/**
- * Abstract; see an implementing class.
- *
- * @class Represents an abstract text formatter and parser. A <i>format</i> is a
- * function that converts an object of a given type, such as a <tt>Date</tt>, to
- * a human-readable string representation. The format may also have a
- * {@link #parse} method for converting a string representation back to the
- * given object type.
- *
- * <p>Because formats are themselves functions, they can be used directly as
- * mark properties. For example, if the data associated with a label are dates,
- * a date format can be used as label text:
- *
- * <pre> .text(pv.Format.date("%m/%d/%y"))</pre>
- *
- * And as with scales, if the format is used in multiple places, it can be
- * convenient to declare it as a global variable and then reference it from the
- * appropriate property functions. For example, if the data has a <tt>date</tt>
- * attribute, and <tt>format</tt> references a given date format:
- *
- * <pre> .text(function(d) format(d.date))</pre>
- *
- * Similarly, to parse a string into a date:
- *
- * <pre>var date = format.parse("4/30/2010");</pre>
- *
- * Not all format implementations support parsing. See the implementing class
- * for details.
- *
- * @see pv.Format.date
- * @see pv.Format.number
- * @see pv.Format.time
- */
-pv.Format = {};
-
-/**
- * Formats the specified object, returning the string representation.
- *
- * @function
- * @name pv.Format.prototype.format
- * @param {object} x the object to format.
- * @returns {string} the formatted string.
- */
-
-/**
- * Parses the specified string, returning the object representation.
- *
- * @function
- * @name pv.Format.prototype.parse
- * @param {string} x the string to parse.
- * @returns {object} the parsed object.
- */
-
-/**
- * @private Given a string that may be used as part of a regular expression,
- * this methods returns an appropriately quoted version of the specified string,
- * with any special characters escaped.
- *
- * @param {string} s a string to quote.
- * @returns {string} the quoted string.
- */
-pv.Format.re = function(s) {
- return s.replace(/[\\\^\$\*\+\?\[\]\(\)\.\{\}]/g, "\\$&");
-};
-
-/**
- * @private Optionally pads the specified string <i>s</i> so that it is at least
- * <i>n</i> characters long, using the padding character <i>c</i>.
- *
- * @param {string} c the padding character.
- * @param {number} n the minimum string length.
- * @param {string} s the string to pad.
- * @returns {string} the padded string.
- */
-pv.Format.pad = function(c, n, s) {
- var m = n - String(s).length;
- return (m < 1) ? s : new Array(m + 1).join(c) + s;
-};
-/**
- * Constructs a new date format with the specified string pattern.
- *
- * @class The format string is in the same format expected by the
- * <tt>strftime</tt> function in C. The following conversion specifications are
- * supported:<ul>
- *
- * <li>%a - abbreviated weekday name.</li>
- * <li>%A - full weekday name.</li>
- * <li>%b - abbreviated month names.</li>
- * <li>%B - full month names.</li>
- * <li>%c - locale's appropriate date and time.</li>
- * <li>%C - century number.</li>
- * <li>%d - day of month [01,31] (zero padded).</li>
- * <li>%D - same as %m/%d/%y.</li>
- * <li>%e - day of month [ 1,31] (space padded).</li>
- * <li>%h - same as %b.</li>
- * <li>%H - hour (24-hour clock) [00,23] (zero padded).</li>
- * <li>%I - hour (12-hour clock) [01,12] (zero padded).</li>
- * <li>%m - month number [01,12] (zero padded).</li>
- * <li>%M - minute [0,59] (zero padded).</li>
- * <li>%n - newline character.</li>
- * <li>%p - locale's equivalent of a.m. or p.m.</li>
- * <li>%r - same as %I:%M:%S %p.</li>
- * <li>%R - same as %H:%M.</li>
- * <li>%S - second [00,61] (zero padded).</li>
- * <li>%t - tab character.</li>
- * <li>%T - same as %H:%M:%S.</li>
- * <li>%x - same as %m/%d/%y.</li>
- * <li>%X - same as %I:%M:%S %p.</li>
- * <li>%y - year with century [00,99] (zero padded).</li>
- * <li>%Y - year including century.</li>
- * <li>%% - %.</li>
- *
- * </ul>The following conversion specifications are currently <i>unsupported</i>
- * for formatting:<ul>
- *
- * <li>%j - day number [1,366].</li>
- * <li>%u - weekday number [1,7].</li>
- * <li>%U - week number [00,53].</li>
- * <li>%V - week number [01,53].</li>
- * <li>%w - weekday number [0,6].</li>
- * <li>%W - week number [00,53].</li>
- * <li>%Z - timezone name or abbreviation.</li>
- *
- * </ul>In addition, the following conversion specifications are currently
- * <i>unsupported</i> for parsing:<ul>
- *
- * <li>%a - day of week, either abbreviated or full name.</li>
- * <li>%A - same as %a.</li>
- * <li>%c - locale's appropriate date and time.</li>
- * <li>%C - century number.</li>
- * <li>%D - same as %m/%d/%y.</li>
- * <li>%I - hour (12-hour clock) [1,12].</li>
- * <li>%n - any white space.</li>
- * <li>%p - locale's equivalent of a.m. or p.m.</li>
- * <li>%r - same as %I:%M:%S %p.</li>
- * <li>%R - same as %H:%M.</li>
- * <li>%t - same as %n.</li>
- * <li>%T - same as %H:%M:%S.</li>
- * <li>%x - locale's equivalent to %m/%d/%y.</li>
- * <li>%X - locale's equivalent to %I:%M:%S %p.</li>
- *
- * </ul>
- *
- * @see <a
- * href="http://www.opengroup.org/onlinepubs/007908799/xsh/strftime.html">strftime</a>
- * documentation.
- * @see <a
- * href="http://www.opengroup.org/onlinepubs/007908799/xsh/strptime.html">strptime</a>
- * documentation.
- * @extends pv.Format
- * @param {string} pattern the format pattern.
- */
-pv.Format.date = function(pattern) {
- var pad = pv.Format.pad;
-
- /** @private */
- function format(d) {
- return pattern.replace(/%[a-zA-Z0-9]/g, function(s) {
- switch (s) {
- case '%a': return [
- "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
- ][d.getDay()];
- case '%A': return [
- "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
- "Saturday"
- ][d.getDay()];
- case '%h':
- case '%b': return [
- "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
- "Oct", "Nov", "Dec"
- ][d.getMonth()];
- case '%B': return [
- "January", "February", "March", "April", "May", "June", "July",
- "August", "September", "October", "November", "December"
- ][d.getMonth()];
- case '%c': return d.toLocaleString();
- case '%C': return pad("0", 2, Math.floor(d.getFullYear() / 100) % 100);
- case '%d': return pad("0", 2, d.getDate());
- case '%x':
- case '%D': return pad("0", 2, d.getMonth() + 1)
- + "/" + pad("0", 2, d.getDate())
- + "/" + pad("0", 2, d.getFullYear() % 100);
- case '%e': return pad(" ", 2, d.getDate());
- case '%H': return pad("0", 2, d.getHours());
- case '%I': {
- var h = d.getHours() % 12;
- return h ? pad("0", 2, h) : 12;
- }
- // TODO %j: day of year as a decimal number [001,366]
- case '%m': return pad("0", 2, d.getMonth() + 1);
- case '%M': return pad("0", 2, d.getMinutes());
- case '%n': return "\n";
- case '%p': return d.getHours() < 12 ? "AM" : "PM";
- case '%T':
- case '%X':
- case '%r': {
- var h = d.getHours() % 12;
- return (h ? pad("0", 2, h) : 12)
- + ":" + pad("0", 2, d.getMinutes())
- + ":" + pad("0", 2, d.getSeconds())
- + " " + (d.getHours() < 12 ? "AM" : "PM");
- }
- case '%R': return pad("0", 2, d.getHours()) + ":" + pad("0", 2, d.getMinutes());
- case '%S': return pad("0", 2, d.getSeconds());
- case '%Q': return pad("0", 3, d.getMilliseconds());
- case '%t': return "\t";
- case '%u': {
- var w = d.getDay();
- return w ? w : 1;
- }
- // TODO %U: week number (sunday first day) [00,53]
- // TODO %V: week number (monday first day) [01,53] ... with weirdness
- case '%w': return d.getDay();
- // TODO %W: week number (monday first day) [00,53] ... with weirdness
- case '%y': return pad("0", 2, d.getFullYear() % 100);
- case '%Y': return d.getFullYear();
- // TODO %Z: timezone name or abbreviation
- case '%%': return "%";
- }
- return s;
- });
- }
-
- /**
- * Converts a date to a string using the associated formatting pattern.
- *
- * @function
- * @name pv.Format.date.prototype.format
- * @param {Date} date a date to format.
- * @returns {string} the formatted date as a string.
- */
- format.format = format;
-
- /**
- * Parses a date from a string using the associated formatting pattern.
- *
- * @function
- * @name pv.Format.date.prototype.parse
- * @param {string} s the string to parse as a date.
- * @returns {Date} the parsed date.
- */
- format.parse = function(s) {
- var year = 1970, month = 0, date = 1, hour = 0, minute = 0, second = 0;
- var fields = [function() {}];
-
- /* Register callbacks for each field in the format pattern. */
- var re = pv.Format.re(pattern).replace(/%[a-zA-Z0-9]/g, function(s) {
- switch (s) {
- // TODO %a: day of week, either abbreviated or full name
- // TODO %A: same as %a
- case '%b': {
- fields.push(function(x) { month = {
- Jan: 0, Feb: 1, Mar: 2, Apr: 3, May: 4, Jun: 5, Jul: 6, Aug: 7,
- Sep: 8, Oct: 9, Nov: 10, Dec: 11
- }[x]; });
- return "([A-Za-z]+)";
- }
- case '%h':
- case '%B': {
- fields.push(function(x) { month = {
- January: 0, February: 1, March: 2, April: 3, May: 4, June: 5,
- July: 6, August: 7, September: 8, October: 9, November: 10,
- December: 11
- }[x]; });
- return "([A-Za-z]+)";
- }
- // TODO %c: locale's appropriate date and time
- // TODO %C: century number[0,99]
- case '%e':
- case '%d': {
- fields.push(function(x) { date = x; });
- return "([0-9]+)";
- }
- // TODO %D: same as %m/%d/%y
- case '%I':
- case '%H': {
- fields.push(function(x) { hour = x; });
- return "([0-9]+)";
- }
- // TODO %j: day number [1,366]
- case '%m': {
- fields.push(function(x) { month = x - 1; });
- return "([0-9]+)";
- }
- case '%M': {
- fields.push(function(x) { minute = x; });
- return "([0-9]+)";
- }
- // TODO %n: any white space
- // TODO %p: locale's equivalent of a.m. or p.m.
- case '%p': { // TODO this is a hack
- fields.push(function(x) {
- if (hour == 12) {
- if (x == "am") hour = 0;
- } else if (x == "pm") {
- hour = Number(hour) + 12;
- }
- });
- return "(am|pm)";
- }
- // TODO %r: %I:%M:%S %p
- // TODO %R: %H:%M
- case '%S': {
- fields.push(function(x) { second = x; });
- return "([0-9]+)";
- }
- // TODO %t: any white space
- // TODO %T: %H:%M:%S
- // TODO %U: week number [00,53]
- // TODO %w: weekday [0,6]
- // TODO %W: week number [00, 53]
- // TODO %x: locale date (%m/%d/%y)
- // TODO %X: locale time (%I:%M:%S %p)
- case '%y': {
- fields.push(function(x) {
- x = Number(x);
- year = x + (((0 <= x) && (x < 69)) ? 2000
- : (((x >= 69) && (x < 100) ? 1900 : 0)));
- });
- return "([0-9]+)";
- }
- case '%Y': {
- fields.push(function(x) { year = x; });
- return "([0-9]+)";
- }
- case '%%': {
- fields.push(function() {});
- return "%";
- }
- }
- return s;
- });
-
- var match = s.match(re);
- if (match) match.forEach(function(m, i) { fields[i](m); });
- return new Date(year, month, date, hour, minute, second);
- };
-
- return format;
-};
-/**
- * Returns a time format of the given type, either "short" or "long".
- *
- * @class Represents a time format, converting between a <tt>number</tt>
- * representing a duration in milliseconds, and a <tt>string</tt>. Two types of
- * time formats are supported: "short" and "long". The <i>short</i> format type
- * returns a string such as "3.3 days" or "12.1 minutes", while the <i>long</i>
- * format returns "13:04:12" or similar.
- *
- * @extends pv.Format
- * @param {string} type the type; "short" or "long".
- */
-pv.Format.time = function(type) {
- var pad = pv.Format.pad;
-
- /*
- * MILLISECONDS = 1
- * SECONDS = 1e3
- * MINUTES = 6e4
- * HOURS = 36e5
- * DAYS = 864e5
- * WEEKS = 6048e5
- * MONTHS = 2592e6
- * YEARS = 31536e6
- */
-
- /** @private */
- function format(t) {
- t = Number(t); // force conversion from Date
- switch (type) {
- case "short": {
- if (t >= 31536e6) {
- return (t / 31536e6).toFixed(1) + " years";
- } else if (t >= 6048e5) {
- return (t / 6048e5).toFixed(1) + " weeks";
- } else if (t >= 864e5) {
- return (t / 864e5).toFixed(1) + " days";
- } else if (t >= 36e5) {
- return (t / 36e5).toFixed(1) + " hours";
- } else if (t >= 6e4) {
- return (t / 6e4).toFixed(1) + " minutes";
- }
- return (t / 1e3).toFixed(1) + " seconds";
- }
- case "long": {
- var a = [],
- s = ((t % 6e4) / 1e3) >> 0,
- m = ((t % 36e5) / 6e4) >> 0;
- a.push(pad("0", 2, s));
- if (t >= 36e5) {
- var h = ((t % 864e5) / 36e5) >> 0;
- a.push(pad("0", 2, m));
- if (t >= 864e5) {
- a.push(pad("0", 2, h));
- a.push(Math.floor(t / 864e5).toFixed());
- } else {
- a.push(h.toFixed());
- }
- } else {
- a.push(m.toFixed());
- }
- return a.reverse().join(":");
- }
- }
- }
-
- /**
- * Formats the specified time, returning the string representation.
- *
- * @function
- * @name pv.Format.time.prototype.format
- * @param {number} t the duration in milliseconds. May also be a <tt>Date</tt>.
- * @returns {string} the formatted string.
- */
- format.format = format;
-
- /**
- * Parses the specified string, returning the time in milliseconds.
- *
- * @function
- * @name pv.Format.time.prototype.parse
- * @param {string} s a formatted string.
- * @returns {number} the parsed duration in milliseconds.
- */
- format.parse = function(s) {
- switch (type) {
- case "short": {
- var re = /([0-9,.]+)\s*([a-z]+)/g, a, t = 0;
- while (a = re.exec(s)) {
- var f = parseFloat(a[0].replace(",", "")), u = 0;
- switch (a[2].toLowerCase()) {
- case "year": case "years": u = 31536e6; break;
- case "week": case "weeks": u = 6048e5; break;
- case "day": case "days": u = 864e5; break;
- case "hour": case "hours": u = 36e5; break;
- case "minute": case "minutes": u = 6e4; break;
- case "second": case "seconds": u = 1e3; break;
- }
- t += f * u;
- }
- return t;
- }
- case "long": {
- var a = s.replace(",", "").split(":").reverse(), t = 0;
- if (a.length) t += parseFloat(a[0]) * 1e3;
- if (a.length > 1) t += parseFloat(a[1]) * 6e4;
- if (a.length > 2) t += parseFloat(a[2]) * 36e5;
- if (a.length > 3) t += parseFloat(a[3]) * 864e5;
- return t;
- }
- }
- }
-
- return format;
-};
-/**
- * Returns a default number format.
- *
- * @class Represents a number format, converting between a <tt>number</tt> and a
- * <tt>string</tt>. This class allows numbers to be formatted with variable
- * precision (both for the integral and fractional part of the number), optional
- * thousands grouping, and optional padding. The thousands (",") and decimal
- * (".") separator can be customized.
- *
- * @returns {pv.Format.number} a number format.
- */
-pv.Format.number = function() {
- var mini = 0, // default minimum integer digits
- maxi = Infinity, // default maximum integer digits
- mins = 0, // mini, including group separators
- minf = 0, // default minimum fraction digits
- maxf = 0, // default maximum fraction digits
- maxk = 1, // 10^maxf
- padi = "0", // default integer pad
- padf = "0", // default fraction pad
- padg = true, // whether group separator affects integer padding
- decimal = ".", // default decimal separator
- group = ",", // default group separator
- np = "\u2212", // default negative prefix
- ns = ""; // default negative suffix
-
- /** @private */
- function format(x) {
- /* Round the fractional part, and split on decimal separator. */
- if (Infinity > maxf) x = Math.round(x * maxk) / maxk;
- var s = String(Math.abs(x)).split(".");
-
- /* Pad, truncate and group the integral part. */
- var i = s[0];
- if (i.length > maxi) i = i.substring(i.length - maxi);
- if (padg && (i.length < mini)) i = new Array(mini - i.length + 1).join(padi) + i;
- if (i.length > 3) i = i.replace(/\B(?=(?:\d{3})+(?!\d))/g, group);
- if (!padg && (i.length < mins)) i = new Array(mins - i.length + 1).join(padi) + i;
- s[0] = x < 0 ? np + i + ns : i;
-
- /* Pad the fractional part. */
- var f = s[1] || "";
- if (f.length < minf) s[1] = f + new Array(minf - f.length + 1).join(padf);
-
- return s.join(decimal);
- }
-
- /**
- * @function
- * @name pv.Format.number.prototype.format
- * @param {number} x
- * @returns {string}
- */
- format.format = format;
-
- /**
- * Parses the specified string as a number. Before parsing, leading and
- * trailing padding is removed. Group separators are also removed, and the
- * decimal separator is replaced with the standard point ("."). The integer
- * part is truncated per the maximum integer digits, and the fraction part is
- * rounded per the maximum fraction digits.
- *
- * @function
- * @name pv.Format.number.prototype.parse
- * @param {string} x the string to parse.
- * @returns {number} the parsed number.
- */
- format.parse = function(x) {
- var re = pv.Format.re;
-
- /* Remove leading and trailing padding. Split on the decimal separator. */
- var s = String(x)
- .replace(new RegExp("^(" + re(padi) + ")*"), "")
- .replace(new RegExp("(" + re(padf) + ")*$"), "")
- .split(decimal);
-
- /* Remove grouping and truncate the integral part. */
- var i = s[0].replace(new RegExp(re(group), "g"), "");
- if (i.length > maxi) i = i.substring(i.length - maxi);
-
- /* Round the fractional part. */
- var f = s[1] ? Number("0." + s[1]) : 0;
- if (Infinity > maxf) f = Math.round(f * maxk) / maxk;
-
- return Math.round(i) + f;
- };
-
- /**
- * Sets or gets the minimum and maximum number of integer digits. This
- * controls the number of decimal digits to display before the decimal
- * separator for the integral part of the number. If the number of digits is
- * smaller than the minimum, the digits are padded; if the number of digits is
- * larger, the digits are truncated, showing only the lower-order digits. The
- * default range is [0, Infinity].
- *
- * <p>If only one argument is specified to this method, this value is used as
- * both the minimum and maximum number. If no arguments are specified, a
- * two-element array is returned containing the minimum and the maximum.
- *
- * @function
- * @name pv.Format.number.prototype.integerDigits
- * @param {number} [min] the minimum integer digits.
- * @param {number} [max] the maximum integer digits.
- * @returns {pv.Format.number} <tt>this</tt>, or the current integer digits.
- */
- format.integerDigits = function(min, max) {
- if (arguments.length) {
- mini = Number(min);
- maxi = (arguments.length > 1) ? Number(max) : mini;
- mins = mini + Math.floor(mini / 3) * group.length;
- return this;
- }
- return [mini, maxi];
- };
-
- /**
- * Sets or gets the minimum and maximum number of fraction digits. The
- * controls the number of decimal digits to display after the decimal
- * separator for the fractional part of the number. If the number of digits is
- * smaller than the minimum, the digits are padded; if the number of digits is
- * larger, the fractional part is rounded, showing only the higher-order
- * digits. The default range is [0, 0].
- *
- * <p>If only one argument is specified to this method, this value is used as
- * both the minimum and maximum number. If no arguments are specified, a
- * two-element array is returned containing the minimum and the maximum.
- *
- * @function
- * @name pv.Format.number.prototype.fractionDigits
- * @param {number} [min] the minimum fraction digits.
- * @param {number} [max] the maximum fraction digits.
- * @returns {pv.Format.number} <tt>this</tt>, or the current fraction digits.
- */
- format.fractionDigits = function(min, max) {
- if (arguments.length) {
- minf = Number(min);
- maxf = (arguments.length > 1) ? Number(max) : minf;
- maxk = Math.pow(10, maxf);
- return this;
- }
- return [minf, maxf];
- };
-
- /**
- * Sets or gets the character used to pad the integer part. The integer pad is
- * used when the number of integer digits is smaller than the minimum. The
- * default pad character is "0" (zero).
- *
- * @param {string} [x] the new pad character.
- * @returns {pv.Format.number} <tt>this</tt> or the current pad character.
- */
- format.integerPad = function(x) {
- if (arguments.length) {
- padi = String(x);
- padg = /\d/.test(padi);
- return this;
- }
- return padi;
- };
-
- /**
- * Sets or gets the character used to pad the fration part. The fraction pad
- * is used when the number of fraction digits is smaller than the minimum. The
- * default pad character is "0" (zero).
- *
- * @param {string} [x] the new pad character.
- * @returns {pv.Format.number} <tt>this</tt> or the current pad character.
- */
- format.fractionPad = function(x) {
- if (arguments.length) {
- padf = String(x);
- return this;
- }
- return padf;
- };
-
- /**
- * Sets or gets the character used as the decimal point, separating the
- * integer and fraction parts of the number. The default decimal point is ".".
- *
- * @param {string} [x] the new decimal separator.
- * @returns {pv.Format.number} <tt>this</tt> or the current decimal separator.
- */
- format.decimal = function(x) {
- if (arguments.length) {
- decimal = String(x);
- return this;
- }
- return decimal;
- };
-
- /**
- * Sets or gets the character used as the group separator, grouping integer
- * digits by thousands. The default decimal point is ",". Grouping can be
- * disabled by using "" for the separator.
- *
- * @param {string} [x] the new group separator.
- * @returns {pv.Format.number} <tt>this</tt> or the current group separator.
- */
- format.group = function(x) {
- if (arguments.length) {
- group = x ? String(x) : "";
- mins = mini + Math.floor(mini / 3) * group.length;
- return this;
- }
- return group;
- };
-
- /**
- * Sets or gets the negative prefix and suffix. The default negative prefix is
- * "&minus;", and the default negative suffix is the empty string.
- *
- * @param {string} [x] the negative prefix.
- * @param {string} [y] the negative suffix.
- * @returns {pv.Format.number} <tt>this</tt> or the current negative format.
- */
- format.negativeAffix = function(x, y) {
- if (arguments.length) {
- np = String(x || "");
- ns = String(y || "");
- return this;
- }
- return [np, ns];
- };
-
- return format;
-};
-/**
- * @private A private variant of Array.prototype.map that supports the index
- * property.
- */
-pv.map = function(array, f) {
- var o = {};
- return f
- ? array.map(function(d, i) { o.index = i; return f.call(o, d); })
- : array.slice();
-};
-
-/**
- * Concatenates the specified array with itself <i>n</i> times. For example,
- * <tt>pv.repeat([1, 2])</tt> returns [1, 2, 1, 2].
- *
- * @param {array} a an array.
- * @param {number} [n] the number of times to repeat; defaults to two.
- * @returns {array} an array that repeats the specified array.
- */
-pv.repeat = function(array, n) {
- if (arguments.length == 1) n = 2;
- return pv.blend(pv.range(n).map(function() { return array; }));
-};
-
-/**
- * Given two arrays <tt>a</tt> and <tt>b</tt>, <style
- * type="text/css">sub{line-height:0}</style> returns an array of all possible
- * pairs of elements [a<sub>i</sub>, b<sub>j</sub>]. The outer loop is on array
- * <i>a</i>, while the inner loop is on <i>b</i>, such that the order of
- * returned elements is [a<sub>0</sub>, b<sub>0</sub>], [a<sub>0</sub>,
- * b<sub>1</sub>], ... [a<sub>0</sub>, b<sub>m</sub>], [a<sub>1</sub>,
- * b<sub>0</sub>], [a<sub>1</sub>, b<sub>1</sub>], ... [a<sub>1</sub>,
- * b<sub>m</sub>], ... [a<sub>n</sub>, b<sub>m</sub>]. If either array is empty,
- * an empty array is returned.
- *
- * @param {array} a an array.
- * @param {array} b an array.
- * @returns {array} an array of pairs of elements in <tt>a</tt> and <tt>b</tt>.
- */
-pv.cross = function(a, b) {
- var array = [];
- for (var i = 0, n = a.length, m = b.length; i < n; i++) {
- for (var j = 0, x = a[i]; j < m; j++) {
- array.push([x, b[j]]);
- }
- }
- return array;
-};
-
-/**
- * Given the specified array of arrays, concatenates the arrays into a single
- * array. If the individual arrays are explicitly known, an alternative to blend
- * is to use JavaScript's <tt>concat</tt> method directly. These two equivalent
- * expressions:<ul>
- *
- * <li><tt>pv.blend([[1, 2, 3], ["a", "b", "c"]])</tt>
- * <li><tt>[1, 2, 3].concat(["a", "b", "c"])</tt>
- *
- * </ul>return [1, 2, 3, "a", "b", "c"].
- *
- * @param {array[]} arrays an array of arrays.
- * @returns {array} an array containing all the elements of each array in
- * <tt>arrays</tt>.
- */
-pv.blend = function(arrays) {
- return Array.prototype.concat.apply([], arrays);
-};
-
-/**
- * Given the specified array of arrays, <style
- * type="text/css">sub{line-height:0}</style> transposes each element
- * array<sub>ij</sub> with array<sub>ji</sub>. If the array has dimensions
- * <i>n</i>&times;<i>m</i>, it will have dimensions <i>m</i>&times;<i>n</i>
- * after this method returns. This method transposes the elements of the array
- * in place, mutating the array, and returning a reference to the array.
- *
- * @param {array[]} arrays an array of arrays.
- * @returns {array[]} the passed-in array, after transposing the elements.
- */
-pv.transpose = function(arrays) {
- var n = arrays.length, m = pv.max(arrays, function(d) { return d.length; });
-
- if (m > n) {
- arrays.length = m;
- for (var i = n; i < m; i++) {
- arrays[i] = new Array(n);
- }
- for (var i = 0; i < n; i++) {
- for (var j = i + 1; j < m; j++) {
- var t = arrays[i][j];
- arrays[i][j] = arrays[j][i];
- arrays[j][i] = t;
- }
- }
- } else {
- for (var i = 0; i < m; i++) {
- arrays[i].length = n;
- }
- for (var i = 0; i < n; i++) {
- for (var j = 0; j < i; j++) {
- var t = arrays[i][j];
- arrays[i][j] = arrays[j][i];
- arrays[j][i] = t;
- }
- }
- }
-
- arrays.length = m;
- for (var i = 0; i < m; i++) {
- arrays[i].length = n;
- }
-
- return arrays;
-};
-
-/**
- * Returns a normalized copy of the specified array, such that the sum of the
- * returned elements sum to one. If the specified array is not an array of
- * numbers, an optional accessor function <tt>f</tt> can be specified to map the
- * elements to numbers. For example, if <tt>array</tt> is an array of objects,
- * and each object has a numeric property "foo", the expression
- *
- * <pre>pv.normalize(array, function(d) d.foo)</pre>
- *
- * returns a normalized array on the "foo" property. If an accessor function is
- * not specified, the identity function is used. Accessor functions can refer to
- * <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number[]} an array of numbers that sums to one.
- */
-pv.normalize = function(array, f) {
- var norm = pv.map(array, f), sum = pv.sum(norm);
- for (var i = 0; i < norm.length; i++) norm[i] /= sum;
- return norm;
-};
-
-/**
- * Returns a permutation of the specified array, using the specified array of
- * indexes. The returned array contains the corresponding element in
- * <tt>array</tt> for each index in <tt>indexes</tt>, in order. For example,
- *
- * <pre>pv.permute(["a", "b", "c"], [1, 2, 0])</pre>
- *
- * returns <tt>["b", "c", "a"]</tt>. It is acceptable for the array of indexes
- * to be a different length from the array of elements, and for indexes to be
- * duplicated or omitted. The optional accessor function <tt>f</tt> can be used
- * to perform a simultaneous mapping of the array elements. Accessor functions
- * can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array.
- * @param {number[]} indexes an array of indexes into <tt>array</tt>.
- * @param {function} [f] an optional accessor function.
- * @returns {array} an array of elements from <tt>array</tt>; a permutation.
- */
-pv.permute = function(array, indexes, f) {
- if (!f) f = pv.identity;
- var p = new Array(indexes.length), o = {};
- indexes.forEach(function(j, i) { o.index = j; p[i] = f.call(o, array[j]); });
- return p;
-};
-
-/**
- * Returns a map from key to index for the specified <tt>keys</tt> array. For
- * example,
- *
- * <pre>pv.numerate(["a", "b", "c"])</pre>
- *
- * returns <tt>{a: 0, b: 1, c: 2}</tt>. Note that since JavaScript maps only
- * support string keys, <tt>keys</tt> must contain strings, or other values that
- * naturally map to distinct string values. Alternatively, an optional accessor
- * function <tt>f</tt> can be specified to compute the string key for the given
- * element. Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} keys an array, usually of string keys.
- * @param {function} [f] an optional key function.
- * @returns a map from key to index.
- */
-pv.numerate = function(keys, f) {
- if (!f) f = pv.identity;
- var map = {}, o = {};
- keys.forEach(function(x, i) { o.index = i; map[f.call(o, x)] = i; });
- return map;
-};
-
-/**
- * Returns the unique elements in the specified array, in the order they appear.
- * Note that since JavaScript maps only support string keys, <tt>array</tt> must
- * contain strings, or other values that naturally map to distinct string
- * values. Alternatively, an optional accessor function <tt>f</tt> can be
- * specified to compute the string key for the given element. Accessor functions
- * can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array, usually of string keys.
- * @param {function} [f] an optional key function.
- * @returns {array} the unique values.
- */
-pv.uniq = function(array, f) {
- if (!f) f = pv.identity;
- var map = {}, keys = [], o = {}, y;
- array.forEach(function(x, i) {
- o.index = i;
- y = f.call(o, x);
- if (!(y in map)) map[y] = keys.push(y);
- });
- return keys;
-};
-
-/**
- * The comparator function for natural order. This can be used in conjunction with
- * the built-in array <tt>sort</tt> method to sort elements by their natural
- * order, ascending. Note that if no comparator function is specified to the
- * built-in <tt>sort</tt> method, the default order is lexicographic, <i>not</i>
- * natural!
- *
- * @see <a
- * href="http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference/Global_Objects/Array/sort">Array.sort</a>.
- * @param a an element to compare.
- * @param b an element to compare.
- * @returns {number} negative if a &lt; b; positive if a &gt; b; otherwise 0.
- */
-pv.naturalOrder = function(a, b) {
- return (a < b) ? -1 : ((a > b) ? 1 : 0);
-};
-
-/**
- * The comparator function for reverse natural order. This can be used in
- * conjunction with the built-in array <tt>sort</tt> method to sort elements by
- * their natural order, descending. Note that if no comparator function is
- * specified to the built-in <tt>sort</tt> method, the default order is
- * lexicographic, <i>not</i> natural!
- *
- * @see #naturalOrder
- * @param a an element to compare.
- * @param b an element to compare.
- * @returns {number} negative if a &lt; b; positive if a &gt; b; otherwise 0.
- */
-pv.reverseOrder = function(b, a) {
- return (a < b) ? -1 : ((a > b) ? 1 : 0);
-};
-
-/**
- * Searches the specified array of numbers for the specified value using the
- * binary search algorithm. The array must be sorted (as by the <tt>sort</tt>
- * method) prior to making this call. If it is not sorted, the results are
- * undefined. If the array contains multiple elements with the specified value,
- * there is no guarantee which one will be found.
- *
- * <p>The <i>insertion point</i> is defined as the point at which the value
- * would be inserted into the array: the index of the first element greater than
- * the value, or <tt>array.length</tt>, if all elements in the array are less
- * than the specified value. Note that this guarantees that the return value
- * will be nonnegative if and only if the value is found.
- *
- * @param {number[]} array the array to be searched.
- * @param {number} value the value to be searched for.
- * @returns the index of the search value, if it is contained in the array;
- * otherwise, (-(<i>insertion point</i>) - 1).
- * @param {function} [f] an optional key function.
- */
-pv.search = function(array, value, f) {
- if (!f) f = pv.identity;
- var low = 0, high = array.length - 1;
- while (low <= high) {
- var mid = (low + high) >> 1, midValue = f(array[mid]);
- if (midValue < value) low = mid + 1;
- else if (midValue > value) high = mid - 1;
- else return mid;
- }
- return -low - 1;
-};
-
-pv.search.index = function(array, value, f) {
- var i = pv.search(array, value, f);
- return (i < 0) ? (-i - 1) : i;
-};
-/**
- * Returns an array of numbers, starting at <tt>start</tt>, incrementing by
- * <tt>step</tt>, until <tt>stop</tt> is reached. The stop value is
- * exclusive. If only a single argument is specified, this value is interpeted
- * as the <i>stop</i> value, with the <i>start</i> value as zero. If only two
- * arguments are specified, the step value is implied to be one.
- *
- * <p>The method is modeled after the built-in <tt>range</tt> method from
- * Python. See the Python documentation for more details.
- *
- * @see <a href="http://docs.python.org/library/functions.html#range">Python range</a>
- * @param {number} [start] the start value.
- * @param {number} stop the stop value.
- * @param {number} [step] the step value.
- * @returns {number[]} an array of numbers.
- */
-pv.range = function(start, stop, step) {
- if (arguments.length == 1) {
- stop = start;
- start = 0;
- }
- if (step == undefined) step = 1;
- if ((stop - start) / step == Infinity) throw new Error("range must be finite");
- var array = [], i = 0, j;
- stop -= (stop - start) * 1e-10; // floating point precision!
- if (step < 0) {
- while ((j = start + step * i++) > stop) {
- array.push(j);
- }
- } else {
- while ((j = start + step * i++) < stop) {
- array.push(j);
- }
- }
- return array;
-};
-
-/**
- * Returns a random number in the range [<tt>start</tt>, <tt>stop</tt>) that is
- * a multiple of <tt>step</tt>. More specifically, the returned number is of the
- * form <tt>start</tt> + <i>n</i> * <tt>step</tt>, where <i>n</i> is a
- * nonnegative integer. If <tt>step</tt> is not specified, it defaults to 1,
- * returning a random integer if <tt>start</tt> is also an integer.
- *
- * @param {number} [start] the start value value.
- * @param {number} stop the stop value.
- * @param {number} [step] the step value.
- * @returns {number} a random number between <i>start</i> and <i>stop</i>.
- */
-pv.random = function(start, stop, step) {
- if (arguments.length == 1) {
- stop = start;
- start = 0;
- }
- if (step == undefined) step = 1;
- return step
- ? (Math.floor(Math.random() * (stop - start) / step) * step + start)
- : (Math.random() * (stop - start) + start);
-};
-
-/**
- * Returns the sum of the specified array. If the specified array is not an
- * array of numbers, an optional accessor function <tt>f</tt> can be specified
- * to map the elements to numbers. See {@link #normalize} for an example.
- * Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the sum of the specified array.
- */
-pv.sum = function(array, f) {
- var o = {};
- return array.reduce(f
- ? function(p, d, i) { o.index = i; return p + f.call(o, d); }
- : function(p, d) { return p + d; }, 0);
-};
-
-/**
- * Returns the maximum value of the specified array. If the specified array is
- * not an array of numbers, an optional accessor function <tt>f</tt> can be
- * specified to map the elements to numbers. See {@link #normalize} for an
- * example. Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the maximum value of the specified array.
- */
-pv.max = function(array, f) {
- if (f == pv.index) return array.length - 1;
- return Math.max.apply(null, f ? pv.map(array, f) : array);
-};
-
-/**
- * Returns the index of the maximum value of the specified array. If the
- * specified array is not an array of numbers, an optional accessor function
- * <tt>f</tt> can be specified to map the elements to numbers. See
- * {@link #normalize} for an example. Accessor functions can refer to
- * <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the index of the maximum value of the specified array.
- */
-pv.max.index = function(array, f) {
- if (!array.length) return -1;
- if (f == pv.index) return array.length - 1;
- if (!f) f = pv.identity;
- var maxi = 0, maxx = -Infinity, o = {};
- for (var i = 0; i < array.length; i++) {
- o.index = i;
- var x = f.call(o, array[i]);
- if (x > maxx) {
- maxx = x;
- maxi = i;
- }
- }
- return maxi;
-}
-
-/**
- * Returns the minimum value of the specified array of numbers. If the specified
- * array is not an array of numbers, an optional accessor function <tt>f</tt>
- * can be specified to map the elements to numbers. See {@link #normalize} for
- * an example. Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the minimum value of the specified array.
- */
-pv.min = function(array, f) {
- if (f == pv.index) return 0;
- return Math.min.apply(null, f ? pv.map(array, f) : array);
-};
-
-/**
- * Returns the index of the minimum value of the specified array. If the
- * specified array is not an array of numbers, an optional accessor function
- * <tt>f</tt> can be specified to map the elements to numbers. See
- * {@link #normalize} for an example. Accessor functions can refer to
- * <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the index of the minimum value of the specified array.
- */
-pv.min.index = function(array, f) {
- if (!array.length) return -1;
- if (f == pv.index) return 0;
- if (!f) f = pv.identity;
- var mini = 0, minx = Infinity, o = {};
- for (var i = 0; i < array.length; i++) {
- o.index = i;
- var x = f.call(o, array[i]);
- if (x < minx) {
- minx = x;
- mini = i;
- }
- }
- return mini;
-}
-
-/**
- * Returns the arithmetic mean, or average, of the specified array. If the
- * specified array is not an array of numbers, an optional accessor function
- * <tt>f</tt> can be specified to map the elements to numbers. See
- * {@link #normalize} for an example. Accessor functions can refer to
- * <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the mean of the specified array.
- */
-pv.mean = function(array, f) {
- return pv.sum(array, f) / array.length;
-};
-
-/**
- * Returns the median of the specified array. If the specified array is not an
- * array of numbers, an optional accessor function <tt>f</tt> can be specified
- * to map the elements to numbers. See {@link #normalize} for an example.
- * Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the median of the specified array.
- */
-pv.median = function(array, f) {
- if (f == pv.index) return (array.length - 1) / 2;
- array = pv.map(array, f).sort(pv.naturalOrder);
- if (array.length % 2) return array[Math.floor(array.length / 2)];
- var i = array.length / 2;
- return (array[i - 1] + array[i]) / 2;
-};
-
-/**
- * Returns the unweighted variance of the specified array. If the specified
- * array is not an array of numbers, an optional accessor function <tt>f</tt>
- * can be specified to map the elements to numbers. See {@link #normalize} for
- * an example. Accessor functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the variance of the specified array.
- */
-pv.variance = function(array, f) {
- if (array.length < 1) return NaN;
- if (array.length == 1) return 0;
- var mean = pv.mean(array, f), sum = 0, o = {};
- if (!f) f = pv.identity;
- for (var i = 0; i < array.length; i++) {
- o.index = i;
- var d = f.call(o, array[i]) - mean;
- sum += d * d;
- }
- return sum;
-};
-
-/**
- * Returns an unbiased estimation of the standard deviation of a population,
- * given the specified random sample. If the specified array is not an array of
- * numbers, an optional accessor function <tt>f</tt> can be specified to map the
- * elements to numbers. See {@link #normalize} for an example. Accessor
- * functions can refer to <tt>this.index</tt>.
- *
- * @param {array} array an array of objects, or numbers.
- * @param {function} [f] an optional accessor function.
- * @returns {number} the standard deviation of the specified array.
- */
-pv.deviation = function(array, f) {
- return Math.sqrt(pv.variance(array, f) / (array.length - 1));
-};
-
-/**
- * Returns the logarithm with a given base value.
- *
- * @param {number} x the number for which to compute the logarithm.
- * @param {number} b the base of the logarithm.
- * @returns {number} the logarithm value.
- */
-pv.log = function(x, b) {
- return Math.log(x) / Math.log(b);
-};
-
-/**
- * Computes a zero-symmetric logarithm. Computes the logarithm of the absolute
- * value of the input, and determines the sign of the output according to the
- * sign of the input value.
- *
- * @param {number} x the number for which to compute the logarithm.
- * @param {number} b the base of the logarithm.
- * @returns {number} the symmetric log value.
- */
-pv.logSymmetric = function(x, b) {
- return (x == 0) ? 0 : ((x < 0) ? -pv.log(-x, b) : pv.log(x, b));
-};
-
-/**
- * Computes a zero-symmetric logarithm, with adjustment to values between zero
- * and the logarithm base. This adjustment introduces distortion for values less
- * than the base number, but enables simultaneous plotting of log-transformed
- * data involving both positive and negative numbers.
- *
- * @param {number} x the number for which to compute the logarithm.
- * @param {number} b the base of the logarithm.
- * @returns {number} the adjusted, symmetric log value.
- */
-pv.logAdjusted = function(x, b) {
- if (!isFinite(x)) return x;
- var negative = x < 0;
- if (x < b) x += (b - x) / b;
- return negative ? -pv.log(x, b) : pv.log(x, b);
-};
-
-/**
- * Rounds an input value down according to its logarithm. The method takes the
- * floor of the logarithm of the value and then uses the resulting value as an
- * exponent for the base value.
- *
- * @param {number} x the number for which to compute the logarithm floor.
- * @param {number} b the base of the logarithm.
- * @returns {number} the rounded-by-logarithm value.
- */
-pv.logFloor = function(x, b) {
- return (x > 0)
- ? Math.pow(b, Math.floor(pv.log(x, b)))
- : -Math.pow(b, -Math.floor(-pv.log(-x, b)));
-};
-
-/**
- * Rounds an input value up according to its logarithm. The method takes the
- * ceiling of the logarithm of the value and then uses the resulting value as an
- * exponent for the base value.
- *
- * @param {number} x the number for which to compute the logarithm ceiling.
- * @param {number} b the base of the logarithm.
- * @returns {number} the rounded-by-logarithm value.
- */
-pv.logCeil = function(x, b) {
- return (x > 0)
- ? Math.pow(b, Math.ceil(pv.log(x, b)))
- : -Math.pow(b, -Math.ceil(-pv.log(-x, b)));
-};
-
-(function() {
- var radians = Math.PI / 180,
- degrees = 180 / Math.PI;
-
- /** Returns the number of radians corresponding to the specified degrees. */
- pv.radians = function(degrees) { return radians * degrees; };
-
- /** Returns the number of degrees corresponding to the specified radians. */
- pv.degrees = function(radians) { return degrees * radians; };
-})();
-/**
- * Returns all of the property names (keys) of the specified object (a map). The
- * order of the returned array is not defined.
- *
- * @param map an object.
- * @returns {string[]} an array of strings corresponding to the keys.
- * @see #entries
- */
-pv.keys = function(map) {
- var array = [];
- for (var key in map) {
- array.push(key);
- }
- return array;
-};
-
-/**
- * Returns all of the entries (key-value pairs) of the specified object (a
- * map). The order of the returned array is not defined. Each key-value pair is
- * represented as an object with <tt>key</tt> and <tt>value</tt> attributes,
- * e.g., <tt>{key: "foo", value: 42}</tt>.
- *
- * @param map an object.
- * @returns {array} an array of key-value pairs corresponding to the keys.
- */
-pv.entries = function(map) {
- var array = [];
- for (var key in map) {
- array.push({ key: key, value: map[key] });
- }
- return array;
-};
-
-/**
- * Returns all of the values (attribute values) of the specified object (a
- * map). The order of the returned array is not defined.
- *
- * @param map an object.
- * @returns {array} an array of objects corresponding to the values.
- * @see #entries
- */
-pv.values = function(map) {
- var array = [];
- for (var key in map) {
- array.push(map[key]);
- }
- return array;
-};
-
-/**
- * Returns a map constructed from the specified <tt>keys</tt>, using the
- * function <tt>f</tt> to compute the value for each key. The single argument to
- * the value function is the key. The callback is invoked only for indexes of
- * the array which have assigned values; it is not invoked for indexes which
- * have been deleted or which have never been assigned values.
- *
- * <p>For example, this expression creates a map from strings to string length:
- *
- * <pre>pv.dict(["one", "three", "seventeen"], function(s) s.length)</pre>
- *
- * The returned value is <tt>{one: 3, three: 5, seventeen: 9}</tt>. Accessor
- * functions can refer to <tt>this.index</tt>.
- *
- * @param {array} keys an array.
- * @param {function} f a value function.
- * @returns a map from keys to values.
- */
-pv.dict = function(keys, f) {
- var m = {}, o = {};
- for (var i = 0; i < keys.length; i++) {
- if (i in keys) {
- var k = keys[i];
- o.index = i;
- m[k] = f.call(o, k);
- }
- }
- return m;
-};
-/**
- * Returns a {@link pv.Dom} operator for the given map. This is a convenience
- * factory method, equivalent to <tt>new pv.Dom(map)</tt>. To apply the operator
- * and retrieve the root node, call {@link pv.Dom#root}; to retrieve all nodes
- * flattened, use {@link pv.Dom#nodes}.
- *
- * @see pv.Dom
- * @param map a map from which to construct a DOM.
- * @returns {pv.Dom} a DOM operator for the specified map.
- */
-pv.dom = function(map) {
- return new pv.Dom(map);
-};
-
-/**
- * Constructs a DOM operator for the specified map. This constructor should not
- * be invoked directly; use {@link pv.dom} instead.
- *
- * @class Represets a DOM operator for the specified map. This allows easy
- * transformation of a hierarchical JavaScript object (such as a JSON map) to a
- * W3C Document Object Model hierarchy. For more information on which attributes
- * and methods from the specification are supported, see {@link pv.Dom.Node}.
- *
- * <p>Leaves in the map are determined using an associated <i>leaf</i> function;
- * see {@link #leaf}. By default, leaves are any value whose type is not
- * "object", such as numbers or strings.
- *
- * @param map a map from which to construct a DOM.
- */
-pv.Dom = function(map) {
- this.$map = map;
-};
-
-/** @private The default leaf function. */
-pv.Dom.prototype.$leaf = function(n) {
- return typeof n != "object";
-};
-
-/**
- * Sets or gets the leaf function for this DOM operator. The leaf function
- * identifies which values in the map are leaves, and which are internal nodes.
- * By default, objects are considered internal nodes, and primitives (such as
- * numbers and strings) are considered leaves.
- *
- * @param {function} f the new leaf function.
- * @returns the current leaf function, or <tt>this</tt>.
- */
-pv.Dom.prototype.leaf = function(f) {
- if (arguments.length) {
- this.$leaf = f;
- return this;
- }
- return this.$leaf;
-};
-
-/**
- * Applies the DOM operator, returning the root node.
- *
- * @returns {pv.Dom.Node} the root node.
- * @param {string} [nodeName] optional node name for the root.
- */
-pv.Dom.prototype.root = function(nodeName) {
- var leaf = this.$leaf, root = recurse(this.$map);
-
- /** @private */
- function recurse(map) {
- var n = new pv.Dom.Node();
- for (var k in map) {
- var v = map[k];
- n.appendChild(leaf(v) ? new pv.Dom.Node(v) : recurse(v)).nodeName = k;
- }
- return n;
- }
-
- root.nodeName = nodeName;
- return root;
-};
-
-/**
- * Applies the DOM operator, returning the array of all nodes in preorder
- * traversal.
- *
- * @returns {array} the array of nodes in preorder traversal.
- */
-pv.Dom.prototype.nodes = function() {
- return this.root().nodes();
-};
-
-/**
- * Constructs a DOM node for the specified value. Instances of this class are
- * not typically created directly; instead they are generated from a JavaScript
- * map using the {@link pv.Dom} operator.
- *
- * @class Represents a <tt>Node</tt> in the W3C Document Object Model.
- */
-pv.Dom.Node = function(value) {
- this.nodeValue = value;
- this.childNodes = [];
-};
-
-/**
- * The node name. When generated from a map, the node name corresponds to the
- * key at the given level in the map. Note that the root node has no associated
- * key, and thus has an undefined node name (and no <tt>parentNode</tt>).
- *
- * @type string
- * @field pv.Dom.Node.prototype.nodeName
- */
-
-/**
- * The node value. When generated from a map, node value corresponds to the leaf
- * value for leaf nodes, and is undefined for internal nodes.
- *
- * @field pv.Dom.Node.prototype.nodeValue
- */
-
-/**
- * The array of child nodes. This array is empty for leaf nodes. An easy way to
- * check if child nodes exist is to query <tt>firstChild</tt>.
- *
- * @type array
- * @field pv.Dom.Node.prototype.childNodes
- */
-
-/**
- * The parent node, which is null for root nodes.
- *
- * @type pv.Dom.Node
- */
-pv.Dom.Node.prototype.parentNode = null;
-
-/**
- * The first child, which is null for leaf nodes.
- *
- * @type pv.Dom.Node
- */
-pv.Dom.Node.prototype.firstChild = null;
-
-/**
- * The last child, which is null for leaf nodes.
- *
- * @type pv.Dom.Node
- */
-pv.Dom.Node.prototype.lastChild = null;
-
-/**
- * The previous sibling node, which is null for the first child.
- *
- * @type pv.Dom.Node
- */
-pv.Dom.Node.prototype.previousSibling = null;
-
-/**
- * The next sibling node, which is null for the last child.
- *
- * @type pv.Dom.Node
- */
-pv.Dom.Node.prototype.nextSibling = null;
-
-/**
- * Removes the specified child node from this node.
- *
- * @throws Error if the specified child is not a child of this node.
- * @returns {pv.Dom.Node} the removed child.
- */
-pv.Dom.Node.prototype.removeChild = function(n) {
- var i = this.childNodes.indexOf(n);
- if (i == -1) throw new Error("child not found");
- this.childNodes.splice(i, 1);
- if (n.previousSibling) n.previousSibling.nextSibling = n.nextSibling;
- else this.firstChild = n.nextSibling;
- if (n.nextSibling) n.nextSibling.previousSibling = n.previousSibling;
- else this.lastChild = n.previousSibling;
- delete n.nextSibling;
- delete n.previousSibling;
- delete n.parentNode;
- return n;
-};
-
-/**
- * Appends the specified child node to this node. If the specified child is
- * already part of the DOM, the child is first removed before being added to
- * this node.
- *
- * @returns {pv.Dom.Node} the appended child.
- */
-pv.Dom.Node.prototype.appendChild = function(n) {
- if (n.parentNode) n.parentNode.removeChild(n);
- n.parentNode = this;
- n.previousSibling = this.lastChild;
- if (this.lastChild) this.lastChild.nextSibling = n;
- else this.firstChild = n;
- this.lastChild = n;
- this.childNodes.push(n);
- return n;
-};
-
-/**
- * Inserts the specified child <i>n</i> before the given reference child
- * <i>r</i> of this node. If <i>r</i> is null, this method is equivalent to
- * {@link #appendChild}. If <i>n</i> is already part of the DOM, it is first
- * removed before being inserted.
- *
- * @throws Error if <i>r</i> is non-null and not a child of this node.
- * @returns {pv.Dom.Node} the inserted child.
- */
-pv.Dom.Node.prototype.insertBefore = function(n, r) {
- if (!r) return this.appendChild(n);
- var i = this.childNodes.indexOf(r);
- if (i == -1) throw new Error("child not found");
- if (n.parentNode) n.parentNode.removeChild(n);
- n.parentNode = this;
- n.nextSibling = r;
- n.previousSibling = r.previousSibling;
- if (r.previousSibling) {
- r.previousSibling.nextSibling = n;
- } else {
- if (r == this.lastChild) this.lastChild = n;
- this.firstChild = n;
- }
- this.childNodes.splice(i, 0, n);
- return n;
-};
-
-/**
- * Replaces the specified child <i>r</i> of this node with the node <i>n</i>. If
- * <i>n</i> is already part of the DOM, it is first removed before being added.
- *
- * @throws Error if <i>r</i> is not a child of this node.
- */
-pv.Dom.Node.prototype.replaceChild = function(n, r) {
- var i = this.childNodes.indexOf(r);
- if (i == -1) throw new Error("child not found");
- if (n.parentNode) n.parentNode.removeChild(n);
- n.parentNode = this;
- n.nextSibling = r.nextSibling;
- n.previousSibling = r.previousSibling;
- if (r.previousSibling) r.previousSibling.nextSibling = n;
- else this.firstChild = n;
- if (r.nextSibling) r.nextSibling.previousSibling = n;
- else this.lastChild = n;
- this.childNodes[i] = n;
- return r;
-};
-
-/**
- * Visits each node in the tree in preorder traversal, applying the specified
- * function <i>f</i>. The arguments to the function are:<ol>
- *
- * <li>The current node.
- * <li>The current depth, starting at 0 for the root node.</ol>
- *
- * @param {function} f a function to apply to each node.
- */
-pv.Dom.Node.prototype.visitBefore = function(f) {
- function visit(n, i) {
- f(n, i);
- for (var c = n.firstChild; c; c = c.nextSibling) {
- visit(c, i + 1);
- }
- }
- visit(this, 0);
-};
-
-/**
- * Visits each node in the tree in postorder traversal, applying the specified
- * function <i>f</i>. The arguments to the function are:<ol>
- *
- * <li>The current node.
- * <li>The current depth, starting at 0 for the root node.</ol>
- *
- * @param {function} f a function to apply to each node.
- */
-pv.Dom.Node.prototype.visitAfter = function(f) {
- function visit(n, i) {
- for (var c = n.firstChild; c; c = c.nextSibling) {
- visit(c, i + 1);
- }
- f(n, i);
- }
- visit(this, 0);
-};
-
-/**
- * Sorts child nodes of this node, and all descendent nodes recursively, using
- * the specified comparator function <tt>f</tt>. The comparator function is
- * passed two nodes to compare.
- *
- * <p>Note: during the sort operation, the comparator function should not rely
- * on the tree being well-formed; the values of <tt>previousSibling</tt> and
- * <tt>nextSibling</tt> for the nodes being compared are not defined during the
- * sort operation.
- *
- * @param {function} f a comparator function.
- * @returns this.
- */
-pv.Dom.Node.prototype.sort = function(f) {
- if (this.firstChild) {
- this.childNodes.sort(f);
- var p = this.firstChild = this.childNodes[0], c;
- delete p.previousSibling;
- for (var i = 1; i < this.childNodes.length; i++) {
- p.sort(f);
- c = this.childNodes[i];
- c.previousSibling = p;
- p = p.nextSibling = c;
- }
- this.lastChild = p;
- delete p.nextSibling;
- p.sort(f);
- }
- return this;
-};
-
-/**
- * Reverses all sibling nodes.
- *
- * @returns this.
- */
-pv.Dom.Node.prototype.reverse = function() {
- var childNodes = [];
- this.visitAfter(function(n) {
- while (n.lastChild) childNodes.push(n.removeChild(n.lastChild));
- for (var c; c = childNodes.pop();) n.insertBefore(c, n.firstChild);
- });
- return this;
-};
-
-/** Returns all descendants of this node in preorder traversal. */
-pv.Dom.Node.prototype.nodes = function() {
- var array = [];
-
- /** @private */
- function flatten(node) {
- array.push(node);
- node.childNodes.forEach(flatten);
- }
-
- flatten(this, array);
- return array;
-};
-
-/**
- * Toggles the child nodes of this node. If this node is not yet toggled, this
- * method removes all child nodes and appends them to a new <tt>toggled</tt>
- * array attribute on this node. Otherwise, if this node is toggled, this method
- * re-adds all toggled child nodes and deletes the <tt>toggled</tt> attribute.
- *
- * <p>This method has no effect if the node has no child nodes.
- *
- * @param {boolean} [recursive] whether the toggle should apply to descendants.
- */
-pv.Dom.Node.prototype.toggle = function(recursive) {
- if (recursive) return this.toggled
- ? this.visitBefore(function(n) { if (n.toggled) n.toggle(); })
- : this.visitAfter(function(n) { if (!n.toggled) n.toggle(); });
- var n = this;
- if (n.toggled) {
- for (var c; c = n.toggled.pop();) n.appendChild(c);
- delete n.toggled;
- } else if (n.lastChild) {
- n.toggled = [];
- while (n.lastChild) n.toggled.push(n.removeChild(n.lastChild));
- }
-};
-
-/**
- * Given a flat array of values, returns a simple DOM with each value wrapped by
- * a node that is a child of the root node.
- *
- * @param {array} values.
- * @returns {array} nodes.
- */
-pv.nodes = function(values) {
- var root = new pv.Dom.Node();
- for (var i = 0; i < values.length; i++) {
- root.appendChild(new pv.Dom.Node(values[i]));
- }
- return root.nodes();
-};
-/**
- * Returns a {@link pv.Tree} operator for the specified array. This is a
- * convenience factory method, equivalent to <tt>new pv.Tree(array)</tt>.
- *
- * @see pv.Tree
- * @param {array} array an array from which to construct a tree.
- * @returns {pv.Tree} a tree operator for the specified array.
- */
-pv.tree = function(array) {
- return new pv.Tree(array);
-};
-
-/**
- * Constructs a tree operator for the specified array. This constructor should
- * not be invoked directly; use {@link pv.tree} instead.
- *
- * @class Represents a tree operator for the specified array. The tree operator
- * allows a hierarchical map to be constructed from an array; it is similar to
- * the {@link pv.Nest} operator, except the hierarchy is derived dynamically
- * from the array elements.
- *
- * <p>For example, given an array of size information for ActionScript classes:
- *
- * <pre>{ name: "flare.flex.FlareVis", size: 4116 },
- * { name: "flare.physics.DragForce", size: 1082 },
- * { name: "flare.physics.GravityForce", size: 1336 }, ...</pre>
- *
- * To facilitate visualization, it may be useful to nest the elements by their
- * package hierarchy:
- *
- * <pre>var tree = pv.tree(classes)
- * .keys(function(d) d.name.split("."))
- * .map();</pre>
- *
- * The resulting tree is:
- *
- * <pre>{ flare: {
- * flex: {
- * FlareVis: {
- * name: "flare.flex.FlareVis",
- * size: 4116 } },
- * physics: {
- * DragForce: {
- * name: "flare.physics.DragForce",
- * size: 1082 },
- * GravityForce: {
- * name: "flare.physics.GravityForce",
- * size: 1336 } },
- * ... } }</pre>
- *
- * By specifying a value function,
- *
- * <pre>var tree = pv.tree(classes)
- * .keys(function(d) d.name.split("."))
- * .value(function(d) d.size)
- * .map();</pre>
- *
- * we can further eliminate redundant data:
- *
- * <pre>{ flare: {
- * flex: {
- * FlareVis: 4116 },
- * physics: {
- * DragForce: 1082,
- * GravityForce: 1336 },
- * ... } }</pre>
- *
- * For visualizations with large data sets, performance improvements may be seen
- * by storing the data in a tree format, and then flattening it into an array at
- * runtime with {@link pv.Flatten}.
- *
- * @param {array} array an array from which to construct a tree.
- */
-pv.Tree = function(array) {
- this.array = array;
-};
-
-/**
- * Assigns a <i>keys</i> function to this operator; required. The keys function
- * returns an array of <tt>string</tt>s for each element in the associated
- * array; these keys determine how the elements are nested in the tree. The
- * returned keys should be unique for each element in the array; otherwise, the
- * behavior of this operator is undefined.
- *
- * @param {function} k the keys function.
- * @returns {pv.Tree} this.
- */
-pv.Tree.prototype.keys = function(k) {
- this.k = k;
- return this;
-};
-
-/**
- * Assigns a <i>value</i> function to this operator; optional. The value
- * function specifies an optional transformation of the element in the array
- * before it is inserted into the map. If no value function is specified, it is
- * equivalent to using the identity function.
- *
- * @param {function} k the value function.
- * @returns {pv.Tree} this.
- */
-pv.Tree.prototype.value = function(v) {
- this.v = v;
- return this;
-};
-
-/**
- * Returns a hierarchical map of values. The hierarchy is determined by the keys
- * function; the values in the map are determined by the value function.
- *
- * @returns a hierarchical map of values.
- */
-pv.Tree.prototype.map = function() {
- var map = {}, o = {};
- for (var i = 0; i < this.array.length; i++) {
- o.index = i;
- var value = this.array[i], keys = this.k.call(o, value), node = map;
- for (var j = 0; j < keys.length - 1; j++) {
- node = node[keys[j]] || (node[keys[j]] = {});
- }
- node[keys[j]] = this.v ? this.v.call(o, value) : value;
- }
- return map;
-};
-/**
- * Returns a {@link pv.Nest} operator for the specified array. This is a
- * convenience factory method, equivalent to <tt>new pv.Nest(array)</tt>.
- *
- * @see pv.Nest
- * @param {array} array an array of elements to nest.
- * @returns {pv.Nest} a nest operator for the specified array.
- */
-pv.nest = function(array) {
- return new pv.Nest(array);
-};
-
-/**
- * Constructs a nest operator for the specified array. This constructor should
- * not be invoked directly; use {@link pv.nest} instead.
- *
- * @class Represents a {@link Nest} operator for the specified array. Nesting
- * allows elements in an array to be grouped into a hierarchical tree
- * structure. The levels in the tree are specified by <i>key</i> functions. The
- * leaf nodes of the tree can be sorted by value, while the internal nodes can
- * be sorted by key. Finally, the tree can be returned either has a
- * multidimensional array via {@link #entries}, or as a hierarchical map via
- * {@link #map}. The {@link #rollup} routine similarly returns a map, collapsing
- * the elements in each leaf node using a summary function.
- *
- * <p>For example, consider the following tabular data structure of Barley
- * yields, from various sites in Minnesota during 1931-2:
- *
- * <pre>{ yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
- * { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
- * { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" }, ...</pre>
- *
- * To facilitate visualization, it may be useful to nest the elements first by
- * year, and then by variety, as follows:
- *
- * <pre>var nest = pv.nest(yields)
- * .key(function(d) d.year)
- * .key(function(d) d.variety)
- * .entries();</pre>
- *
- * This returns a nested array. Each element of the outer array is a key-values
- * pair, listing the values for each distinct key:
- *
- * <pre>{ key: 1931, values: [
- * { key: "Manchuria", values: [
- * { yield: 27.00, variety: "Manchuria", year: 1931, site: "University Farm" },
- * { yield: 48.87, variety: "Manchuria", year: 1931, site: "Waseca" },
- * { yield: 27.43, variety: "Manchuria", year: 1931, site: "Morris" },
- * ...
- * ] },
- * { key: "Glabron", values: [
- * { yield: 43.07, variety: "Glabron", year: 1931, site: "University Farm" },
- * { yield: 55.20, variety: "Glabron", year: 1931, site: "Waseca" },
- * ...
- * ] },
- * ] },
- * { key: 1932, values: ... }</pre>
- *
- * Further details, including sorting and rollup, is provided below on the
- * corresponding methods.
- *
- * @param {array} array an array of elements to nest.
- */
-pv.Nest = function(array) {
- this.array = array;
- this.keys = [];
-};
-
-/**
- * Nests using the specified key function. Multiple keys may be added to the
- * nest; the array elements will be nested in the order keys are specified.
- *
- * @param {function} key a key function; must return a string or suitable map
- * key.
- * @returns {pv.Nest} this.
- */
-pv.Nest.prototype.key = function(key) {
- this.keys.push(key);
- return this;
-};
-
-/**
- * Sorts the previously-added keys. The natural sort order is used by default
- * (see {@link pv.naturalOrder}); if an alternative order is desired,
- * <tt>order</tt> should be a comparator function. If this method is not called
- * (i.e., keys are <i>unsorted</i>), keys will appear in the order they appear
- * in the underlying elements array. For example,
- *
- * <pre>pv.nest(yields)
- * .key(function(d) d.year)
- * .key(function(d) d.variety)
- * .sortKeys()
- * .entries()</pre>
- *
- * groups yield data by year, then variety, and sorts the variety groups
- * lexicographically (since the variety attribute is a string).
- *
- * <p>Key sort order is only used in conjunction with {@link #entries}, which
- * returns an array of key-values pairs. If the nest is used to construct a
- * {@link #map} instead, keys are unsorted.
- *
- * @param {function} [order] an optional comparator function.
- * @returns {pv.Nest} this.
- */
-pv.Nest.prototype.sortKeys = function(order) {
- this.keys[this.keys.length - 1].order = order || pv.naturalOrder;
- return this;
-};
-
-/**
- * Sorts the leaf values. The natural sort order is used by default (see
- * {@link pv.naturalOrder}); if an alternative order is desired, <tt>order</tt>
- * should be a comparator function. If this method is not called (i.e., values
- * are <i>unsorted</i>), values will appear in the order they appear in the
- * underlying elements array. For example,
- *
- * <pre>pv.nest(yields)
- * .key(function(d) d.year)
- * .key(function(d) d.variety)
- * .sortValues(function(a, b) a.yield - b.yield)
- * .entries()</pre>
- *
- * groups yield data by year, then variety, and sorts the values for each
- * variety group by yield.
- *
- * <p>Value sort order, unlike keys, applies to both {@link #entries} and
- * {@link #map}. It has no effect on {@link #rollup}.
- *
- * @param {function} [order] an optional comparator function.
- * @returns {pv.Nest} this.
- */
-pv.Nest.prototype.sortValues = function(order) {
- this.order = order || pv.naturalOrder;
- return this;
-};
-
-/**
- * Returns a hierarchical map of values. Each key adds one level to the
- * hierarchy. With only a single key, the returned map will have a key for each
- * distinct value of the key function; the correspond value with be an array of
- * elements with that key value. If a second key is added, this will be a nested
- * map. For example:
- *
- * <pre>pv.nest(yields)
- * .key(function(d) d.variety)
- * .key(function(d) d.site)
- * .map()</pre>
- *
- * returns a map <tt>m</tt> such that <tt>m[variety][site]</tt> is an array, a subset of
- * <tt>yields</tt>, with each element having the given variety and site.
- *
- * @returns a hierarchical map of values.
- */
-pv.Nest.prototype.map = function() {
- var map = {}, values = [];
-
- /* Build the map. */
- for (var i, j = 0; j < this.array.length; j++) {
- var x = this.array[j];
- var m = map;
- for (i = 0; i < this.keys.length - 1; i++) {
- var k = this.keys[i](x);
- if (!m[k]) m[k] = {};
- m = m[k];
- }
- k = this.keys[i](x);
- if (!m[k]) {
- var a = [];
- values.push(a);
- m[k] = a;
- }
- m[k].push(x);
- }
-
- /* Sort each leaf array. */
- if (this.order) {
- for (var i = 0; i < values.length; i++) {
- values[i].sort(this.order);
- }
- }
-
- return map;
-};
-
-/**
- * Returns a hierarchical nested array. This method is similar to
- * {@link pv.entries}, but works recursively on the entire hierarchy. Rather
- * than returning a map like {@link #map}, this method returns a nested
- * array. Each element of the array has a <tt>key</tt> and <tt>values</tt>
- * field. For leaf nodes, the <tt>values</tt> array will be a subset of the
- * underlying elements array; for non-leaf nodes, the <tt>values</tt> array will
- * contain more key-values pairs.
- *
- * <p>For an example usage, see the {@link Nest} constructor.
- *
- * @returns a hierarchical nested array.
- */
-pv.Nest.prototype.entries = function() {
-
- /** Recursively extracts the entries for the given map. */
- function entries(map) {
- var array = [];
- for (var k in map) {
- var v = map[k];
- array.push({ key: k, values: (v instanceof Array) ? v : entries(v) });
- };
- return array;
- }
-
- /** Recursively sorts the values for the given key-values array. */
- function sort(array, i) {
- var o = this.keys[i].order;
- if (o) array.sort(function(a, b) { return o(a.key, b.key); });
- if (++i < this.keys.length) {
- for (var j = 0; j < array.length; j++) {
- sort.call(this, array[j].values, i);
- }
- }
- return array;
- }
-
- return sort.call(this, entries(this.map()), 0);
-};
-
-/**
- * Returns a rollup map. The behavior of this method is the same as
- * {@link #map}, except that the leaf values are replaced with the return value
- * of the specified rollup function <tt>f</tt>. For example,
- *
- * <pre>pv.nest(yields)
- * .key(function(d) d.site)
- * .rollup(function(v) pv.median(v, function(d) d.yield))</pre>
- *
- * first groups yield data by site, and then returns a map from site to median
- * yield for the given site.
- *
- * @see #map
- * @param {function} f a rollup function.
- * @returns a hierarchical map, with the leaf values computed by <tt>f</tt>.
- */
-pv.Nest.prototype.rollup = function(f) {
-
- /** Recursively descends to the leaf nodes (arrays) and does rollup. */
- function rollup(map) {
- for (var key in map) {
- var value = map[key];
- if (value instanceof Array) {
- map[key] = f(value);
- } else {
- rollup(value);
- }
- }
- return map;
- }
-
- return rollup(this.map());
-};
-/**
- * Returns a {@link pv.Flatten} operator for the specified map. This is a
- * convenience factory method, equivalent to <tt>new pv.Flatten(map)</tt>.
- *
- * @see pv.Flatten
- * @param map a map to flatten.
- * @returns {pv.Flatten} a flatten operator for the specified map.
- */
-pv.flatten = function(map) {
- return new pv.Flatten(map);
-};
-
-/**
- * Constructs a flatten operator for the specified map. This constructor should
- * not be invoked directly; use {@link pv.flatten} instead.
- *
- * @class Represents a flatten operator for the specified array. Flattening
- * allows hierarchical maps to be flattened into an array. The levels in the
- * input tree are specified by <i>key</i> functions.
- *
- * <p>For example, consider the following hierarchical data structure of Barley
- * yields, from various sites in Minnesota during 1931-2:
- *
- * <pre>{ 1931: {
- * Manchuria: {
- * "University Farm": 27.00,
- * "Waseca": 48.87,
- * "Morris": 27.43,
- * ... },
- * Glabron: {
- * "University Farm": 43.07,
- * "Waseca": 55.20,
- * ... } },
- * 1932: {
- * ... } }</pre>
- *
- * To facilitate visualization, it may be useful to flatten the tree into a
- * tabular array:
- *
- * <pre>var array = pv.flatten(yields)
- * .key("year")
- * .key("variety")
- * .key("site")
- * .key("yield")
- * .array();</pre>
- *
- * This returns an array of object elements. Each element in the array has
- * attributes corresponding to this flatten operator's keys:
- *
- * <pre>{ site: "University Farm", variety: "Manchuria", year: 1931, yield: 27 },
- * { site: "Waseca", variety: "Manchuria", year: 1931, yield: 48.87 },
- * { site: "Morris", variety: "Manchuria", year: 1931, yield: 27.43 },
- * { site: "University Farm", variety: "Glabron", year: 1931, yield: 43.07 },
- * { site: "Waseca", variety: "Glabron", year: 1931, yield: 55.2 }, ...</pre>
- *
- * <p>The flatten operator is roughly the inverse of the {@link pv.Nest} and
- * {@link pv.Tree} operators.
- *
- * @param map a map to flatten.
- */
-pv.Flatten = function(map) {
- this.map = map;
- this.keys = [];
-};
-
-/**
- * Flattens using the specified key function. Multiple keys may be added to the
- * flatten; the tiers of the underlying tree must correspond to the specified
- * keys, in order. The order of the returned array is undefined; however, you
- * can easily sort it.
- *
- * @param {string} key the key name.
- * @param {function} [f] an optional value map function.
- * @returns {pv.Nest} this.
- */
-pv.Flatten.prototype.key = function(key, f) {
- this.keys.push({name: key, value: f});
- delete this.$leaf;
- return this;
-};
-
-/**
- * Flattens using the specified leaf function. This is an alternative to
- * specifying an explicit set of keys; the tiers of the underlying tree will be
- * determined dynamically by recursing on the values, and the resulting keys
- * will be stored in the entries <tt>keys</tt> attribute. The leaf function must
- * return true for leaves, and false for internal nodes.
- *
- * @param {function} f a leaf function.
- * @returns {pv.Nest} this.
- */
-pv.Flatten.prototype.leaf = function(f) {
- this.keys.length = 0;
- this.$leaf = f;
- return this;
-};
-
-/**
- * Returns the flattened array. Each entry in the array is an object; each
- * object has attributes corresponding to this flatten operator's keys.
- *
- * @returns an array of elements from the flattened map.
- */
-pv.Flatten.prototype.array = function() {
- var entries = [], stack = [], keys = this.keys, leaf = this.$leaf;
-
- /* Recursively visit using the leaf function. */
- if (leaf) {
- function recurse(value, i) {
- if (leaf(value)) {
- entries.push({keys: stack.slice(), value: value});
- } else {
- for (var key in value) {
- stack.push(key);
- recurse(value[key], i + 1);
- stack.pop();
- }
- }
- }
- recurse(this.map, 0);
- return entries;
- }
-
- /* Recursively visits the specified value. */
- function visit(value, i) {
- if (i < keys.length - 1) {
- for (var key in value) {
- stack.push(key);
- visit(value[key], i + 1);
- stack.pop();
- }
- } else {
- entries.push(stack.concat(value));
- }
- }
-
- visit(this.map, 0);
- return entries.map(function(stack) {
- var m = {};
- for (var i = 0; i < keys.length; i++) {
- var k = keys[i], v = stack[i];
- m[k.name] = k.value ? k.value.call(null, v) : v;
- }
- return m;
- });
-};
-/**
- * Returns a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
- * coordinate. This is a convenience factory method, equivalent to <tt>new
- * pv.Vector(x, y)</tt>.
- *
- * @see pv.Vector
- * @param {number} x the <i>x</i> coordinate.
- * @param {number} y the <i>y</i> coordinate.
- * @returns {pv.Vector} a vector for the specified coordinates.
- */
-pv.vector = function(x, y) {
- return new pv.Vector(x, y);
-};
-
-/**
- * Constructs a {@link pv.Vector} for the specified <i>x</i> and <i>y</i>
- * coordinate. This constructor should not be invoked directly; use
- * {@link pv.vector} instead.
- *
- * @class Represents a two-dimensional vector; a 2-tuple <i>&#x27e8;x,
- * y&#x27e9;</i>. The intent of this class is to simplify vector math. Note that
- * in performance-sensitive cases it may be more efficient to represent 2D
- * vectors as simple objects with <tt>x</tt> and <tt>y</tt> attributes, rather
- * than using instances of this class.
- *
- * @param {number} x the <i>x</i> coordinate.
- * @param {number} y the <i>y</i> coordinate.
- */
-pv.Vector = function(x, y) {
- this.x = x;
- this.y = y;
-};
-
-/**
- * Returns a vector perpendicular to this vector: <i>&#x27e8;-y, x&#x27e9;</i>.
- *
- * @returns {pv.Vector} a perpendicular vector.
- */
-pv.Vector.prototype.perp = function() {
- return new pv.Vector(-this.y, this.x);
-};
-
-/**
- * Returns a normalized copy of this vector: a vector with the same direction,
- * but unit length. If this vector has zero length this method returns a copy of
- * this vector.
- *
- * @returns {pv.Vector} a unit vector.
- */
-pv.Vector.prototype.norm = function() {
- var l = this.length();
- return this.times(l ? (1 / l) : 1);
-};
-
-/**
- * Returns the magnitude of this vector, defined as <i>sqrt(x * x + y * y)</i>.
- *
- * @returns {number} a length.
- */
-pv.Vector.prototype.length = function() {
- return Math.sqrt(this.x * this.x + this.y * this.y);
-};
-
-/**
- * Returns a scaled copy of this vector: <i>&#x27e8;x * k, y * k&#x27e9;</i>.
- * To perform the equivalent divide operation, use <i>1 / k</i>.
- *
- * @param {number} k the scale factor.
- * @returns {pv.Vector} a scaled vector.
- */
-pv.Vector.prototype.times = function(k) {
- return new pv.Vector(this.x * k, this.y * k);
-};
-
-/**
- * Returns this vector plus the vector <i>v</i>: <i>&#x27e8;x + v.x, y +
- * v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
- * vector <i>v</i>.
- *
- * @param {number} x the <i>x</i> coordinate to add.
- * @param {number} y the <i>y</i> coordinate to add.
- * @returns {pv.Vector} a new vector.
- */
-pv.Vector.prototype.plus = function(x, y) {
- return (arguments.length == 1)
- ? new pv.Vector(this.x + x.x, this.y + x.y)
- : new pv.Vector(this.x + x, this.y + y);
-};
-
-/**
- * Returns this vector minus the vector <i>v</i>: <i>&#x27e8;x - v.x, y -
- * v.y&#x27e9;</i>. If only one argument is specified, it is interpreted as the
- * vector <i>v</i>.
- *
- * @param {number} x the <i>x</i> coordinate to subtract.
- * @param {number} y the <i>y</i> coordinate to subtract.
- * @returns {pv.Vector} a new vector.
- */
-pv.Vector.prototype.minus = function(x, y) {
- return (arguments.length == 1)
- ? new pv.Vector(this.x - x.x, this.y - x.y)
- : new pv.Vector(this.x - x, this.y - y);
-};
-
-/**
- * Returns the dot product of this vector and the vector <i>v</i>: <i>x * v.x +
- * y * v.y</i>. If only one argument is specified, it is interpreted as the
- * vector <i>v</i>.
- *
- * @param {number} x the <i>x</i> coordinate to dot.
- * @param {number} y the <i>y</i> coordinate to dot.
- * @returns {number} a dot product.
- */
-pv.Vector.prototype.dot = function(x, y) {
- return (arguments.length == 1)
- ? this.x * x.x + this.y * x.y
- : this.x * x + this.y * y;
-};
-/**
- * Returns a new identity transform.
- *
- * @class Represents a transformation matrix. The transformation matrix is
- * limited to expressing translate and uniform scale transforms only; shearing,
- * rotation, general affine, and other transforms are not supported.
- *
- * <p>The methods on this class treat the transform as immutable, returning a
- * copy of the transformation matrix with the specified transform applied. Note,
- * alternatively, that the matrix fields can be get and set directly.
- */
-pv.Transform = function() {};
-pv.Transform.prototype = {k: 1, x: 0, y: 0};
-
-/**
- * The scale magnitude; defaults to 1.
- *
- * @type number
- * @name pv.Transform.prototype.k
- */
-
-/**
- * The x-offset; defaults to 0.
- *
- * @type number
- * @name pv.Transform.prototype.x
- */
-
-/**
- * The y-offset; defaults to 0.
- *
- * @type number
- * @name pv.Transform.prototype.y
- */
-
-/**
- * @private The identity transform.
- *
- * @type pv.Transform
- */
-pv.Transform.identity = new pv.Transform();
-
-// k 0 x 1 0 a k 0 ka+x
-// 0 k y * 0 1 b = 0 k kb+y
-// 0 0 1 0 0 1 0 0 1
-
-/**
- * Returns a translated copy of this transformation matrix.
- *
- * @param {number} x the x-offset.
- * @param {number} y the y-offset.
- * @returns {pv.Transform} the translated transformation matrix.
- */
-pv.Transform.prototype.translate = function(x, y) {
- var v = new pv.Transform();
- v.k = this.k;
- v.x = this.k * x + this.x;
- v.y = this.k * y + this.y;
- return v;
-};
-
-// k 0 x d 0 0 kd 0 x
-// 0 k y * 0 d 0 = 0 kd y
-// 0 0 1 0 0 1 0 0 1
-
-/**
- * Returns a scaled copy of this transformation matrix.
- *
- * @param {number} k
- * @returns {pv.Transform} the scaled transformation matrix.
- */
-pv.Transform.prototype.scale = function(k) {
- var v = new pv.Transform();
- v.k = this.k * k;
- v.x = this.x;
- v.y = this.y;
- return v;
-};
-
-/**
- * Returns the inverse of this transformation matrix.
- *
- * @returns {pv.Transform} the inverted transformation matrix.
- */
-pv.Transform.prototype.invert = function() {
- var v = new pv.Transform(), k = 1 / this.k;
- v.k = k;
- v.x = -this.x * k;
- v.y = -this.y * k;
- return v;
-};
-
-// k 0 x d 0 a kd 0 ka+x
-// 0 k y * 0 d b = 0 kd kb+y
-// 0 0 1 0 0 1 0 0 1
-
-/**
- * Returns this matrix post-multiplied by the specified matrix <i>m</i>.
- *
- * @param {pv.Transform} m
- * @returns {pv.Transform} the post-multiplied transformation matrix.
- */
-pv.Transform.prototype.times = function(m) {
- var v = new pv.Transform();
- v.k = this.k * m.k;
- v.x = this.k * m.x + this.x;
- v.y = this.k * m.y + this.y;
- return v;
-};
-/**
- * Abstract; see the various scale implementations.
- *
- * @class Represents a scale; a function that performs a transformation from
- * data domain to visual range. For quantitative and quantile scales, the domain
- * is expressed as numbers; for ordinal scales, the domain is expressed as
- * strings (or equivalently objects with unique string representations). The
- * "visual range" may correspond to pixel space, colors, font sizes, and the
- * like.
- *
- * <p>Note that scales are functions, and thus can be used as properties
- * directly, assuming that the data associated with a mark is a number. While
- * this is convenient for single-use scales, frequently it is desirable to
- * define scales globally:
- *
- * <pre>var y = pv.Scale.linear(0, 100).range(0, 640);</pre>
- *
- * The <tt>y</tt> scale can now be equivalently referenced within a property:
- *
- * <pre> .height(function(d) y(d))</pre>
- *
- * Alternatively, if the data are not simple numbers, the appropriate value can
- * be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
- * method similarly allows the data to be mapped to a numeric value before
- * performing the linear transformation.
- *
- * @see pv.Scale.quantitative
- * @see pv.Scale.quantile
- * @see pv.Scale.ordinal
- * @extends function
- */
-pv.Scale = function() {};
-
-/**
- * @private Returns a function that interpolators from the start value to the
- * end value, given a parameter <i>t</i> in [0, 1].
- *
- * @param start the start value.
- * @param end the end value.
- */
-pv.Scale.interpolator = function(start, end) {
- if (typeof start == "number") {
- return function(t) {
- return t * (end - start) + start;
- };
- }
-
- /* For now, assume color. */
- start = pv.color(start).rgb();
- end = pv.color(end).rgb();
- return function(t) {
- var a = start.a * (1 - t) + end.a * t;
- if (a < 1e-5) a = 0; // avoid scientific notation
- return (start.a == 0) ? pv.rgb(end.r, end.g, end.b, a)
- : ((end.a == 0) ? pv.rgb(start.r, start.g, start.b, a)
- : pv.rgb(
- Math.round(start.r * (1 - t) + end.r * t),
- Math.round(start.g * (1 - t) + end.g * t),
- Math.round(start.b * (1 - t) + end.b * t), a));
- };
-};
-
-/**
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
- * Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
- * <tt>function(d) y(d.foo)</tt>.
- *
- * <p>This method is provided for convenience, such that scales can be
- * succinctly defined inline. For example, given an array of data elements that
- * have a <tt>score</tt> attribute with the domain [0, 1], the height property
- * could be specified as:
- *
- * <pre> .height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
- *
- * This is equivalent to:
- *
- * <pre> .height(function(d) d.score * 480)</pre>
- *
- * This method should be used judiciously; it is typically more clear to invoke
- * the scale directly, passing in the value to be scaled.
- *
- * @function
- * @name pv.Scale.prototype.by
- * @param {function} f an accessor function.
- * @returns {pv.Scale} a view of this scale by the specified accessor function.
- */
-/**
- * Returns a default quantitative, linear, scale for the specified domain. The
- * arguments to this constructor are optional, and equivalent to calling
- * {@link #domain}. The default domain and range are [0,1].
- *
- * <p>This constructor is typically not used directly; see one of the
- * quantitative scale implementations instead.
- *
- * @class Represents an abstract quantitative scale; a function that performs a
- * numeric transformation. This class is typically not used directly; see one of
- * the quantitative scale implementations (linear, log, root, etc.)
- * instead. <style type="text/css">sub{line-height:0}</style> A quantitative
- * scale represents a 1-dimensional transformation from a numeric domain of
- * input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
- * pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. In addition to
- * readability, scales offer several useful features:
- *
- * <p>1. The range can be expressed in colors, rather than pixels. For example:
- *
- * <pre> .fillStyle(pv.Scale.linear(0, 100).range("red", "green"))</pre>
- *
- * will fill the marks "red" on an input value of 0, "green" on an input value
- * of 100, and some color in-between for intermediate values.
- *
- * <p>2. The domain and range can be subdivided for a non-uniform
- * transformation. For example, you may want a diverging color scale that is
- * increasingly red for negative values, and increasingly green for positive
- * values:
- *
- * <pre> .fillStyle(pv.Scale.linear(-1, 0, 1).range("red", "white", "green"))</pre>
- *
- * The domain can be specified as a series of <i>n</i> monotonically-increasing
- * values; the range must also be specified as <i>n</i> values, resulting in
- * <i>n - 1</i> contiguous linear scales.
- *
- * <p>3. Quantitative scales can be inverted for interaction. The
- * {@link #invert} method takes a value in the output range, and returns the
- * corresponding value in the input domain. This is frequently used to convert
- * the mouse location (see {@link pv.Mark#mouse}) to a value in the input
- * domain. Note that inversion is only supported for numeric ranges, and not
- * colors.
- *
- * <p>4. A scale can be queried for reasonable "tick" values. The {@link #ticks}
- * method provides a convenient way to get a series of evenly-spaced rounded
- * values in the input domain. Frequently these are used in conjunction with
- * {@link pv.Rule} to display tick marks or grid lines.
- *
- * <p>5. A scale can be "niced" to extend the domain to suitable rounded
- * numbers. If the minimum and maximum of the domain are messy because they are
- * derived from data, you can use {@link #nice} to round these values down and
- * up to even numbers.
- *
- * @param {number...} domain... optional domain values.
- * @see pv.Scale.linear
- * @see pv.Scale.log
- * @see pv.Scale.root
- * @extends pv.Scale
- */
-pv.Scale.quantitative = function() {
- var d = [0, 1], // default domain
- l = [0, 1], // default transformed domain
- r = [0, 1], // default range
- i = [pv.identity], // default interpolators
- type = Number, // default type
- n = false, // whether the domain is negative
- f = pv.identity, // default forward transform
- g = pv.identity, // default inverse transform
- tickFormat = String; // default tick formatting function
-
- /** @private */
- function newDate(x) {
- return new Date(x);
- }
-
- /** @private */
- function scale(x) {
- var j = pv.search(d, x);
- if (j < 0) j = -j - 2;
- j = Math.max(0, Math.min(i.length - 1, j));
- return i[j]((f(x) - l[j]) / (l[j + 1] - l[j]));
- }
-
- /** @private */
- scale.transform = function(forward, inverse) {
- /** @ignore */ f = function(x) { return n ? -forward(-x) : forward(x); };
- /** @ignore */ g = function(y) { return n ? -inverse(-y) : inverse(y); };
- l = d.map(f);
- return this;
- };
-
- /**
- * Sets or gets the input domain. This method can be invoked several ways:
- *
- * <p>1. <tt>domain(min, ..., max)</tt>
- *
- * <p>Specifying the domain as a series of numbers is the most explicit and
- * recommended approach. Most commonly, two numbers are specified: the minimum
- * and maximum value. However, for a diverging scale, or other subdivided
- * non-uniform scales, multiple values can be specified. Values can be derived
- * from data using {@link pv.min} and {@link pv.max}. For example:
- *
- * <pre> .domain(0, pv.max(array))</pre>
- *
- * An alternative method for deriving minimum and maximum values from data
- * follows.
- *
- * <p>2. <tt>domain(array, minf, maxf)</tt>
- *
- * <p>When both the minimum and maximum value are derived from data, the
- * arguments to the <tt>domain</tt> method can be specified as the array of
- * data, followed by zero, one or two accessor functions. For example, if the
- * array of data is just an array of numbers:
- *
- * <pre> .domain(array)</pre>
- *
- * On the other hand, if the array elements are objects representing stock
- * values per day, and the domain should consider the stock's daily low and
- * daily high:
- *
- * <pre> .domain(array, function(d) d.low, function(d) d.high)</pre>
- *
- * The first method of setting the domain is preferred because it is more
- * explicit; setting the domain using this second method should be used only
- * if brevity is required.
- *
- * <p>3. <tt>domain()</tt>
- *
- * <p>Invoking the <tt>domain</tt> method with no arguments returns the
- * current domain as an array of numbers.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.domain
- * @param {number...} domain... domain values.
- * @returns {pv.Scale.quantitative} <tt>this</tt>, or the current domain.
- */
- scale.domain = function(array, min, max) {
- if (arguments.length) {
- var o; // the object we use to infer the domain type
- if (array instanceof Array) {
- if (arguments.length < 2) min = pv.identity;
- if (arguments.length < 3) max = min;
- o = array.length && min(array[0]);
- d = array.length ? [pv.min(array, min), pv.max(array, max)] : [];
- } else {
- o = array;
- d = Array.prototype.slice.call(arguments).map(Number);
- }
- if (!d.length) d = [-Infinity, Infinity];
- else if (d.length == 1) d = [d[0], d[0]];
- n = (d[0] || d[d.length - 1]) < 0;
- l = d.map(f);
- type = (o instanceof Date) ? newDate : Number;
- return this;
- }
- return d.map(type);
- };
-
- /**
- * Sets or gets the output range. This method can be invoked several ways:
- *
- * <p>1. <tt>range(min, ..., max)</tt>
- *
- * <p>The range may be specified as a series of numbers or colors. Most
- * commonly, two numbers are specified: the minimum and maximum pixel values.
- * For a color scale, values may be specified as {@link pv.Color}s or
- * equivalent strings. For a diverging scale, or other subdivided non-uniform
- * scales, multiple values can be specified. For example:
- *
- * <pre> .range("red", "white", "green")</pre>
- *
- * <p>Currently, only numbers and colors are supported as range values. The
- * number of range values must exactly match the number of domain values, or
- * the behavior of the scale is undefined.
- *
- * <p>2. <tt>range()</tt>
- *
- * <p>Invoking the <tt>range</tt> method with no arguments returns the current
- * range as an array of numbers or colors.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.range
- * @param {...} range... range values.
- * @returns {pv.Scale.quantitative} <tt>this</tt>, or the current range.
- */
- scale.range = function() {
- if (arguments.length) {
- r = Array.prototype.slice.call(arguments);
- if (!r.length) r = [-Infinity, Infinity];
- else if (r.length == 1) r = [r[0], r[0]];
- i = [];
- for (var j = 0; j < r.length - 1; j++) {
- i.push(pv.Scale.interpolator(r[j], r[j + 1]));
- }
- return this;
- }
- return r;
- };
-
- /**
- * Inverts the specified value in the output range, returning the
- * corresponding value in the input domain. This is frequently used to convert
- * the mouse location (see {@link pv.Mark#mouse}) to a value in the input
- * domain. Inversion is only supported for numeric ranges, and not colors.
- *
- * <p>Note that this method does not do any rounding or bounds checking. If
- * the input domain is discrete (e.g., an array index), the returned value
- * should be rounded. If the specified <tt>y</tt> value is outside the range,
- * the returned value may be equivalently outside the input domain.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.invert
- * @param {number} y a value in the output range (a pixel location).
- * @returns {number} a value in the input domain.
- */
- scale.invert = function(y) {
- var j = pv.search(r, y);
- if (j < 0) j = -j - 2;
- j = Math.max(0, Math.min(i.length - 1, j));
- return type(g(l[j] + (y - r[j]) / (r[j + 1] - r[j]) * (l[j + 1] - l[j])));
- };
-
- /**
- * Returns an array of evenly-spaced, suitably-rounded values in the input
- * domain. This method attempts to return between 5 and 10 tick values. These
- * values are frequently used in conjunction with {@link pv.Rule} to display
- * tick marks or grid lines.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.ticks
- * @param {number} [m] optional number of desired ticks.
- * @returns {number[]} an array input domain values to use as ticks.
- */
- scale.ticks = function(m) {
- var start = d[0],
- end = d[d.length - 1],
- reverse = end < start,
- min = reverse ? end : start,
- max = reverse ? start : end,
- span = max - min;
-
- /* Special case: empty, invalid or infinite span. */
- if (!span || !isFinite(span)) {
- if (type == newDate) tickFormat = pv.Format.date("%x");
- return [type(min)];
- }
-
- /* Special case: dates. */
- if (type == newDate) {
- /* Floor the date d given the precision p. */
- function floor(d, p) {
- switch (p) {
- case 31536e6: d.setMonth(0);
- case 2592e6: d.setDate(1);
- case 6048e5: if (p == 6048e5) d.setDate(d.getDate() - d.getDay());
- case 864e5: d.setHours(0);
- case 36e5: d.setMinutes(0);
- case 6e4: d.setSeconds(0);
- case 1e3: d.setMilliseconds(0);
- }
- }
-
- var precision, format, increment, step = 1;
- if (span >= 3 * 31536e6) {
- precision = 31536e6;
- format = "%Y";
- /** @ignore */ increment = function(d) { d.setFullYear(d.getFullYear() + step); };
- } else if (span >= 3 * 2592e6) {
- precision = 2592e6;
- format = "%m/%Y";
- /** @ignore */ increment = function(d) { d.setMonth(d.getMonth() + step); };
- } else if (span >= 3 * 6048e5) {
- precision = 6048e5;
- format = "%m/%d";
- /** @ignore */ increment = function(d) { d.setDate(d.getDate() + 7 * step); };
- } else if (span >= 3 * 864e5) {
- precision = 864e5;
- format = "%m/%d";
- /** @ignore */ increment = function(d) { d.setDate(d.getDate() + step); };
- } else if (span >= 3 * 36e5) {
- precision = 36e5;
- format = "%I:%M %p";
- /** @ignore */ increment = function(d) { d.setHours(d.getHours() + step); };
- } else if (span >= 3 * 6e4) {
- precision = 6e4;
- format = "%I:%M %p";
- /** @ignore */ increment = function(d) { d.setMinutes(d.getMinutes() + step); };
- } else if (span >= 3 * 1e3) {
- precision = 1e3;
- format = "%I:%M:%S";
- /** @ignore */ increment = function(d) { d.setSeconds(d.getSeconds() + step); };
- } else {
- precision = 1;
- format = "%S.%Qs";
- /** @ignore */ increment = function(d) { d.setTime(d.getTime() + step); };
- }
- tickFormat = pv.Format.date(format);
-
- var date = new Date(min), dates = [];
- floor(date, precision);
-
- /* If we'd generate too many ticks, skip some!. */
- var n = span / precision;
- if (n > 10) {
- switch (precision) {
- case 36e5: {
- step = (n > 20) ? 6 : 3;
- date.setHours(Math.floor(date.getHours() / step) * step);
- break;
- }
- case 2592e6: {
- step = 3; // seasons
- date.setMonth(Math.floor(date.getMonth() / step) * step);
- break;
- }
- case 6e4: {
- step = (n > 30) ? 15 : ((n > 15) ? 10 : 5);
- date.setMinutes(Math.floor(date.getMinutes() / step) * step);
- break;
- }
- case 1e3: {
- step = (n > 90) ? 15 : ((n > 60) ? 10 : 5);
- date.setSeconds(Math.floor(date.getSeconds() / step) * step);
- break;
- }
- case 1: {
- step = (n > 1000) ? 250 : ((n > 200) ? 100 : ((n > 100) ? 50 : ((n > 50) ? 25 : 5)));
- date.setMilliseconds(Math.floor(date.getMilliseconds() / step) * step);
- break;
- }
- default: {
- step = pv.logCeil(n / 15, 10);
- if (n / step < 2) step /= 5;
- else if (n / step < 5) step /= 2;
- date.setFullYear(Math.floor(date.getFullYear() / step) * step);
- break;
- }
- }
- }
-
- while (true) {
- increment(date);
- if (date > max) break;
- dates.push(new Date(date));
- }
- return reverse ? dates.reverse() : dates;
- }
-
- /* Normal case: numbers. */
- if (!arguments.length) m = 10;
- var step = pv.logFloor(span / m, 10),
- err = m / (span / step);
- if (err <= .15) step *= 10;
- else if (err <= .35) step *= 5;
- else if (err <= .75) step *= 2;
- var start = Math.ceil(min / step) * step,
- end = Math.floor(max / step) * step;
- tickFormat = pv.Format.number()
- .fractionDigits(Math.max(0, -Math.floor(pv.log(step, 10) + .01)));
- var ticks = pv.range(start, end + step, step);
- return reverse ? ticks.reverse() : ticks;
- };
-
- /**
- * Formats the specified tick value using the appropriate precision, based on
- * the step interval between tick marks. If {@link #ticks} has not been called,
- * the argument is converted to a string, but no formatting is applied.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.tickFormat
- * @param {number} t a tick value.
- * @returns {string} a formatted tick value.
- */
- scale.tickFormat = function (t) { return tickFormat(t); };
-
- /**
- * "Nices" this scale, extending the bounds of the input domain to
- * evenly-rounded values. Nicing is useful if the domain is computed
- * dynamically from data, and may be irregular. For example, given a domain of
- * [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
- * extend the domain to [0.2, 1].
- *
- * <p>This method must be invoked each time after setting the domain.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.nice
- * @returns {pv.Scale.quantitative} <tt>this</tt>.
- */
- scale.nice = function() {
- if (d.length != 2) return this; // TODO support non-uniform domains
- var start = d[0],
- end = d[d.length - 1],
- reverse = end < start,
- min = reverse ? end : start,
- max = reverse ? start : end,
- span = max - min;
-
- /* Special case: empty, invalid or infinite span. */
- if (!span || !isFinite(span)) return this;
-
- var step = Math.pow(10, Math.round(Math.log(span) / Math.log(10)) - 1);
- d = [Math.floor(min / step) * step, Math.ceil(max / step) * step];
- if (reverse) d.reverse();
- l = d.map(f);
- return this;
- };
-
- /**
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
- * Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
- * <tt>function(d) y(d.foo)</tt>.
- *
- * <p>This method is provided for convenience, such that scales can be
- * succinctly defined inline. For example, given an array of data elements
- * that have a <tt>score</tt> attribute with the domain [0, 1], the height
- * property could be specified as:
- *
- * <pre> .height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
- *
- * This is equivalent to:
- *
- * <pre> .height(function(d) d.score * 480)</pre>
- *
- * This method should be used judiciously; it is typically more clear to
- * invoke the scale directly, passing in the value to be scaled.
- *
- * @function
- * @name pv.Scale.quantitative.prototype.by
- * @param {function} f an accessor function.
- * @returns {pv.Scale.quantitative} a view of this scale by the specified
- * accessor function.
- */
- scale.by = function(f) {
- function by() { return scale(f.apply(this, arguments)); }
- for (var method in scale) by[method] = scale[method];
- return by;
- };
-
- scale.domain.apply(scale, arguments);
- return scale;
-};
-/**
- * Returns a linear scale for the specified domain. The arguments to this
- * constructor are optional, and equivalent to calling {@link #domain}.
- * The default domain and range are [0,1].
- *
- * @class Represents a linear scale; a function that performs a linear
- * transformation. <style type="text/css">sub{line-height:0}</style> Most
- * commonly, a linear scale represents a 1-dimensional linear transformation
- * from a numeric domain of input data [<i>d<sub>0</sub></i>,
- * <i>d<sub>1</sub></i>] to a numeric range of pixels [<i>r<sub>0</sub></i>,
- * <i>r<sub>1</sub></i>]. The equation for such a scale is:
- *
- * <blockquote><i>f(x) = (x - d<sub>0</sub>) / (d<sub>1</sub> - d<sub>0</sub>) *
- * (r<sub>1</sub> - r<sub>0</sub>) + r<sub>0</sub></i></blockquote>
- *
- * For example, a linear scale from the domain [0, 100] to range [0, 640]:
- *
- * <blockquote><i>f(x) = (x - 0) / (100 - 0) * (640 - 0) + 0</i><br>
- * <i>f(x) = x / 100 * 640</i><br>
- * <i>f(x) = x * 6.4</i><br>
- * </blockquote>
- *
- * Thus, saying
- *
- * <pre> .height(function(d) d * 6.4)</pre>
- *
- * is identical to
- *
- * <pre> .height(pv.Scale.linear(0, 100).range(0, 640))</pre>
- *
- * Note that the scale is itself a function, and thus can be used as a property
- * directly, assuming that the data associated with a mark is a number. While
- * this is convenient for single-use scales, frequently it is desirable to
- * define scales globally:
- *
- * <pre>var y = pv.Scale.linear(0, 100).range(0, 640);</pre>
- *
- * The <tt>y</tt> scale can now be equivalently referenced within a property:
- *
- * <pre> .height(function(d) y(d))</pre>
- *
- * Alternatively, if the data are not simple numbers, the appropriate value can
- * be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
- * method similarly allows the data to be mapped to a numeric value before
- * performing the linear transformation.
- *
- * @param {number...} domain... optional domain values.
- * @extends pv.Scale.quantitative
- */
-pv.Scale.linear = function() {
- var scale = pv.Scale.quantitative();
- scale.domain.apply(scale, arguments);
- return scale;
-};
-/**
- * Returns a log scale for the specified domain. The arguments to this
- * constructor are optional, and equivalent to calling {@link #domain}.
- * The default domain is [1,10] and the default range is [0,1].
- *
- * @class Represents a log scale. <style
- * type="text/css">sub{line-height:0}</style> Most commonly, a log scale
- * represents a 1-dimensional log transformation from a numeric domain of input
- * data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to a numeric range of
- * pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>]. The equation for such a
- * scale is:
- *
- * <blockquote><i>f(x) = (log(x) - log(d<sub>0</sub>)) / (log(d<sub>1</sub>) -
- * log(d<sub>0</sub>)) * (r<sub>1</sub> - r<sub>0</sub>) +
- * r<sub>0</sub></i></blockquote>
- *
- * where <i>log(x)</i> represents the zero-symmetric logarthim of <i>x</i> using
- * the scale's associated base (default: 10, see {@link pv.logSymmetric}). For
- * example, a log scale from the domain [1, 100] to range [0, 640]:
- *
- * <blockquote><i>f(x) = (log(x) - log(1)) / (log(100) - log(1)) * (640 - 0) + 0</i><br>
- * <i>f(x) = log(x) / 2 * 640</i><br>
- * <i>f(x) = log(x) * 320</i><br>
- * </blockquote>
- *
- * Thus, saying
- *
- * <pre> .height(function(d) Math.log(d) * 138.974)</pre>
- *
- * is equivalent to
- *
- * <pre> .height(pv.Scale.log(1, 100).range(0, 640))</pre>
- *
- * Note that the scale is itself a function, and thus can be used as a property
- * directly, assuming that the data associated with a mark is a number. While
- * this is convenient for single-use scales, frequently it is desirable to
- * define scales globally:
- *
- * <pre>var y = pv.Scale.log(1, 100).range(0, 640);</pre>
- *
- * The <tt>y</tt> scale can now be equivalently referenced within a property:
- *
- * <pre> .height(function(d) y(d))</pre>
- *
- * Alternatively, if the data are not simple numbers, the appropriate value can
- * be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
- * method similarly allows the data to be mapped to a numeric value before
- * performing the log transformation.
- *
- * @param {number...} domain... optional domain values.
- * @extends pv.Scale.quantitative
- */
-pv.Scale.log = function() {
- var scale = pv.Scale.quantitative(1, 10),
- b, // logarithm base
- p, // cached Math.log(b)
- /** @ignore */ log = function(x) { return Math.log(x) / p; },
- /** @ignore */ pow = function(y) { return Math.pow(b, y); };
-
- /**
- * Returns an array of evenly-spaced, suitably-rounded values in the input
- * domain. These values are frequently used in conjunction with
- * {@link pv.Rule} to display tick marks or grid lines.
- *
- * @function
- * @name pv.Scale.log.prototype.ticks
- * @returns {number[]} an array input domain values to use as ticks.
- */
- scale.ticks = function() {
- // TODO support non-uniform domains
- var d = scale.domain(),
- n = d[0] < 0,
- i = Math.floor(n ? -log(-d[0]) : log(d[0])),
- j = Math.ceil(n ? -log(-d[1]) : log(d[1])),
- ticks = [];
- if (n) {
- ticks.push(-pow(-i));
- for (; i++ < j;) for (var k = b - 1; k > 0; k--) ticks.push(-pow(-i) * k);
- } else {
- for (; i < j; i++) for (var k = 1; k < b; k++) ticks.push(pow(i) * k);
- ticks.push(pow(i));
- }
- for (i = 0; ticks[i] < d[0]; i++); // strip small values
- for (j = ticks.length; ticks[j - 1] > d[1]; j--); // strip big values
- return ticks.slice(i, j);
- };
-
- /**
- * Formats the specified tick value using the appropriate precision, assuming
- * base 10.
- *
- * @function
- * @name pv.Scale.log.prototype.tickFormat
- * @param {number} t a tick value.
- * @returns {string} a formatted tick value.
- */
- scale.tickFormat = function(t) {
- return t.toPrecision(1);
- };
-
- /**
- * "Nices" this scale, extending the bounds of the input domain to
- * evenly-rounded values. This method uses {@link pv.logFloor} and
- * {@link pv.logCeil}. Nicing is useful if the domain is computed dynamically
- * from data, and may be irregular. For example, given a domain of
- * [0.20147987687960267, 0.996679553296417], a call to <tt>nice()</tt> might
- * extend the domain to [0.1, 1].
- *
- * <p>This method must be invoked each time after setting the domain (and
- * base).
- *
- * @function
- * @name pv.Scale.log.prototype.nice
- * @returns {pv.Scale.log} <tt>this</tt>.
- */
- scale.nice = function() {
- // TODO support non-uniform domains
- var d = scale.domain();
- return scale.domain(pv.logFloor(d[0], b), pv.logCeil(d[1], b));
- };
-
- /**
- * Sets or gets the logarithm base. Defaults to 10.
- *
- * @function
- * @name pv.Scale.log.prototype.base
- * @param {number} [v] the new base.
- * @returns {pv.Scale.log} <tt>this</tt>, or the current base.
- */
- scale.base = function(v) {
- if (arguments.length) {
- b = Number(v);
- p = Math.log(b);
- scale.transform(log, pow); // update transformed domain
- return this;
- }
- return b;
- };
-
- scale.domain.apply(scale, arguments);
- return scale.base(10);
-};
-/**
- * Returns a root scale for the specified domain. The arguments to this
- * constructor are optional, and equivalent to calling {@link #domain}.
- * The default domain and range are [0,1].
- *
- * @class Represents a root scale; a function that performs a power
- * transformation. <style type="text/css">sub{line-height:0}</style> Most
- * commonly, a root scale represents a 1-dimensional root transformation from a
- * numeric domain of input data [<i>d<sub>0</sub></i>, <i>d<sub>1</sub></i>] to
- * a numeric range of pixels [<i>r<sub>0</sub></i>, <i>r<sub>1</sub></i>].
- *
- * <p>Note that the scale is itself a function, and thus can be used as a
- * property directly, assuming that the data associated with a mark is a
- * number. While this is convenient for single-use scales, frequently it is
- * desirable to define scales globally:
- *
- * <pre>var y = pv.Scale.root(0, 100).range(0, 640);</pre>
- *
- * The <tt>y</tt> scale can now be equivalently referenced within a property:
- *
- * <pre> .height(function(d) y(d))</pre>
- *
- * Alternatively, if the data are not simple numbers, the appropriate value can
- * be passed to the <tt>y</tt> scale (e.g., <tt>d.foo</tt>). The {@link #by}
- * method similarly allows the data to be mapped to a numeric value before
- * performing the root transformation.
- *
- * @param {number...} domain... optional domain values.
- * @extends pv.Scale.quantitative
- */
-pv.Scale.root = function() {
- var scale = pv.Scale.quantitative();
-
- /**
- * Sets or gets the exponent; defaults to 2.
- *
- * @function
- * @name pv.Scale.root.prototype.power
- * @param {number} [v] the new exponent.
- * @returns {pv.Scale.root} <tt>this</tt>, or the current base.
- */
- scale.power = function(v) {
- if (arguments.length) {
- var b = Number(v), p = 1 / b;
- scale.transform(
- function(x) { return Math.pow(x, p); },
- function(y) { return Math.pow(y, b); });
- return this;
- }
- return b;
- };
-
- scale.domain.apply(scale, arguments);
- return scale.power(2);
-};
-/**
- * Returns an ordinal scale for the specified domain. The arguments to this
- * constructor are optional, and equivalent to calling {@link #domain}.
- *
- * @class Represents an ordinal scale. <style
- * type="text/css">sub{line-height:0}</style> An ordinal scale represents a
- * pairwise mapping from <i>n</i> discrete values in the input domain to
- * <i>n</i> discrete values in the output range. For example, an ordinal scale
- * might map a domain of species ["setosa", "versicolor", "virginica"] to colors
- * ["red", "green", "blue"]. Thus, saying
- *
- * <pre> .fillStyle(function(d) {
- * switch (d.species) {
- * case "setosa": return "red";
- * case "versicolor": return "green";
- * case "virginica": return "blue";
- * }
- * })</pre>
- *
- * is equivalent to
- *
- * <pre> .fillStyle(pv.Scale.ordinal("setosa", "versicolor", "virginica")
- * .range("red", "green", "blue")
- * .by(function(d) d.species))</pre>
- *
- * If the mapping from species to color does not need to be specified
- * explicitly, the domain can be omitted. In this case it will be inferred
- * lazily from the data:
- *
- * <pre> .fillStyle(pv.colors("red", "green", "blue")
- * .by(function(d) d.species))</pre>
- *
- * When the domain is inferred, the first time the scale is invoked, the first
- * element from the range will be returned. Subsequent calls with unique values
- * will return subsequent elements from the range. If the inferred domain grows
- * larger than the range, range values will be reused. However, it is strongly
- * recommended that the domain and the range contain the same number of
- * elements.
- *
- * <p>A range can be discretized from a continuous interval (e.g., for pixel
- * positioning) by using {@link #split}, {@link #splitFlush} or
- * {@link #splitBanded} after the domain has been set. For example, if
- * <tt>states</tt> is an array of the fifty U.S. state names, the state name can
- * be encoded in the left position:
- *
- * <pre> .left(pv.Scale.ordinal(states)
- * .split(0, 640)
- * .by(function(d) d.state))</pre>
- *
- * <p>N.B.: ordinal scales are not invertible (at least not yet), since the
- * domain and range and discontinuous. A workaround is to use a linear scale.
- *
- * @param {...} domain... optional domain values.
- * @extends pv.Scale
- * @see pv.colors
- */
-pv.Scale.ordinal = function() {
- var d = [], i = {}, r = [], band = 0;
-
- /** @private */
- function scale(x) {
- if (!(x in i)) i[x] = d.push(x) - 1;
- return r[i[x] % r.length];
- }
-
- /**
- * Sets or gets the input domain. This method can be invoked several ways:
- *
- * <p>1. <tt>domain(values...)</tt>
- *
- * <p>Specifying the domain as a series of values is the most explicit and
- * recommended approach. However, if the domain values are derived from data,
- * you may find the second method more appropriate.
- *
- * <p>2. <tt>domain(array, f)</tt>
- *
- * <p>Rather than enumerating the domain values as explicit arguments to this
- * method, you can specify a single argument of an array. In addition, you can
- * specify an optional accessor function to extract the domain values from the
- * array.
- *
- * <p>3. <tt>domain()</tt>
- *
- * <p>Invoking the <tt>domain</tt> method with no arguments returns the
- * current domain as an array.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.domain
- * @param {...} domain... domain values.
- * @returns {pv.Scale.ordinal} <tt>this</tt>, or the current domain.
- */
- scale.domain = function(array, f) {
- if (arguments.length) {
- array = (array instanceof Array)
- ? ((arguments.length > 1) ? pv.map(array, f) : array)
- : Array.prototype.slice.call(arguments);
-
- /* Filter the specified ordinals to their unique values. */
- d = [];
- var seen = {};
- for (var j = 0; j < array.length; j++) {
- var o = array[j];
- if (!(o in seen)) {
- seen[o] = true;
- d.push(o);
- }
- }
-
- i = pv.numerate(d);
- return this;
- }
- return d;
- };
-
- /**
- * Sets or gets the output range. This method can be invoked several ways:
- *
- * <p>1. <tt>range(values...)</tt>
- *
- * <p>Specifying the range as a series of values is the most explicit and
- * recommended approach. However, if the range values are derived from data,
- * you may find the second method more appropriate.
- *
- * <p>2. <tt>range(array, f)</tt>
- *
- * <p>Rather than enumerating the range values as explicit arguments to this
- * method, you can specify a single argument of an array. In addition, you can
- * specify an optional accessor function to extract the range values from the
- * array.
- *
- * <p>3. <tt>range()</tt>
- *
- * <p>Invoking the <tt>range</tt> method with no arguments returns the
- * current range as an array.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.range
- * @param {...} range... range values.
- * @returns {pv.Scale.ordinal} <tt>this</tt>, or the current range.
- */
- scale.range = function(array, f) {
- if (arguments.length) {
- r = (array instanceof Array)
- ? ((arguments.length > 1) ? pv.map(array, f) : array)
- : Array.prototype.slice.call(arguments);
- if (typeof r[0] == "string") r = r.map(pv.color);
- return this;
- }
- return r;
- };
-
- /**
- * Sets the range from the given continuous interval. The interval
- * [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
- * where <i>n</i> is the number of (unique) values in the domain. The first
- * and last point are offset from the edge of the range by half the distance
- * between points.
- *
- * <p>This method must be called <i>after</i> the domain is set.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.split
- * @param {number} min minimum value of the output range.
- * @param {number} max maximum value of the output range.
- * @returns {pv.Scale.ordinal} <tt>this</tt>.
- * @see #splitFlush
- * @see #splitBanded
- */
- scale.split = function(min, max) {
- var step = (max - min) / this.domain().length;
- r = pv.range(min + step / 2, max, step);
- return this;
- };
-
- /**
- * Sets the range from the given continuous interval. The interval
- * [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced points,
- * where <i>n</i> is the number of (unique) values in the domain. The first
- * and last point are exactly on the edge of the range.
- *
- * <p>This method must be called <i>after</i> the domain is set.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.splitFlush
- * @param {number} min minimum value of the output range.
- * @param {number} max maximum value of the output range.
- * @returns {pv.Scale.ordinal} <tt>this</tt>.
- * @see #split
- */
- scale.splitFlush = function(min, max) {
- var n = this.domain().length, step = (max - min) / (n - 1);
- r = (n == 1) ? [(min + max) / 2]
- : pv.range(min, max + step / 2, step);
- return this;
- };
-
- /**
- * Sets the range from the given continuous interval. The interval
- * [<i>min</i>, <i>max</i>] is subdivided into <i>n</i> equispaced bands,
- * where <i>n</i> is the number of (unique) values in the domain. The first
- * and last band are offset from the edge of the range by the distance between
- * bands.
- *
- * <p>The band width argument, <tt>band</tt>, is typically in the range [0, 1]
- * and defaults to 1. This fraction corresponds to the amount of space in the
- * range to allocate to the bands, as opposed to padding. A value of 0.5 means
- * that the band width will be equal to the padding width. The computed
- * absolute band width can be retrieved from the range as
- * <tt>scale.range().band</tt>.
- *
- * <p>If the band width argument is negative, this method will allocate bands
- * of a <i>fixed</i> width <tt>-band</tt>, rather than a relative fraction of
- * the available space.
- *
- * <p>Tip: to inset the bands by a fixed amount <tt>p</tt>, specify a minimum
- * value of <tt>min + p</tt> (or simply <tt>p</tt>, if <tt>min</tt> is
- * 0). Then set the mark width to <tt>scale.range().band - p</tt>.
- *
- * <p>This method must be called <i>after</i> the domain is set.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.splitBanded
- * @param {number} min minimum value of the output range.
- * @param {number} max maximum value of the output range.
- * @param {number} [band] the fractional band width in [0, 1]; defaults to 1.
- * @returns {pv.Scale.ordinal} <tt>this</tt>.
- * @see #split
- */
- scale.splitBanded = function(min, max, band) {
- if (arguments.length < 3) band = 1;
- if (band < 0) {
- var n = this.domain().length,
- total = -band * n,
- remaining = max - min - total,
- padding = remaining / (n + 1);
- r = pv.range(min + padding, max, padding - band);
- r.band = -band;
- } else {
- var step = (max - min) / (this.domain().length + (1 - band));
- r = pv.range(min + step * (1 - band), max, step);
- r.band = step * band;
- }
- return this;
- };
-
- /**
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
- * Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
- * <tt>function(d) y(d.foo)</tt>. This method should be used judiciously; it
- * is typically more clear to invoke the scale directly, passing in the value
- * to be scaled.
- *
- * @function
- * @name pv.Scale.ordinal.prototype.by
- * @param {function} f an accessor function.
- * @returns {pv.Scale.ordinal} a view of this scale by the specified accessor
- * function.
- */
- scale.by = function(f) {
- function by() { return scale(f.apply(this, arguments)); }
- for (var method in scale) by[method] = scale[method];
- return by;
- };
-
- scale.domain.apply(scale, arguments);
- return scale;
-};
-/**
- * Constructs a default quantile scale. The arguments to this constructor are
- * optional, and equivalent to calling {@link #domain}. The default domain is
- * the empty set, and the default range is [0,1].
- *
- * @class Represents a quantile scale; a function that maps from a value within
- * a sortable domain to a quantized numeric range. Typically, the domain is a
- * set of numbers, but any sortable value (such as strings) can be used as the
- * domain of a quantile scale. The range defaults to [0,1], with 0 corresponding
- * to the smallest value in the domain, 1 the largest, .5 the median, etc.
- *
- * <p>By default, the number of quantiles in the range corresponds to the number
- * of values in the domain. The {@link #quantiles} method can be used to specify
- * an explicit number of quantiles; for example, <tt>quantiles(4)</tt> produces
- * a standard quartile scale. A quartile scale's range is a set of four discrete
- * values, such as [0, 1/3, 2/3, 1]. Calling the {@link #range} method will
- * scale these discrete values accordingly, similar to {@link
- * pv.Scale.ordinal#splitFlush}.
- *
- * <p>For example, given the strings ["c", "a", "b"], a default quantile scale:
- *
- * <pre>pv.Scale.quantile("c", "a", "b")</pre>
- *
- * will return 0 for "a", .5 for "b", and 1 for "c".
- *
- * @extends pv.Scale
- */
-pv.Scale.quantile = function() {
- var n = -1, // number of quantiles
- j = -1, // max quantile index
- q = [], // quantile boundaries
- d = [], // domain
- y = pv.Scale.linear(); // range
-
- /** @private */
- function scale(x) {
- return y(Math.max(0, Math.min(j, pv.search.index(q, x) - 1)) / j);
- }
-
- /**
- * Sets or gets the quantile boundaries. By default, each element in the
- * domain is in its own quantile. If the argument to this method is a number,
- * it specifies the number of equal-sized quantiles by which to divide the
- * domain.
- *
- * <p>If no arguments are specified, this method returns the quantile
- * boundaries; the first element is always the minimum value of the domain,
- * and the last element is the maximum value of the domain. Thus, the length
- * of the returned array is always one greater than the number of quantiles.
- *
- * @function
- * @name pv.Scale.quantile.prototype.quantiles
- * @param {number} x the number of quantiles.
- */
- scale.quantiles = function(x) {
- if (arguments.length) {
- n = Number(x);
- if (n < 0) {
- q = [d[0]].concat(d);
- j = d.length - 1;
- } else {
- q = [];
- q[0] = d[0];
- for (var i = 1; i <= n; i++) {
- q[i] = d[~~(i * (d.length - 1) / n)];
- }
- j = n - 1;
- }
- return this;
- }
- return q;
- };
-
- /**
- * Sets or gets the input domain. This method can be invoked several ways:
- *
- * <p>1. <tt>domain(values...)</tt>
- *
- * <p>Specifying the domain as a series of values is the most explicit and
- * recommended approach. However, if the domain values are derived from data,
- * you may find the second method more appropriate.
- *
- * <p>2. <tt>domain(array, f)</tt>
- *
- * <p>Rather than enumerating the domain values as explicit arguments to this
- * method, you can specify a single argument of an array. In addition, you can
- * specify an optional accessor function to extract the domain values from the
- * array.
- *
- * <p>3. <tt>domain()</tt>
- *
- * <p>Invoking the <tt>domain</tt> method with no arguments returns the
- * current domain as an array.
- *
- * @function
- * @name pv.Scale.quantile.prototype.domain
- * @param {...} domain... domain values.
- * @returns {pv.Scale.quantile} <tt>this</tt>, or the current domain.
- */
- scale.domain = function(array, f) {
- if (arguments.length) {
- d = (array instanceof Array)
- ? pv.map(array, f)
- : Array.prototype.slice.call(arguments);
- d.sort(pv.naturalOrder);
- scale.quantiles(n); // recompute quantiles
- return this;
- }
- return d;
- };
-
- /**
- * Sets or gets the output range. This method can be invoked several ways:
- *
- * <p>1. <tt>range(min, ..., max)</tt>
- *
- * <p>The range may be specified as a series of numbers or colors. Most
- * commonly, two numbers are specified: the minimum and maximum pixel values.
- * For a color scale, values may be specified as {@link pv.Color}s or
- * equivalent strings. For a diverging scale, or other subdivided non-uniform
- * scales, multiple values can be specified. For example:
- *
- * <pre> .range("red", "white", "green")</pre>
- *
- * <p>Currently, only numbers and colors are supported as range values. The
- * number of range values must exactly match the number of domain values, or
- * the behavior of the scale is undefined.
- *
- * <p>2. <tt>range()</tt>
- *
- * <p>Invoking the <tt>range</tt> method with no arguments returns the current
- * range as an array of numbers or colors.
- *
- * @function
- * @name pv.Scale.quantile.prototype.range
- * @param {...} range... range values.
- * @returns {pv.Scale.quantile} <tt>this</tt>, or the current range.
- */
- scale.range = function() {
- if (arguments.length) {
- y.range.apply(y, arguments);
- return this;
- }
- return y.range();
- };
-
- /**
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
- * Given a scale <tt>y</tt>, <tt>y.by(function(d) d.foo)</tt> is equivalent to
- * <tt>function(d) y(d.foo)</tt>.
- *
- * <p>This method is provided for convenience, such that scales can be
- * succinctly defined inline. For example, given an array of data elements
- * that have a <tt>score</tt> attribute with the domain [0, 1], the height
- * property could be specified as:
- *
- * <pre>.height(pv.Scale.linear().range(0, 480).by(function(d) d.score))</pre>
- *
- * This is equivalent to:
- *
- * <pre>.height(function(d) d.score * 480)</pre>
- *
- * This method should be used judiciously; it is typically more clear to
- * invoke the scale directly, passing in the value to be scaled.
- *
- * @function
- * @name pv.Scale.quantile.prototype.by
- * @param {function} f an accessor function.
- * @returns {pv.Scale.quantile} a view of this scale by the specified
- * accessor function.
- */
- scale.by = function(f) {
- function by() { return scale(f.apply(this, arguments)); }
- for (var method in scale) by[method] = scale[method];
- return by;
- };
-
- scale.domain.apply(scale, arguments);
- return scale;
-};
-/**
- * Returns a histogram operator for the specified data, with an optional
- * accessor function. If the data specified is not an array of numbers, an
- * accessor function must be specified to map the data to numeric values.
- *
- * @class Represents a histogram operator.
- *
- * @param {array} data an array of numbers or objects.
- * @param {function} [f] an optional accessor function.
- */
-pv.histogram = function(data, f) {
- var frequency = true;
- return {
-
- /**
- * Returns the computed histogram bins. An optional array of numbers,
- * <tt>ticks</tt>, may be specified as the break points. If the ticks are
- * not specified, default ticks will be computed using a linear scale on the
- * data domain.
- *
- * <p>The returned array contains {@link pv.histogram.Bin}s. The <tt>x</tt>
- * attribute corresponds to the bin's start value (inclusive), while the
- * <tt>dx</tt> attribute stores the bin size (end - start). The <tt>y</tt>
- * attribute stores either the frequency count or probability, depending on
- * how the histogram operator has been configured.
- *
- * <p>The {@link pv.histogram.Bin} objects are themselves arrays, containing
- * the data elements present in each bin, i.e., the elements in the
- * <tt>data</tt> array (prior to invoking the accessor function, if any).
- * For example, if the data represented countries, and the accessor function
- * returned the GDP of each country, the returned bins would be arrays of
- * countries (not GDPs).
- *
- * @function
- * @name pv.histogram.prototype.bins
- * @param {array} [ticks]
- * @returns {array}
- */ /** @private */
- bins: function(ticks) {
- var x = pv.map(data, f), bins = [];
-
- /* Initialize default ticks. */
- if (!arguments.length) ticks = pv.Scale.linear(x).ticks();
-
- /* Initialize the bins. */
- for (var i = 0; i < ticks.length - 1; i++) {
- var bin = bins[i] = [];
- bin.x = ticks[i];
- bin.dx = ticks[i + 1] - ticks[i];
- bin.y = 0;
- }
-
- /* Count the number of samples per bin. */
- for (var i = 0; i < x.length; i++) {
- var j = pv.search.index(ticks, x[i]) - 1,
- bin = bins[Math.max(0, Math.min(bins.length - 1, j))];
- bin.y++;
- bin.push(data[i]);
- }
-
- /* Convert frequencies to probabilities. */
- if (!frequency) for (var i = 0; i < bins.length; i++) {
- bins[i].y /= x.length;
- }
-
- return bins;
- },
-
- /**
- * Sets or gets whether this histogram operator returns frequencies or
- * probabilities.
- *
- * @function
- * @name pv.histogram.prototype.frequency
- * @param {boolean} [x]
- * @returns {pv.histogram} this.
- */ /** @private */
- frequency: function(x) {
- if (arguments.length) {
- frequency = Boolean(x);
- return this;
- }
- return frequency;
- }
- };
-};
-
-/**
- * @class Represents a bin returned by the {@link pv.histogram} operator. Bins
- * are themselves arrays containing the data elements present in the given bin
- * (prior to the accessor function being invoked to convert the data object to a
- * numeric value). These bin arrays have additional attributes with meta
- * information about the bin.
- *
- * @name pv.histogram.Bin
- * @extends array
- * @see pv.histogram
- */
-
-/**
- * The start value of the bin's range.
- *
- * @type number
- * @name pv.histogram.Bin.prototype.x
- */
-
-/**
- * The magnitude value of the bin's range; end - start.
- *
- * @type number
- * @name pv.histogram.Bin.prototype.dx
- */
-
-/**
- * The frequency or probability of the bin, depending on how the histogram
- * operator was configured.
- *
- * @type number
- * @name pv.histogram.Bin.prototype.y
- */
-/**
- * Returns the {@link pv.Color} for the specified color format string. Colors
- * may have an associated opacity, or alpha channel. Color formats are specified
- * by CSS Color Modular Level 3, using either in RGB or HSL color space. For
- * example:<ul>
- *
- * <li>#f00 // #rgb
- * <li>#ff0000 // #rrggbb
- * <li>rgb(255, 0, 0)
- * <li>rgb(100%, 0%, 0%)
- * <li>hsl(0, 100%, 50%)
- * <li>rgba(0, 0, 255, 0.5)
- * <li>hsla(120, 100%, 50%, 1)
- *
- * </ul>The SVG 1.0 color keywords names are also supported, such as "aliceblue"
- * and "yellowgreen". The "transparent" keyword is supported for fully-
- * transparent black.
- *
- * <p>If the <tt>format</tt> argument is already an instance of <tt>Color</tt>,
- * the argument is returned with no further processing.
- *
- * @param {string} format the color specification string, such as "#f00".
- * @returns {pv.Color} the corresponding <tt>Color</tt>.
- * @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
- * keywords</a>
- * @see <a href="http://www.w3.org/TR/css3-color/">CSS3 color module</a>
- */
-pv.color = function(format) {
- if (format.rgb) return format.rgb();
-
- /* Handle hsl, rgb. */
- var m1 = /([a-z]+)\((.*)\)/i.exec(format);
- if (m1) {
- var m2 = m1[2].split(","), a = 1;
- switch (m1[1]) {
- case "hsla":
- case "rgba": {
- a = parseFloat(m2[3]);
- if (!a) return pv.Color.transparent;
- break;
- }
- }
- switch (m1[1]) {
- case "hsla":
- case "hsl": {
- var h = parseFloat(m2[0]), // degrees
- s = parseFloat(m2[1]) / 100, // percentage
- l = parseFloat(m2[2]) / 100; // percentage
- return (new pv.Color.Hsl(h, s, l, a)).rgb();
- }
- case "rgba":
- case "rgb": {
- function parse(c) { // either integer or percentage
- var f = parseFloat(c);
- return (c[c.length - 1] == '%') ? Math.round(f * 2.55) : f;
- }
- var r = parse(m2[0]), g = parse(m2[1]), b = parse(m2[2]);
- return pv.rgb(r, g, b, a);
- }
- }
- }
-
- /* Named colors. */
- var named = pv.Color.names[format];
- if (named) return named;
-
- /* Hexadecimal colors: #rgb and #rrggbb. */
- if (format.charAt(0) == "#") {
- var r, g, b;
- if (format.length == 4) {
- r = format.charAt(1); r += r;
- g = format.charAt(2); g += g;
- b = format.charAt(3); b += b;
- } else if (format.length == 7) {
- r = format.substring(1, 3);
- g = format.substring(3, 5);
- b = format.substring(5, 7);
- }
- return pv.rgb(parseInt(r, 16), parseInt(g, 16), parseInt(b, 16), 1);
- }
-
- /* Otherwise, pass-through unsupported colors. */
- return new pv.Color(format, 1);
-};
-
-/**
- * Constructs a color with the specified color format string and opacity. This
- * constructor should not be invoked directly; use {@link pv.color} instead.
- *
- * @class Represents an abstract (possibly translucent) color. The color is
- * divided into two parts: the <tt>color</tt> attribute, an opaque color format
- * string, and the <tt>opacity</tt> attribute, a float in [0, 1]. The color
- * space is dependent on the implementing class; all colors support the
- * {@link #rgb} method to convert to RGB color space for interpolation.
- *
- * <p>See also the <a href="../../api/Color.html">Color guide</a>.
- *
- * @param {string} color an opaque color format string, such as "#f00".
- * @param {number} opacity the opacity, in [0,1].
- * @see pv.color
- */
-pv.Color = function(color, opacity) {
- /**
- * An opaque color format string, such as "#f00".
- *
- * @type string
- * @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
- * keywords</a>
- * @see <a href="http://www.w3.org/TR/css3-color/">CSS3 color module</a>
- */
- this.color = color;
-
- /**
- * The opacity, a float in [0, 1].
- *
- * @type number
- */
- this.opacity = opacity;
-};
-
-/**
- * Returns a new color that is a brighter version of this color. The behavior of
- * this method may vary slightly depending on the underlying color space.
- * Although brighter and darker are inverse operations, the results of a series
- * of invocations of these two methods might be inconsistent because of rounding
- * errors.
- *
- * @param [k] {number} an optional scale factor; defaults to 1.
- * @see #darker
- * @returns {pv.Color} a brighter color.
- */
-pv.Color.prototype.brighter = function(k) {
- return this.rgb().brighter(k);
-};
-
-/**
- * Returns a new color that is a brighter version of this color. The behavior of
- * this method may vary slightly depending on the underlying color space.
- * Although brighter and darker are inverse operations, the results of a series
- * of invocations of these two methods might be inconsistent because of rounding
- * errors.
- *
- * @param [k] {number} an optional scale factor; defaults to 1.
- * @see #brighter
- * @returns {pv.Color} a darker color.
- */
-pv.Color.prototype.darker = function(k) {
- return this.rgb().darker(k);
-};
-
-/**
- * Constructs a new RGB color with the specified channel values.
- *
- * @param {number} r the red channel, an integer in [0,255].
- * @param {number} g the green channel, an integer in [0,255].
- * @param {number} b the blue channel, an integer in [0,255].
- * @param {number} [a] the alpha channel, a float in [0,1].
- * @returns pv.Color.Rgb
- */
-pv.rgb = function(r, g, b, a) {
- return new pv.Color.Rgb(r, g, b, (arguments.length == 4) ? a : 1);
-};
-
-/**
- * Constructs a new RGB color with the specified channel values.
- *
- * @class Represents a color in RGB space.
- *
- * @param {number} r the red channel, an integer in [0,255].
- * @param {number} g the green channel, an integer in [0,255].
- * @param {number} b the blue channel, an integer in [0,255].
- * @param {number} a the alpha channel, a float in [0,1].
- * @extends pv.Color
- */
-pv.Color.Rgb = function(r, g, b, a) {
- pv.Color.call(this, a ? ("rgb(" + r + "," + g + "," + b + ")") : "none", a);
-
- /**
- * The red channel, an integer in [0, 255].
- *
- * @type number
- */
- this.r = r;
-
- /**
- * The green channel, an integer in [0, 255].
- *
- * @type number
- */
- this.g = g;
-
- /**
- * The blue channel, an integer in [0, 255].
- *
- * @type number
- */
- this.b = b;
-
- /**
- * The alpha channel, a float in [0, 1].
- *
- * @type number
- */
- this.a = a;
-};
-pv.Color.Rgb.prototype = pv.extend(pv.Color);
-
-/**
- * Constructs a new RGB color with the same green, blue and alpha channels as
- * this color, with the specified red channel.
- *
- * @param {number} r the red channel, an integer in [0,255].
- */
-pv.Color.Rgb.prototype.red = function(r) {
- return pv.rgb(r, this.g, this.b, this.a);
-};
-
-/**
- * Constructs a new RGB color with the same red, blue and alpha channels as this
- * color, with the specified green channel.
- *
- * @param {number} g the green channel, an integer in [0,255].
- */
-pv.Color.Rgb.prototype.green = function(g) {
- return pv.rgb(this.r, g, this.b, this.a);
-};
-
-/**
- * Constructs a new RGB color with the same red, green and alpha channels as
- * this color, with the specified blue channel.
- *
- * @param {number} b the blue channel, an integer in [0,255].
- */
-pv.Color.Rgb.prototype.blue = function(b) {
- return pv.rgb(this.r, this.g, b, this.a);
-};
-
-/**
- * Constructs a new RGB color with the same red, green and blue channels as this
- * color, with the specified alpha channel.
- *
- * @param {number} a the alpha channel, a float in [0,1].
- */
-pv.Color.Rgb.prototype.alpha = function(a) {
- return pv.rgb(this.r, this.g, this.b, a);
-};
-
-/**
- * Returns the RGB color equivalent to this color. This method is abstract and
- * must be implemented by subclasses.
- *
- * @returns {pv.Color.Rgb} an RGB color.
- * @function
- * @name pv.Color.prototype.rgb
- */
-
-/**
- * Returns this.
- *
- * @returns {pv.Color.Rgb} this.
- */
-pv.Color.Rgb.prototype.rgb = function() { return this; };
-
-/**
- * Returns a new color that is a brighter version of this color. This method
- * applies an arbitrary scale factor to each of the three RGB components of this
- * color to create a brighter version of this color. Although brighter and
- * darker are inverse operations, the results of a series of invocations of
- * these two methods might be inconsistent because of rounding errors.
- *
- * @param [k] {number} an optional scale factor; defaults to 1.
- * @see #darker
- * @returns {pv.Color.Rgb} a brighter color.
- */
-pv.Color.Rgb.prototype.brighter = function(k) {
- k = Math.pow(0.7, arguments.length ? k : 1);
- var r = this.r, g = this.g, b = this.b, i = 30;
- if (!r && !g && !b) return pv.rgb(i, i, i, this.a);
- if (r && (r < i)) r = i;
- if (g && (g < i)) g = i;
- if (b && (b < i)) b = i;
- return pv.rgb(
- Math.min(255, Math.floor(r / k)),
- Math.min(255, Math.floor(g / k)),
- Math.min(255, Math.floor(b / k)),
- this.a);
-};
-
-/**
- * Returns a new color that is a darker version of this color. This method
- * applies an arbitrary scale factor to each of the three RGB components of this
- * color to create a darker version of this color. Although brighter and darker
- * are inverse operations, the results of a series of invocations of these two
- * methods might be inconsistent because of rounding errors.
- *
- * @param [k] {number} an optional scale factor; defaults to 1.
- * @see #brighter
- * @returns {pv.Color.Rgb} a darker color.
- */
-pv.Color.Rgb.prototype.darker = function(k) {
- k = Math.pow(0.7, arguments.length ? k : 1);
- return pv.rgb(
- Math.max(0, Math.floor(k * this.r)),
- Math.max(0, Math.floor(k * this.g)),
- Math.max(0, Math.floor(k * this.b)),
- this.a);
-};
-
-/**
- * Constructs a new HSL color with the specified values.
- *
- * @param {number} h the hue, an integer in [0, 360].
- * @param {number} s the saturation, a float in [0, 1].
- * @param {number} l the lightness, a float in [0, 1].
- * @param {number} [a] the opacity, a float in [0, 1].
- * @returns pv.Color.Hsl
- */
-pv.hsl = function(h, s, l, a) {
- return new pv.Color.Hsl(h, s, l, (arguments.length == 4) ? a : 1);
-};
-
-/**
- * Constructs a new HSL color with the specified values.
- *
- * @class Represents a color in HSL space.
- *
- * @param {number} h the hue, an integer in [0, 360].
- * @param {number} s the saturation, a float in [0, 1].
- * @param {number} l the lightness, a float in [0, 1].
- * @param {number} a the opacity, a float in [0, 1].
- * @extends pv.Color
- */
-pv.Color.Hsl = function(h, s, l, a) {
- pv.Color.call(this, "hsl(" + h + "," + (s * 100) + "%," + (l * 100) + "%)", a);
-
- /**
- * The hue, an integer in [0, 360].
- *
- * @type number
- */
- this.h = h;
-
- /**
- * The saturation, a float in [0, 1].
- *
- * @type number
- */
- this.s = s;
-
- /**
- * The lightness, a float in [0, 1].
- *
- * @type number
- */
- this.l = l;
-
- /**
- * The opacity, a float in [0, 1].
- *
- * @type number
- */
- this.a = a;
-};
-pv.Color.Hsl.prototype = pv.extend(pv.Color);
-
-/**
- * Constructs a new HSL color with the same saturation, lightness and alpha as
- * this color, and the specified hue.
- *
- * @param {number} h the hue, an integer in [0, 360].
- */
-pv.Color.Hsl.prototype.hue = function(h) {
- return pv.hsl(h, this.s, this.l, this.a);
-};
-
-/**
- * Constructs a new HSL color with the same hue, lightness and alpha as this
- * color, and the specified saturation.
- *
- * @param {number} s the saturation, a float in [0, 1].
- */
-pv.Color.Hsl.prototype.saturation = function(s) {
- return pv.hsl(this.h, s, this.l, this.a);
-};
-
-/**
- * Constructs a new HSL color with the same hue, saturation and alpha as this
- * color, and the specified lightness.
- *
- * @param {number} l the lightness, a float in [0, 1].
- */
-pv.Color.Hsl.prototype.lightness = function(l) {
- return pv.hsl(this.h, this.s, l, this.a);
-};
-
-/**
- * Constructs a new HSL color with the same hue, saturation and lightness as
- * this color, and the specified alpha.
- *
- * @param {number} a the opacity, a float in [0, 1].
- */
-pv.Color.Hsl.prototype.alpha = function(a) {
- return pv.hsl(this.h, this.s, this.l, a);
-};
-
-/**
- * Returns the RGB color equivalent to this HSL color.
- *
- * @returns {pv.Color.Rgb} an RGB color.
- */
-pv.Color.Hsl.prototype.rgb = function() {
- var h = this.h, s = this.s, l = this.l;
-
- /* Some simple corrections for h, s and l. */
- h = h % 360; if (h < 0) h += 360;
- s = Math.max(0, Math.min(s, 1));
- l = Math.max(0, Math.min(l, 1));
-
- /* From FvD 13.37, CSS Color Module Level 3 */
- var m2 = (l <= .5) ? (l * (1 + s)) : (l + s - l * s);
- var m1 = 2 * l - m2;
- function v(h) {
- if (h > 360) h -= 360;
- else if (h < 0) h += 360;
- if (h < 60) return m1 + (m2 - m1) * h / 60;
- if (h < 180) return m2;
- if (h < 240) return m1 + (m2 - m1) * (240 - h) / 60;
- return m1;
- }
- function vv(h) {
- return Math.round(v(h) * 255);
- }
-
- return pv.rgb(vv(h + 120), vv(h), vv(h - 120), this.a);
-};
-
-/**
- * @private SVG color keywords, per CSS Color Module Level 3.
- *
- * @see <a href="http://www.w3.org/TR/SVG/types.html#ColorKeywords">SVG color
- * keywords</a>
- */
-pv.Color.names = {
- aliceblue: "#f0f8ff",
- antiquewhite: "#faebd7",
- aqua: "#00ffff",
- aquamarine: "#7fffd4",
- azure: "#f0ffff",
- beige: "#f5f5dc",
- bisque: "#ffe4c4",
- black: "#000000",
- blanchedalmond: "#ffebcd",
- blue: "#0000ff",
- blueviolet: "#8a2be2",
- brown: "#a52a2a",
- burlywood: "#deb887",
- cadetblue: "#5f9ea0",
- chartreuse: "#7fff00",
- chocolate: "#d2691e",
- coral: "#ff7f50",
- cornflowerblue: "#6495ed",
- cornsilk: "#fff8dc",
- crimson: "#dc143c",
- cyan: "#00ffff",
- darkblue: "#00008b",
- darkcyan: "#008b8b",
- darkgoldenrod: "#b8860b",
- darkgray: "#a9a9a9",
- darkgreen: "#006400",
- darkgrey: "#a9a9a9",
- darkkhaki: "#bdb76b",
- darkmagenta: "#8b008b",
- darkolivegreen: "#556b2f",
- darkorange: "#ff8c00",
- darkorchid: "#9932cc",
- darkred: "#8b0000",
- darksalmon: "#e9967a",
- darkseagreen: "#8fbc8f",
- darkslateblue: "#483d8b",
- darkslategray: "#2f4f4f",
- darkslategrey: "#2f4f4f",
- darkturquoise: "#00ced1",
- darkviolet: "#9400d3",
- deeppink: "#ff1493",
- deepskyblue: "#00bfff",
- dimgray: "#696969",
- dimgrey: "#696969",
- dodgerblue: "#1e90ff",
- firebrick: "#b22222",
- floralwhite: "#fffaf0",
- forestgreen: "#228b22",
- fuchsia: "#ff00ff",
- gainsboro: "#dcdcdc",
- ghostwhite: "#f8f8ff",
- gold: "#ffd700",
- goldenrod: "#daa520",
- gray: "#808080",
- green: "#008000",
- greenyellow: "#adff2f",
- grey: "#808080",
- honeydew: "#f0fff0",
- hotpink: "#ff69b4",
- indianred: "#cd5c5c",
- indigo: "#4b0082",
- ivory: "#fffff0",
- khaki: "#f0e68c",
- lavender: "#e6e6fa",
- lavenderblush: "#fff0f5",
- lawngreen: "#7cfc00",
- lemonchiffon: "#fffacd",
- lightblue: "#add8e6",
- lightcoral: "#f08080",
- lightcyan: "#e0ffff",
- lightgoldenrodyellow: "#fafad2",
- lightgray: "#d3d3d3",
- lightgreen: "#90ee90",
- lightgrey: "#d3d3d3",
- lightpink: "#ffb6c1",
- lightsalmon: "#ffa07a",
- lightseagreen: "#20b2aa",
- lightskyblue: "#87cefa",
- lightslategray: "#778899",
- lightslategrey: "#778899",
- lightsteelblue: "#b0c4de",
- lightyellow: "#ffffe0",
- lime: "#00ff00",
- limegreen: "#32cd32",
- linen: "#faf0e6",
- magenta: "#ff00ff",
- maroon: "#800000",
- mediumaquamarine: "#66cdaa",
- mediumblue: "#0000cd",
- mediumorchid: "#ba55d3",
- mediumpurple: "#9370db",
- mediumseagreen: "#3cb371",
- mediumslateblue: "#7b68ee",
- mediumspringgreen: "#00fa9a",
- mediumturquoise: "#48d1cc",
- mediumvioletred: "#c71585",
- midnightblue: "#191970",
- mintcream: "#f5fffa",
- mistyrose: "#ffe4e1",
- moccasin: "#ffe4b5",
- navajowhite: "#ffdead",
- navy: "#000080",
- oldlace: "#fdf5e6",
- olive: "#808000",
- olivedrab: "#6b8e23",
- orange: "#ffa500",
- orangered: "#ff4500",
- orchid: "#da70d6",
- palegoldenrod: "#eee8aa",
- palegreen: "#98fb98",
- paleturquoise: "#afeeee",
- palevioletred: "#db7093",
- papayawhip: "#ffefd5",
- peachpuff: "#ffdab9",
- peru: "#cd853f",
- pink: "#ffc0cb",
- plum: "#dda0dd",
- powderblue: "#b0e0e6",
- purple: "#800080",
- red: "#ff0000",
- rosybrown: "#bc8f8f",
- royalblue: "#4169e1",
- saddlebrown: "#8b4513",
- salmon: "#fa8072",
- sandybrown: "#f4a460",
- seagreen: "#2e8b57",
- seashell: "#fff5ee",
- sienna: "#a0522d",
- silver: "#c0c0c0",
- skyblue: "#87ceeb",
- slateblue: "#6a5acd",
- slategray: "#708090",
- slategrey: "#708090",
- snow: "#fffafa",
- springgreen: "#00ff7f",
- steelblue: "#4682b4",
- tan: "#d2b48c",
- teal: "#008080",
- thistle: "#d8bfd8",
- tomato: "#ff6347",
- turquoise: "#40e0d0",
- violet: "#ee82ee",
- wheat: "#f5deb3",
- white: "#ffffff",
- whitesmoke: "#f5f5f5",
- yellow: "#ffff00",
- yellowgreen: "#9acd32",
- transparent: pv.Color.transparent = pv.rgb(0, 0, 0, 0)
-};
-
-/* Initialized named colors. */
-(function() {
- var names = pv.Color.names;
- for (var name in names) names[name] = pv.color(names[name]);
-})();
-/**
- * Returns a new categorical color encoding using the specified colors. The
- * arguments to this method are an array of colors; see {@link pv.color}. For
- * example, to create a categorical color encoding using the <tt>species</tt>
- * attribute:
- *
- * <pre>pv.colors("red", "green", "blue").by(function(d) d.species)</pre>
- *
- * The result of this expression can be used as a fill- or stroke-style
- * property. This assumes that the data's <tt>species</tt> attribute is a
- * string.
- *
- * @param {string} colors... categorical colors.
- * @see pv.Scale.ordinal
- * @returns {pv.Scale.ordinal} an ordinal color scale.
- */
-pv.colors = function() {
- var scale = pv.Scale.ordinal();
- scale.range.apply(scale, arguments);
- return scale;
-};
-
-/**
- * A collection of standard color palettes for categorical encoding.
- *
- * @namespace A collection of standard color palettes for categorical encoding.
- */
-pv.Colors = {};
-
-/**
- * Returns a new 10-color scheme. The arguments to this constructor are
- * optional, and equivalent to calling {@link pv.Scale.OrdinalScale#domain}. The
- * following colors are used:
- *
- * <div style="background:#1f77b4;">#1f77b4</div>
- * <div style="background:#ff7f0e;">#ff7f0e</div>
- * <div style="background:#2ca02c;">#2ca02c</div>
- * <div style="background:#d62728;">#d62728</div>
- * <div style="background:#9467bd;">#9467bd</div>
- * <div style="background:#8c564b;">#8c564b</div>
- * <div style="background:#e377c2;">#e377c2</div>
- * <div style="background:#7f7f7f;">#7f7f7f</div>
- * <div style="background:#bcbd22;">#bcbd22</div>
- * <div style="background:#17becf;">#17becf</div>
- *
- * @param {number...} domain... domain values.
- * @returns {pv.Scale.ordinal} a new ordinal color scale.
- * @see pv.color
- */
-pv.Colors.category10 = function() {
- var scale = pv.colors(
- "#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
- "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf");
- scale.domain.apply(scale, arguments);
- return scale;
-};
-
-/**
- * Returns a new 20-color scheme. The arguments to this constructor are
- * optional, and equivalent to calling {@link pv.Scale.OrdinalScale#domain}. The
- * following colors are used:
- *
- * <div style="background:#1f77b4;">#1f77b4</div>
- * <div style="background:#aec7e8;">#aec7e8</div>
- * <div style="background:#ff7f0e;">#ff7f0e</div>
- * <div style="background:#ffbb78;">#ffbb78</div>
- * <div style="background:#2ca02c;">#2ca02c</div>
- * <div style="background:#98df8a;">#98df8a</div>
- * <div style="background:#d62728;">#d62728</div>
- * <div style="background:#ff9896;">#ff9896</div>
- * <div style="background:#9467bd;">#9467bd</div>
- * <div style="background:#c5b0d5;">#c5b0d5</div>
- * <div style="background:#8c564b;">#8c564b</div>
- * <div style="background:#c49c94;">#c49c94</div>
- * <div style="background:#e377c2;">#e377c2</div>
- * <div style="background:#f7b6d2;">#f7b6d2</div>
- * <div style="background:#7f7f7f;">#7f7f7f</div>
- * <div style="background:#c7c7c7;">#c7c7c7</div>
- * <div style="background:#bcbd22;">#bcbd22</div>
- * <div style="background:#dbdb8d;">#dbdb8d</div>
- * <div style="background:#17becf;">#17becf</div>
- * <div style="background:#9edae5;">#9edae5</div>
- *
- * @param {number...} domain... domain values.
- * @returns {pv.Scale.ordinal} a new ordinal color scale.
- * @see pv.color
-*/
-pv.Colors.category20 = function() {
- var scale = pv.colors(
- "#1f77b4", "#aec7e8", "#ff7f0e", "#ffbb78", "#2ca02c",
- "#98df8a", "#d62728", "#ff9896", "#9467bd", "#c5b0d5",
- "#8c564b", "#c49c94", "#e377c2", "#f7b6d2", "#7f7f7f",
- "#c7c7c7", "#bcbd22", "#dbdb8d", "#17becf", "#9edae5");
- scale.domain.apply(scale, arguments);
- return scale;
-};
-
-/**
- * Returns a new alternative 19-color scheme. The arguments to this constructor
- * are optional, and equivalent to calling
- * {@link pv.Scale.OrdinalScale#domain}. The following colors are used:
- *
- * <div style="background:#9c9ede;">#9c9ede</div>
- * <div style="background:#7375b5;">#7375b5</div>
- * <div style="background:#4a5584;">#4a5584</div>
- * <div style="background:#cedb9c;">#cedb9c</div>
- * <div style="background:#b5cf6b;">#b5cf6b</div>
- * <div style="background:#8ca252;">#8ca252</div>
- * <div style="background:#637939;">#637939</div>
- * <div style="background:#e7cb94;">#e7cb94</div>
- * <div style="background:#e7ba52;">#e7ba52</div>
- * <div style="background:#bd9e39;">#bd9e39</div>
- * <div style="background:#8c6d31;">#8c6d31</div>
- * <div style="background:#e7969c;">#e7969c</div>
- * <div style="background:#d6616b;">#d6616b</div>
- * <div style="background:#ad494a;">#ad494a</div>
- * <div style="background:#843c39;">#843c39</div>
- * <div style="background:#de9ed6;">#de9ed6</div>
- * <div style="background:#ce6dbd;">#ce6dbd</div>
- * <div style="background:#a55194;">#a55194</div>
- * <div style="background:#7b4173;">#7b4173</div>
- *
- * @param {number...} domain... domain values.
- * @returns {pv.Scale.ordinal} a new ordinal color scale.
- * @see pv.color
- */
-pv.Colors.category19 = function() {
- var scale = pv.colors(
- "#9c9ede", "#7375b5", "#4a5584", "#cedb9c", "#b5cf6b",
- "#8ca252", "#637939", "#e7cb94", "#e7ba52", "#bd9e39",
- "#8c6d31", "#e7969c", "#d6616b", "#ad494a", "#843c39",
- "#de9ed6", "#ce6dbd", "#a55194", "#7b4173");
- scale.domain.apply(scale, arguments);
- return scale;
-};
-/**
- * Returns a linear color ramp from the specified <tt>start</tt> color to the
- * specified <tt>end</tt> color. The color arguments may be specified either as
- * <tt>string</tt>s or as {@link pv.Color}s. This is equivalent to:
- *
- * <pre> pv.Scale.linear().domain(0, 1).range(...)</pre>
- *
- * @param {string} start the start color; may be a <tt>pv.Color</tt>.
- * @param {string} end the end color; may be a <tt>pv.Color</tt>.
- * @returns {Function} a color ramp from <tt>start</tt> to <tt>end</tt>.
- * @see pv.Scale.linear
- */
-pv.ramp = function(start, end) {
- var scale = pv.Scale.linear();
- scale.range.apply(scale, arguments);
- return scale;
-};
-/**
- * @private
- * @namespace
- */
-pv.Scene = pv.SvgScene = {
- /* Various namespaces. */
- svg: "http://www.w3.org/2000/svg",
- xmlns: "http://www.w3.org/2000/xmlns",
- xlink: "http://www.w3.org/1999/xlink",
- xhtml: "http://www.w3.org/1999/xhtml",
-
- /** The pre-multipled scale, based on any enclosing transforms. */
- scale: 1,
-
- /** The set of supported events. */
- events: [
- "DOMMouseScroll", // for Firefox
- "mousewheel",
- "mousedown",
- "mouseup",
- "mouseover",
- "mouseout",
- "mousemove",
- "click",
- "dblclick"
- ],
-
- /** Implicit values for SVG and CSS properties. */
- implicit: {
- svg: {
- "shape-rendering": "auto",
- "pointer-events": "painted",
- "x": 0,
- "y": 0,
- "dy": 0,
- "text-anchor": "start",
- "transform": "translate(0,0)",
- "fill": "none",
- "fill-opacity": 1,
- "stroke": "none",
- "stroke-opacity": 1,
- "stroke-width": 1.5,
- "stroke-linejoin": "miter"
- },
- css: {
- "font": "10px sans-serif"
- }
- }
-};
-
-/**
- * Updates the display for the specified array of scene nodes.
- *
- * @param scenes {array} an array of scene nodes.
- */
-pv.SvgScene.updateAll = function(scenes) {
- if (scenes.length
- && scenes[0].reverse
- && (scenes.type != "line")
- && (scenes.type != "area")) {
- var reversed = pv.extend(scenes);
- for (var i = 0, j = scenes.length - 1; j >= 0; i++, j--) {
- reversed[i] = scenes[j];
- }
- scenes = reversed;
- }
- this.removeSiblings(this[scenes.type](scenes));
-};
-
-/**
- * Creates a new SVG element of the specified type.
- *
- * @param type {string} an SVG element type, such as "rect".
- * @returns a new SVG element.
- */
-pv.SvgScene.create = function(type) {
- return document.createElementNS(this.svg, type);
-};
-
-/**
- * Expects the element <i>e</i> to be the specified type. If the element does
- * not exist, a new one is created. If the element does exist but is the wrong
- * type, it is replaced with the specified element.
- *
- * @param e the current SVG element.
- * @param type {string} an SVG element type, such as "rect".
- * @param attributes an optional attribute map.
- * @param style an optional style map.
- * @returns a new SVG element.
- */
-pv.SvgScene.expect = function(e, type, attributes, style) {
- if (e) {
- if (e.tagName == "a") e = e.firstChild;
- if (e.tagName != type) {
- var n = this.create(type);
- e.parentNode.replaceChild(n, e);
- e = n;
- }
- } else {
- e = this.create(type);
- }
- for (var name in attributes) {
- var value = attributes[name];
- if (value == this.implicit.svg[name]) value = null;
- if (value == null) e.removeAttribute(name);
- else e.setAttribute(name, value);
- }
- for (var name in style) {
- var value = style[name];
- if (value == this.implicit.css[name]) value = null;
- if (value == null) e.style.removeProperty(name);
- else e.style[name] = value;
- }
- return e;
-};
-
-/** TODO */
-pv.SvgScene.append = function(e, scenes, index) {
- e.$scene = {scenes:scenes, index:index};
- e = this.title(e, scenes[index]);
- if (!e.parentNode) scenes.$g.appendChild(e);
- return e.nextSibling;
-};
-
-/**
- * Applies a title tooltip to the specified element <tt>e</tt>, using the
- * <tt>title</tt> property of the specified scene node <tt>s</tt>. Note that
- * this implementation does not create an SVG <tt>title</tt> element as a child
- * of <tt>e</tt>; although this is the recommended standard, it is only
- * supported in Opera. Instead, an anchor element is created around the element
- * <tt>e</tt>, and the <tt>xlink:title</tt> attribute is set accordingly.
- *
- * @param e an SVG element.
- * @param s a scene node.
- */
-pv.SvgScene.title = function(e, s) {
- var a = e.parentNode;
- if (a && (a.tagName != "a")) a = null;
- if (s.title) {
- if (!a) {
- a = this.create("a");
- if (e.parentNode) e.parentNode.replaceChild(a, e);
- a.appendChild(e);
- }
- a.setAttributeNS(this.xlink, "title", s.title);
- return a;
- }
- if (a) a.parentNode.replaceChild(e, a);
- return e;
-};
-
-/** TODO */
-pv.SvgScene.dispatch = pv.listener(function(e) {
- var t = e.target.$scene;
- if (t) {
- var type = e.type;
-
- /* Fixes for mousewheel support on Firefox & Opera. */
- switch (type) {
- case "DOMMouseScroll": {
- type = "mousewheel";
- e.wheel = -480 * e.detail;
- break;
- }
- case "mousewheel": {
- e.wheel = (window.opera ? 12 : 1) * e.wheelDelta;
- break;
- }
- }
-
- if (pv.Mark.dispatch(type, t.scenes, t.index)) e.preventDefault();
- }
-});
-
-/** @private Remove siblings following element <i>e</i>. */
-pv.SvgScene.removeSiblings = function(e) {
- while (e) {
- var n = e.nextSibling;
- e.parentNode.removeChild(e);
- e = n;
- }
-};
-
-/** @private Do nothing when rendering undefined mark types. */
-pv.SvgScene.undefined = function() {};
-/**
- * @private Converts the specified b-spline curve segment to a bezier curve
- * compatible with SVG "C".
- *
- * @param p0 the first control point.
- * @param p1 the second control point.
- * @param p2 the third control point.
- * @param p3 the fourth control point.
- */
-pv.SvgScene.pathBasis = (function() {
-
- /**
- * Matrix to transform basis (b-spline) control points to bezier control
- * points. Derived from FvD 11.2.8.
- */
- var basis = [
- [ 1/6, 2/3, 1/6, 0 ],
- [ 0, 2/3, 1/3, 0 ],
- [ 0, 1/3, 2/3, 0 ],
- [ 0, 1/6, 2/3, 1/6 ]
- ];
-
- /**
- * Returns the point that is the weighted sum of the specified control points,
- * using the specified weights. This method requires that there are four
- * weights and four control points.
- */
- function weight(w, p0, p1, p2, p3) {
- return {
- x: w[0] * p0.left + w[1] * p1.left + w[2] * p2.left + w[3] * p3.left,
- y: w[0] * p0.top + w[1] * p1.top + w[2] * p2.top + w[3] * p3.top
- };
- }
-
- var convert = function(p0, p1, p2, p3) {
- var b1 = weight(basis[1], p0, p1, p2, p3),
- b2 = weight(basis[2], p0, p1, p2, p3),
- b3 = weight(basis[3], p0, p1, p2, p3);
- return "C" + b1.x + "," + b1.y
- + "," + b2.x + "," + b2.y
- + "," + b3.x + "," + b3.y;
- };
-
- convert.segment = function(p0, p1, p2, p3) {
- var b0 = weight(basis[0], p0, p1, p2, p3),
- b1 = weight(basis[1], p0, p1, p2, p3),
- b2 = weight(basis[2], p0, p1, p2, p3),
- b3 = weight(basis[3], p0, p1, p2, p3);
- return "M" + b0.x + "," + b0.y
- + "C" + b1.x + "," + b1.y
- + "," + b2.x + "," + b2.y
- + "," + b3.x + "," + b3.y;
- };
-
- return convert;
-})();
-
-/**
- * @private Interpolates the given points using the basis spline interpolation.
- * Returns an SVG path without the leading M instruction to allow path
- * appending.
- *
- * @param points the array of points.
- */
-pv.SvgScene.curveBasis = function(points) {
- if (points.length <= 2) return "";
- var path = "",
- p0 = points[0],
- p1 = p0,
- p2 = p0,
- p3 = points[1];
- path += this.pathBasis(p0, p1, p2, p3);
- for (var i = 2; i < points.length; i++) {
- p0 = p1;
- p1 = p2;
- p2 = p3;
- p3 = points[i];
- path += this.pathBasis(p0, p1, p2, p3);
- }
- /* Cycle through to get the last point. */
- path += this.pathBasis(p1, p2, p3, p3);
- path += this.pathBasis(p2, p3, p3, p3);
- return path;
-};
-
-/**
- * @private Interpolates the given points using the basis spline interpolation.
- * If points.length == tangents.length then a regular Hermite interpolation is
- * performed, if points.length == tangents.length + 2 then the first and last
- * segments are filled in with cubic bazier segments. Returns an array of path
- * strings.
- *
- * @param points the array of points.
- */
-pv.SvgScene.curveBasisSegments = function(points) {
- if (points.length <= 2) return "";
- var paths = [],
- p0 = points[0],
- p1 = p0,
- p2 = p0,
- p3 = points[1],
- firstPath = this.pathBasis.segment(p0, p1, p2, p3);
-
- p0 = p1;
- p1 = p2;
- p2 = p3;
- p3 = points[2];
- paths.push(firstPath + this.pathBasis(p0, p1, p2, p3)); // merge first & second path
- for (var i = 3; i < points.length; i++) {
- p0 = p1;
- p1 = p2;
- p2 = p3;
- p3 = points[i];
- paths.push(this.pathBasis.segment(p0, p1, p2, p3));
- }
-
- // merge last & second-to-last path
- paths.push(this.pathBasis.segment(p1, p2, p3, p3) + this.pathBasis(p2, p3, p3, p3));
- return paths;
-};
-
-/**
- * @private Interpolates the given points with respective tangents using the cubic
- * Hermite spline interpolation. If points.length == tangents.length then a regular
- * Hermite interpolation is performed, if points.length == tangents.length + 2 then
- * the first and last segments are filled in with cubic bazier segments.
- * Returns an SVG path without the leading M instruction to allow path appending.
- *
- * @param points the array of points.
- * @param tangents the array of tangent vectors.
- */
-pv.SvgScene.curveHermite = function(points, tangents) {
- if (tangents.length < 1
- || (points.length != tangents.length
- && points.length != tangents.length + 2)) return "";
- var quad = points.length != tangents.length,
- path = "",
- p0 = points[0],
- p = points[1],
- t0 = tangents[0],
- t = t0,
- pi = 1;
-
- if (quad) {
- path += "Q" + (p.left - t0.x * 2 / 3) + "," + (p.top - t0.y * 2 / 3)
- + "," + p.left + "," + p.top;
- p0 = points[1];
- pi = 2;
- }
-
- if (tangents.length > 1) {
- t = tangents[1];
- p = points[pi];
- pi++;
- path += "C" + (p0.left + t0.x) + "," + (p0.top + t0.y)
- + "," + (p.left - t.x) + "," + (p.top - t.y)
- + "," + p.left + "," + p.top;
- for (var i = 2; i < tangents.length; i++, pi++) {
- p = points[pi];
- t = tangents[i];
- path += "S" + (p.left - t.x) + "," + (p.top - t.y)
- + "," + p.left + "," + p.top;
- }
- }
-
- if (quad) {
- var lp = points[pi];
- path += "Q" + (p.left + t.x * 2 / 3) + "," + (p.top + t.y * 2 / 3) + ","
- + lp.left + "," + lp.top;
- }
-
- return path;
-};
-
-/**
- * @private Interpolates the given points with respective tangents using the
- * cubic Hermite spline interpolation. Returns an array of path strings.
- *
- * @param points the array of points.
- * @param tangents the array of tangent vectors.
- */
-pv.SvgScene.curveHermiteSegments = function(points, tangents) {
- if (tangents.length < 1
- || (points.length != tangents.length
- && points.length != tangents.length + 2)) return [];
- var quad = points.length != tangents.length,
- paths = [],
- p0 = points[0],
- p = p0,
- t0 = tangents[0],
- t = t0,
- pi = 1;
-
- if (quad) {
- p = points[1];
- paths.push("M" + p0.left + "," + p0.top
- + "Q" + (p.left - t.x * 2 / 3) + "," + (p.top - t.y * 2 / 3)
- + "," + p.left + "," + p.top);
- pi = 2;
- }
-
- for (var i = 1; i < tangents.length; i++, pi++) {
- p0 = p;
- t0 = t;
- p = points[pi];
- t = tangents[i];
- paths.push("M" + p0.left + "," + p0.top
- + "C" + (p0.left + t0.x) + "," + (p0.top + t0.y)
- + "," + (p.left - t.x) + "," + (p.top - t.y)
- + "," + p.left + "," + p.top);
- }
-
- if (quad) {
- var lp = points[pi];
- paths.push("M" + p.left + "," + p.top
- + "Q" + (p.left + t.x * 2 / 3) + "," + (p.top + t.y * 2 / 3) + ","
- + lp.left + "," + lp.top);
- }
-
- return paths;
-};
-
-/**
- * @private Computes the tangents for the given points needed for cardinal
- * spline interpolation. Returns an array of tangent vectors. Note: that for n
- * points only the n-2 well defined tangents are returned.
- *
- * @param points the array of points.
- * @param tension the tension of hte cardinal spline.
- */
-pv.SvgScene.cardinalTangents = function(points, tension) {
- var tangents = [],
- a = (1 - tension) / 2,
- p0 = points[0],
- p1 = points[1],
- p2 = points[2];
-
- for (var i = 3; i < points.length; i++) {
- tangents.push({x: a * (p2.left - p0.left), y: a * (p2.top - p0.top)});
- p0 = p1;
- p1 = p2;
- p2 = points[i];
- }
-
- tangents.push({x: a * (p2.left - p0.left), y: a * (p2.top - p0.top)});
- return tangents;
-};
-
-/**
- * @private Interpolates the given points using cardinal spline interpolation.
- * Returns an SVG path without the leading M instruction to allow path
- * appending.
- *
- * @param points the array of points.
- * @param tension the tension of hte cardinal spline.
- */
-pv.SvgScene.curveCardinal = function(points, tension) {
- if (points.length <= 2) return "";
- return this.curveHermite(points, this.cardinalTangents(points, tension));
-};
-
-/**
- * @private Interpolates the given points using cardinal spline interpolation.
- * Returns an array of path strings.
- *
- * @param points the array of points.
- * @param tension the tension of hte cardinal spline.
- */
-pv.SvgScene.curveCardinalSegments = function(points, tension) {
- if (points.length <= 2) return "";
- return this.curveHermiteSegments(points, this.cardinalTangents(points, tension));
-};
-
-/**
- * @private Interpolates the given points using Fritsch-Carlson Monotone cubic
- * Hermite interpolation. Returns an array of tangent vectors.
- *
- * @param points the array of points.
- */
-pv.SvgScene.monotoneTangents = function(points) {
- var tangents = [],
- d = [],
- m = [],
- dx = [],
- k = 0;
-
- /* Compute the slopes of the secant lines between successive points. */
- for (k = 0; k < points.length-1; k++) {
- d[k] = (points[k+1].top - points[k].top)/(points[k+1].left - points[k].left);
- }
-
- /* Initialize the tangents at every point as the average of the secants. */
- m[0] = d[0];
- dx[0] = points[1].left - points[0].left;
- for (k = 1; k < points.length - 1; k++) {
- m[k] = (d[k-1]+d[k])/2;
- dx[k] = (points[k+1].left - points[k-1].left)/2;
- }
- m[k] = d[k-1];
- dx[k] = (points[k].left - points[k-1].left);
-
- /* Step 3. Very important, step 3. Yep. Wouldn't miss it. */
- for (k = 0; k < points.length - 1; k++) {
- if (d[k] == 0) {
- m[ k ] = 0;
- m[k+1] = 0;
- }
- }
-
- /* Step 4 + 5. Out of 5 or more steps. */
- for (k = 0; k < points.length - 1; k++) {
- if ((Math.abs(m[k]) < 1e-5) || (Math.abs(m[k+1]) < 1e-5)) continue;
- var ak = m[k] / d[k],
- bk = m[k + 1] / d[k],
- s = ak * ak + bk * bk; // monotone constant (?)
- if (s > 9) {
- var tk = 3 / Math.sqrt(s);
- m[k] = tk * ak * d[k];
- m[k + 1] = tk * bk * d[k];
- }
- }
-
- var len;
- for (var i = 0; i < points.length; i++) {
- len = 1 + m[i] * m[i]; // pv.vector(1, m[i]).norm().times(dx[i]/3)
- tangents.push({x: dx[i] / 3 / len, y: m[i] * dx[i] / 3 / len});
- }
-
- return tangents;
-};
-
-/**
- * @private Interpolates the given points using Fritsch-Carlson Monotone cubic
- * Hermite interpolation. Returns an SVG path without the leading M instruction
- * to allow path appending.
- *
- * @param points the array of points.
- */
-pv.SvgScene.curveMonotone = function(points) {
- if (points.length <= 2) return "";
- return this.curveHermite(points, this.monotoneTangents(points));
-}
-
-/**
- * @private Interpolates the given points using Fritsch-Carlson Monotone cubic
- * Hermite interpolation.
- * Returns an array of path strings.
- *
- * @param points the array of points.
- */
-pv.SvgScene.curveMonotoneSegments = function(points) {
- if (points.length <= 2) return "";
- return this.curveHermiteSegments(points, this.monotoneTangents(points));
-};
-pv.SvgScene.area = function(scenes) {
- var e = scenes.$g.firstChild;
- if (!scenes.length) return e;
- var s = scenes[0];
-
- /* segmented */
- if (s.segmented) return this.areaSegment(scenes);
-
- /* visible */
- if (!s.visible) return e;
- var fill = s.fillStyle, stroke = s.strokeStyle;
- if (!fill.opacity && !stroke.opacity) return e;
-
- /** @private Computes the straight path for the range [i, j]. */
- function path(i, j) {
- var p1 = [], p2 = [];
- for (var k = j; i <= k; i++, j--) {
- var si = scenes[i],
- sj = scenes[j],
- pi = si.left + "," + si.top,
- pj = (sj.left + sj.width) + "," + (sj.top + sj.height);
-
- /* interpolate */
- if (i < k) {
- var sk = scenes[i + 1], sl = scenes[j - 1];
- switch (s.interpolate) {
- case "step-before": {
- pi += "V" + sk.top;
- pj += "H" + (sl.left + sl.width);
- break;
- }
- case "step-after": {
- pi += "H" + sk.left;
- pj += "V" + (sl.top + sl.height);
- break;
- }
- }
- }
-
- p1.push(pi);
- p2.push(pj);
- }
- return p1.concat(p2).join("L");
- }
-
- /** @private Computes the curved path for the range [i, j]. */
- function pathCurve(i, j) {
- var pointsT = [], pointsB = [], pathT, pathB;
-
- for (var k = j; i <= k; i++, j--) {
- var sj = scenes[j];
- pointsT.push(scenes[i]);
- pointsB.push({left: sj.left + sj.width, top: sj.top + sj.height});
- }
-
- if (s.interpolate == "basis") {
- pathT = pv.SvgScene.curveBasis(pointsT);
- pathB = pv.SvgScene.curveBasis(pointsB);
- } else if (s.interpolate == "cardinal") {
- pathT = pv.SvgScene.curveCardinal(pointsT, s.tension);
- pathB = pv.SvgScene.curveCardinal(pointsB, s.tension);
- } else { // monotone
- pathT = pv.SvgScene.curveMonotone(pointsT);
- pathB = pv.SvgScene.curveMonotone(pointsB);
- }
-
- return pointsT[0].left + "," + pointsT[0].top + pathT
- + "L" + pointsB[0].left + "," + pointsB[0].top + pathB;
- }
-
- /* points */
- var d = [], si, sj;
- for (var i = 0; i < scenes.length; i++) {
- si = scenes[i]; if (!si.width && !si.height) continue;
- for (var j = i + 1; j < scenes.length; j++) {
- sj = scenes[j]; if (!sj.width && !sj.height) break;
- }
- if (i && (s.interpolate != "step-after")) i--;
- if ((j < scenes.length) && (s.interpolate != "step-before")) j++;
- d.push(((j - i > 2
- && (s.interpolate == "basis"
- || s.interpolate == "cardinal"
- || s.interpolate == "monotone"))
- ? pathCurve : path)(i, j - 1));
- i = j - 1;
- }
- if (!d.length) return e;
-
- e = this.expect(e, "path", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "d": "M" + d.join("ZM") + "Z",
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
- });
- return this.append(e, scenes, 0);
-};
-
-pv.SvgScene.areaSegment = function(scenes) {
- var e = scenes.$g.firstChild, s = scenes[0], pathsT, pathsB;
- if (s.interpolate == "basis"
- || s.interpolate == "cardinal"
- || s.interpolate == "monotone") {
- var pointsT = [], pointsB = [];
-
- for (var i = 0, n = scenes.length; i < n; i++) {
- var sj = scenes[n - i - 1];
- pointsT.push(scenes[i]);
- pointsB.push({left: sj.left + sj.width, top: sj.top + sj.height});
- }
-
- if (s.interpolate == "basis") {
- pathsT = this.curveBasisSegments(pointsT);
- pathsB = this.curveBasisSegments(pointsB);
- } else if (s.interpolate == "cardinal") {
- pathsT = this.curveCardinalSegments(pointsT, s.tension);
- pathsB = this.curveCardinalSegments(pointsB, s.tension);
- } else { // monotone
- pathsT = this.curveMonotoneSegments(pointsT);
- pathsB = this.curveMonotoneSegments(pointsB);
- }
- }
-
- for (var i = 0, n = scenes.length - 1; i < n; i++) {
- var s1 = scenes[i], s2 = scenes[i + 1];
-
- /* visible */
- if (!s1.visible || !s2.visible) continue;
- var fill = s1.fillStyle, stroke = s1.strokeStyle;
- if (!fill.opacity && !stroke.opacity) continue;
-
- var d;
- if (pathsT) {
- var pathT = pathsT[i],
- pathB = "L" + pathsB[n - i - 1].substr(1);
-
- d = pathT + pathB + "Z";
- } else {
- /* interpolate */
- var si = s1, sj = s2;
- switch (s1.interpolate) {
- case "step-before": si = s2; break;
- case "step-after": sj = s1; break;
- }
-
- /* path */
- d = "M" + s1.left + "," + si.top
- + "L" + s2.left + "," + sj.top
- + "L" + (s2.left + s2.width) + "," + (sj.top + sj.height)
- + "L" + (s1.left + s1.width) + "," + (si.top + si.height)
- + "Z";
- }
-
- e = this.expect(e, "path", {
- "shape-rendering": s1.antialias ? null : "crispEdges",
- "pointer-events": s1.events,
- "cursor": s1.cursor,
- "d": d,
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s1.lineWidth / this.scale : null
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.bar = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
- var fill = s.fillStyle, stroke = s.strokeStyle;
- if (!fill.opacity && !stroke.opacity) continue;
-
- e = this.expect(e, "rect", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "x": s.left,
- "y": s.top,
- "width": Math.max(1E-10, s.width),
- "height": Math.max(1E-10, s.height),
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.dot = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
- var fill = s.fillStyle, stroke = s.strokeStyle;
- if (!fill.opacity && !stroke.opacity) continue;
-
- /* points */
- var radius = s.radius, path = null;
- switch (s.shape) {
- case "cross": {
- path = "M" + -radius + "," + -radius
- + "L" + radius + "," + radius
- + "M" + radius + "," + -radius
- + "L" + -radius + "," + radius;
- break;
- }
- case "triangle": {
- var h = radius, w = radius * 1.1547; // 2 / Math.sqrt(3)
- path = "M0," + h
- + "L" + w +"," + -h
- + " " + -w + "," + -h
- + "Z";
- break;
- }
- case "diamond": {
- radius *= Math.SQRT2;
- path = "M0," + -radius
- + "L" + radius + ",0"
- + " 0," + radius
- + " " + -radius + ",0"
- + "Z";
- break;
- }
- case "square": {
- path = "M" + -radius + "," + -radius
- + "L" + radius + "," + -radius
- + " " + radius + "," + radius
- + " " + -radius + "," + radius
- + "Z";
- break;
- }
- case "tick": {
- path = "M0,0L0," + -s.size;
- break;
- }
- case "bar": {
- path = "M0," + (s.size / 2) + "L0," + -(s.size / 2);
- break;
- }
- }
-
- /* Use <circle> for circles, <path> for everything else. */
- var svg = {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
- };
- if (path) {
- svg.transform = "translate(" + s.left + "," + s.top + ")";
- if (s.angle) svg.transform += " rotate(" + 180 * s.angle / Math.PI + ")";
- svg.d = path;
- e = this.expect(e, "path", svg);
- } else {
- svg.cx = s.left;
- svg.cy = s.top;
- svg.r = radius;
- e = this.expect(e, "circle", svg);
- }
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.image = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
-
- /* fill */
- e = this.fill(e, scenes, i);
-
- /* image */
- if (s.image) {
- e = this.expect(e, "foreignObject", {
- "cursor": s.cursor,
- "x": s.left,
- "y": s.top,
- "width": s.width,
- "height": s.height
- });
- var c = e.firstChild || e.appendChild(document.createElementNS(this.xhtml, "canvas"));
- c.$scene = {scenes:scenes, index:i};
- c.style.width = s.width;
- c.style.height = s.height;
- c.width = s.imageWidth;
- c.height = s.imageHeight;
- c.getContext("2d").putImageData(s.image, 0, 0);
- } else {
- e = this.expect(e, "image", {
- "preserveAspectRatio": "none",
- "cursor": s.cursor,
- "x": s.left,
- "y": s.top,
- "width": s.width,
- "height": s.height
- });
- e.setAttributeNS(this.xlink, "href", s.url);
- }
- e = this.append(e, scenes, i);
-
- /* stroke */
- e = this.stroke(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.label = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
- var fill = s.textStyle;
- if (!fill.opacity || !s.text) continue;
-
- /* text-baseline, text-align */
- var x = 0, y = 0, dy = 0, anchor = "start";
- switch (s.textBaseline) {
- case "middle": dy = ".35em"; break;
- case "top": dy = ".71em"; y = s.textMargin; break;
- case "bottom": y = "-" + s.textMargin; break;
- }
- switch (s.textAlign) {
- case "right": anchor = "end"; x = "-" + s.textMargin; break;
- case "center": anchor = "middle"; break;
- case "left": x = s.textMargin; break;
- }
-
- e = this.expect(e, "text", {
- "pointer-events": s.events,
- "cursor": s.cursor,
- "x": x,
- "y": y,
- "dy": dy,
- "transform": "translate(" + s.left + "," + s.top + ")"
- + (s.textAngle ? " rotate(" + 180 * s.textAngle / Math.PI + ")" : "")
- + (this.scale != 1 ? " scale(" + 1 / this.scale + ")" : ""),
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "text-anchor": anchor
- }, {
- "font": s.font,
- "text-shadow": s.textShadow,
- "text-decoration": s.textDecoration
- });
- if (e.firstChild) e.firstChild.nodeValue = s.text;
- else e.appendChild(document.createTextNode(s.text));
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.line = function(scenes) {
- var e = scenes.$g.firstChild;
- if (scenes.length < 2) return e;
- var s = scenes[0];
-
- /* segmented */
- if (s.segmented) return this.lineSegment(scenes);
-
- /* visible */
- if (!s.visible) return e;
- var fill = s.fillStyle, stroke = s.strokeStyle;
- if (!fill.opacity && !stroke.opacity) return e;
-
- /* points */
- var d = "M" + s.left + "," + s.top;
-
- if (scenes.length > 2 && (s.interpolate == "basis" || s.interpolate == "cardinal" || s.interpolate == "monotone")) {
- switch (s.interpolate) {
- case "basis": d += this.curveBasis(scenes); break;
- case "cardinal": d += this.curveCardinal(scenes, s.tension); break;
- case "monotone": d += this.curveMonotone(scenes); break;
- }
- } else {
- for (var i = 1; i < scenes.length; i++) {
- d += this.pathSegment(scenes[i - 1], scenes[i]);
- }
- }
-
- e = this.expect(e, "path", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "d": d,
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s.lineWidth / this.scale : null,
- "stroke-linejoin": s.lineJoin
- });
- return this.append(e, scenes, 0);
-};
-
-pv.SvgScene.lineSegment = function(scenes) {
- var e = scenes.$g.firstChild;
-
- var s = scenes[0];
- var paths;
- switch (s.interpolate) {
- case "basis": paths = this.curveBasisSegments(scenes); break;
- case "cardinal": paths = this.curveCardinalSegments(scenes, s.tension); break;
- case "monotone": paths = this.curveMonotoneSegments(scenes); break;
- }
-
- for (var i = 0, n = scenes.length - 1; i < n; i++) {
- var s1 = scenes[i], s2 = scenes[i + 1];
-
- /* visible */
- if (!s1.visible || !s2.visible) continue;
- var stroke = s1.strokeStyle, fill = pv.Color.transparent;
- if (!stroke.opacity) continue;
-
- /* interpolate */
- var d;
- if ((s1.interpolate == "linear") && (s1.lineJoin == "miter")) {
- fill = stroke;
- stroke = pv.Color.transparent;
- d = this.pathJoin(scenes[i - 1], s1, s2, scenes[i + 2]);
- } else if(paths) {
- d = paths[i];
- } else {
- d = "M" + s1.left + "," + s1.top + this.pathSegment(s1, s2);
- }
-
- e = this.expect(e, "path", {
- "shape-rendering": s1.antialias ? null : "crispEdges",
- "pointer-events": s1.events,
- "cursor": s1.cursor,
- "d": d,
- "fill": fill.color,
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s1.lineWidth / this.scale : null,
- "stroke-linejoin": s1.lineJoin
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-
-/** @private Returns the path segment for the specified points. */
-pv.SvgScene.pathSegment = function(s1, s2) {
- var l = 1; // sweep-flag
- switch (s1.interpolate) {
- case "polar-reverse":
- l = 0;
- case "polar": {
- var dx = s2.left - s1.left,
- dy = s2.top - s1.top,
- e = 1 - s1.eccentricity,
- r = Math.sqrt(dx * dx + dy * dy) / (2 * e);
- if ((e <= 0) || (e > 1)) break; // draw a straight line
- return "A" + r + "," + r + " 0 0," + l + " " + s2.left + "," + s2.top;
- }
- case "step-before": return "V" + s2.top + "H" + s2.left;
- case "step-after": return "H" + s2.left + "V" + s2.top;
- }
- return "L" + s2.left + "," + s2.top;
-};
-
-/** @private Line-line intersection, per Akenine-Moller 16.16.1. */
-pv.SvgScene.lineIntersect = function(o1, d1, o2, d2) {
- return o1.plus(d1.times(o2.minus(o1).dot(d2.perp()) / d1.dot(d2.perp())));
-}
-
-/** @private Returns the miter join path for the specified points. */
-pv.SvgScene.pathJoin = function(s0, s1, s2, s3) {
- /*
- * P1-P2 is the current line segment. V is a vector that is perpendicular to
- * the line segment, and has length lineWidth / 2. ABCD forms the initial
- * bounding box of the line segment (i.e., the line segment if we were to do
- * no joins).
- */
- var p1 = pv.vector(s1.left, s1.top),
- p2 = pv.vector(s2.left, s2.top),
- p = p2.minus(p1),
- v = p.perp().norm(),
- w = v.times(s1.lineWidth / (2 * this.scale)),
- a = p1.plus(w),
- b = p2.plus(w),
- c = p2.minus(w),
- d = p1.minus(w);
-
- /*
- * Start join. P0 is the previous line segment's start point. We define the
- * cutting plane as the average of the vector perpendicular to P0-P1, and
- * the vector perpendicular to P1-P2. This insures that the cross-section of
- * the line on the cutting plane is equal if the line-width is unchanged.
- * Note that we don't implement miter limits, so these can get wild.
- */
- if (s0 && s0.visible) {
- var v1 = p1.minus(s0.left, s0.top).perp().norm().plus(v);
- d = this.lineIntersect(p1, v1, d, p);
- a = this.lineIntersect(p1, v1, a, p);
- }
-
- /* Similarly, for end join. */
- if (s3 && s3.visible) {
- var v2 = pv.vector(s3.left, s3.top).minus(p2).perp().norm().plus(v);
- c = this.lineIntersect(p2, v2, c, p);
- b = this.lineIntersect(p2, v2, b, p);
- }
-
- return "M" + a.x + "," + a.y
- + "L" + b.x + "," + b.y
- + " " + c.x + "," + c.y
- + " " + d.x + "," + d.y;
-};
-pv.SvgScene.panel = function(scenes) {
- var g = scenes.$g, e = g && g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
-
- /* svg */
- if (!scenes.parent) {
- s.canvas.style.display = "inline-block";
- if (g && (g.parentNode != s.canvas)) {
- g = s.canvas.firstChild;
- e = g && g.firstChild;
- }
- if (!g) {
- g = s.canvas.appendChild(this.create("svg"));
- g.setAttribute("font-size", "10px");
- g.setAttribute("font-family", "sans-serif");
- g.setAttribute("fill", "none");
- g.setAttribute("stroke", "none");
- g.setAttribute("stroke-width", 1.5);
- for (var j = 0; j < this.events.length; j++) {
- g.addEventListener(this.events[j], this.dispatch, false);
- }
- e = g.firstChild;
- }
- scenes.$g = g;
- g.setAttribute("width", s.width + s.left + s.right);
- g.setAttribute("height", s.height + s.top + s.bottom);
- }
-
- /* clip (nest children) */
- if (s.overflow == "hidden") {
- var id = pv.id().toString(36),
- c = this.expect(e, "g", {"clip-path": "url(#" + id + ")"});
- if (!c.parentNode) g.appendChild(c);
- scenes.$g = g = c;
- e = c.firstChild;
-
- e = this.expect(e, "clipPath", {"id": id});
- var r = e.firstChild || e.appendChild(this.create("rect"));
- r.setAttribute("x", s.left);
- r.setAttribute("y", s.top);
- r.setAttribute("width", s.width);
- r.setAttribute("height", s.height);
- if (!e.parentNode) g.appendChild(e);
- e = e.nextSibling;
- }
-
- /* fill */
- e = this.fill(e, scenes, i);
-
- /* transform (push) */
- var k = this.scale,
- t = s.transform,
- x = s.left + t.x,
- y = s.top + t.y;
- this.scale *= t.k;
-
- /* children */
- for (var j = 0; j < s.children.length; j++) {
- s.children[j].$g = e = this.expect(e, "g", {
- "transform": "translate(" + x + "," + y + ")"
- + (t.k != 1 ? " scale(" + t.k + ")" : "")
- });
- this.updateAll(s.children[j]);
- if (!e.parentNode) g.appendChild(e);
- e = e.nextSibling;
- }
-
- /* transform (pop) */
- this.scale = k;
-
- /* stroke */
- e = this.stroke(e, scenes, i);
-
- /* clip (restore group) */
- if (s.overflow == "hidden") {
- scenes.$g = g = c.parentNode;
- e = c.nextSibling;
- }
- }
- return e;
-};
-
-pv.SvgScene.fill = function(e, scenes, i) {
- var s = scenes[i], fill = s.fillStyle;
- if (fill.opacity || s.events == "all") {
- e = this.expect(e, "rect", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "x": s.left,
- "y": s.top,
- "width": s.width,
- "height": s.height,
- "fill": fill.color,
- "fill-opacity": fill.opacity,
- "stroke": null
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-
-pv.SvgScene.stroke = function(e, scenes, i) {
- var s = scenes[i], stroke = s.strokeStyle;
- if (stroke.opacity || s.events == "all") {
- e = this.expect(e, "rect", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events == "all" ? "stroke" : s.events,
- "cursor": s.cursor,
- "x": s.left,
- "y": s.top,
- "width": Math.max(1E-10, s.width),
- "height": Math.max(1E-10, s.height),
- "fill": null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity,
- "stroke-width": s.lineWidth / this.scale
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.rule = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
- var stroke = s.strokeStyle;
- if (!stroke.opacity) continue;
-
- e = this.expect(e, "line", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "x1": s.left,
- "y1": s.top,
- "x2": s.left + s.width,
- "y2": s.top + s.height,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity,
- "stroke-width": s.lineWidth / this.scale
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-pv.SvgScene.wedge = function(scenes) {
- var e = scenes.$g.firstChild;
- for (var i = 0; i < scenes.length; i++) {
- var s = scenes[i];
-
- /* visible */
- if (!s.visible) continue;
- var fill = s.fillStyle, stroke = s.strokeStyle;
- if (!fill.opacity && !stroke.opacity) continue;
-
- /* points */
- var r1 = s.innerRadius, r2 = s.outerRadius, a = Math.abs(s.angle), p;
- if (a >= 2 * Math.PI) {
- if (r1) {
- p = "M0," + r2
- + "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2)
- + "A" + r2 + "," + r2 + " 0 1,1 0," + r2
- + "M0," + r1
- + "A" + r1 + "," + r1 + " 0 1,1 0," + (-r1)
- + "A" + r1 + "," + r1 + " 0 1,1 0," + r1
- + "Z";
- } else {
- p = "M0," + r2
- + "A" + r2 + "," + r2 + " 0 1,1 0," + (-r2)
- + "A" + r2 + "," + r2 + " 0 1,1 0," + r2
- + "Z";
- }
- } else {
- var sa = Math.min(s.startAngle, s.endAngle),
- ea = Math.max(s.startAngle, s.endAngle),
- c1 = Math.cos(sa), c2 = Math.cos(ea),
- s1 = Math.sin(sa), s2 = Math.sin(ea);
- if (r1) {
- p = "M" + r2 * c1 + "," + r2 * s1
- + "A" + r2 + "," + r2 + " 0 "
- + ((a < Math.PI) ? "0" : "1") + ",1 "
- + r2 * c2 + "," + r2 * s2
- + "L" + r1 * c2 + "," + r1 * s2
- + "A" + r1 + "," + r1 + " 0 "
- + ((a < Math.PI) ? "0" : "1") + ",0 "
- + r1 * c1 + "," + r1 * s1 + "Z";
- } else {
- p = "M" + r2 * c1 + "," + r2 * s1
- + "A" + r2 + "," + r2 + " 0 "
- + ((a < Math.PI) ? "0" : "1") + ",1 "
- + r2 * c2 + "," + r2 * s2 + "L0,0Z";
- }
- }
-
- e = this.expect(e, "path", {
- "shape-rendering": s.antialias ? null : "crispEdges",
- "pointer-events": s.events,
- "cursor": s.cursor,
- "transform": "translate(" + s.left + "," + s.top + ")",
- "d": p,
- "fill": fill.color,
- "fill-rule": "evenodd",
- "fill-opacity": fill.opacity || null,
- "stroke": stroke.color,
- "stroke-opacity": stroke.opacity || null,
- "stroke-width": stroke.opacity ? s.lineWidth / this.scale : null
- });
- e = this.append(e, scenes, i);
- }
- return e;
-};
-/**
- * Constructs a new mark with default properties. Marks, with the exception of
- * the root panel, are not typically constructed directly; instead, they are
- * added to a panel or an existing mark via {@link pv.Mark#add}.
- *
- * @class Represents a data-driven graphical mark. The <tt>Mark</tt> class is
- * the base class for all graphical marks in Protovis; it does not provide any
- * specific rendering functionality, but together with {@link Panel} establishes
- * the core framework.
- *
- * <p>Concrete mark types include familiar visual elements such as bars, lines
- * and labels. Although a bar mark may be used to construct a bar chart, marks
- * know nothing about charts; it is only through their specification and
- * composition that charts are produced. These building blocks permit many
- * combinatorial possibilities.
- *
- * <p>Marks are associated with <b>data</b>: a mark is generated once per
- * associated datum, mapping the datum to visual <b>properties</b> such as
- * position and color. Thus, a single mark specification represents a set of
- * visual elements that share the same data and visual encoding. The type of
- * mark defines the names of properties and their meaning. A property may be
- * static, ignoring the associated datum and returning a constant; or, it may be
- * dynamic, derived from the associated datum or index. Such dynamic encodings
- * can be specified succinctly using anonymous functions. Special properties
- * called event handlers can be registered to add interactivity.
- *
- * <p>Protovis uses <b>inheritance</b> to simplify the specification of related
- * marks: a new mark can be derived from an existing mark, inheriting its
- * properties. The new mark can then override properties to specify new
- * behavior, potentially in terms of the old behavior. In this way, the old mark
- * serves as the <b>prototype</b> for the new mark. Most mark types share the
- * same basic properties for consistency and to facilitate inheritance.
- *
- * <p>The prioritization of redundant properties is as follows:<ol>
- *
- * <li>If the <tt>width</tt> property is not specified (i.e., null), its value
- * is the width of the parent panel, minus this mark's left and right margins;
- * the left and right margins are zero if not specified.
- *
- * <li>Otherwise, if the <tt>right</tt> margin is not specified, its value is
- * the width of the parent panel, minus this mark's width and left margin; the
- * left margin is zero if not specified.
- *
- * <li>Otherwise, if the <tt>left</tt> property is not specified, its value is
- * the width of the parent panel, minus this mark's width and the right margin.
- *
- * </ol>This prioritization is then duplicated for the <tt>height</tt>,
- * <tt>bottom</tt> and <tt>top</tt> properties, respectively.
- *
- * <p>While most properties are <i>variable</i>, some mark types, such as lines
- * and areas, generate a single visual element rather than a distinct visual
- * element per datum. With these marks, some properties may be <b>fixed</b>.
- * Fixed properties can vary per mark, but not <i>per datum</i>! These
- * properties are evaluated solely for the first (0-index) datum, and typically
- * are specified as a constant. However, it is valid to use a function if the
- * property varies between panels or is dynamically generated.
- *
- * <p>See also the <a href="../../api/">Protovis guide</a>.
- */
-pv.Mark = function() {
- /*
- * TYPE 0 constant defs
- * TYPE 1 function defs
- * TYPE 2 constant properties
- * TYPE 3 function properties
- * in order of evaluation!
- */
- this.$properties = [];
- this.$handlers = {};
-};
-
-/** @private Records which properties are defined on this mark type. */
-pv.Mark.prototype.properties = {};
-
-/** @private Records the cast function for each property. */
-pv.Mark.cast = {};
-
-/**
- * @private Defines and registers a property method for the property with the
- * given name. This method should be called on a mark class prototype to define
- * each exposed property. (Note this refers to the JavaScript
- * <tt>prototype</tt>, not the Protovis mark prototype, which is the {@link
- * #proto} field.)
- *
- * <p>The created property method supports several modes of invocation: <ol>
- *
- * <li>If invoked with a <tt>Function</tt> argument, this function is evaluated
- * for each associated datum. The return value of the function is used as the
- * computed property value. The context of the function (<tt>this</tt>) is this
- * mark. The arguments to the function are the associated data of this mark and
- * any enclosing panels. For example, a linear encoding of numerical data to
- * height is specified as
- *
- * <pre>m.height(function(d) d * 100);</pre>
- *
- * The expression <tt>d * 100</tt> will be evaluated for the height property of
- * each mark instance. The return value of the property method (e.g.,
- * <tt>m.height</tt>) is this mark (<tt>m</tt>)).<p>
- *
- * <li>If invoked with a non-function argument, the property is treated as a
- * constant. The return value of the property method (e.g., <tt>m.height</tt>)
- * is this mark.<p>
- *
- * <li>If invoked with no arguments, the computed property value for the current
- * mark instance in the scene graph is returned. This facilitates <i>property
- * chaining</i>, where one mark's properties are defined in terms of another's.
- * For example, to offset a mark's location from its prototype, you might say
- *
- * <pre>m.top(function() this.proto.top() + 10);</pre>
- *
- * Note that the index of the mark being evaluated (in the above example,
- * <tt>this.proto</tt>) is inherited from the <tt>Mark</tt> class and set by
- * this mark. So, if the fifth element's top property is being evaluated, the
- * fifth instance of <tt>this.proto</tt> will similarly be queried for the value
- * of its top property. If the mark being evaluated has a different number of
- * instances, or its data is unrelated, the behavior of this method is
- * undefined. In these cases it may be better to index the <tt>scene</tt>
- * explicitly to specify the exact instance.
- *
- * </ol><p>Property names should follow standard JavaScript method naming
- * conventions, using lowerCamel-style capitalization.
- *
- * <p>In addition to creating the property method, every property is registered
- * in the {@link #properties} map on the <tt>prototype</tt>. Although this is an
- * instance field, it is considered immutable and shared by all instances of a
- * given mark type. The <tt>properties</tt> map can be queried to see if a mark
- * type defines a particular property, such as width or height.
- *
- * @param {string} name the property name.
- * @param {function} [cast] the cast function for this property.
- */
-pv.Mark.prototype.property = function(name, cast) {
- if (!this.hasOwnProperty("properties")) {
- this.properties = pv.extend(this.properties);
- }
- this.properties[name] = true;
-
- /*
- * Define the setter-getter globally, since the default behavior should be the
- * same for all properties, and since the Protovis inheritance chain is
- * independent of the JavaScript inheritance chain. For example, anchors
- * define a "name" property that is evaluated on derived marks, even though
- * those marks don't normally have a name.
- */
- pv.Mark.prototype.propertyMethod(name, false, pv.Mark.cast[name] = cast);
- return this;
-};
-
-/**
- * @private Defines a setter-getter for the specified property.
- *
- * <p>If a cast function has been assigned to the specified property name, the
- * property function is wrapped by the cast function, or, if a constant is
- * specified, the constant is immediately cast. Note, however, that if the
- * property value is null, the cast function is not invoked.
- *
- * @param {string} name the property name.
- * @param {boolean} [def] whether is a property or a def.
- * @param {function} [cast] the cast function for this property.
- */
-pv.Mark.prototype.propertyMethod = function(name, def, cast) {
- if (!cast) cast = pv.Mark.cast[name];
- this[name] = function(v) {
-
- /* If this is a def, use it rather than property. */
- if (def && this.scene) {
- var defs = this.scene.defs;
- if (arguments.length) {
- defs[name] = {
- id: (v == null) ? 0 : pv.id(),
- value: ((v != null) && cast) ? cast(v) : v
- };
- return this;
- }
- return defs[name] ? defs[name].value : null;
- }
-
- /* If arguments are specified, set the property value. */
- if (arguments.length) {
- var type = !def << 1 | (typeof v == "function");
- this.propertyValue(name, (type & 1 && cast) ? function() {
- var x = v.apply(this, arguments);
- return (x != null) ? cast(x) : null;
- } : (((v != null) && cast) ? cast(v) : v)).type = type;
- return this;
- }
-
- return this.instance()[name];
- };
-};
-
-/** @private Sets the value of the property <i>name</i> to <i>v</i>. */
-pv.Mark.prototype.propertyValue = function(name, v) {
- var properties = this.$properties, p = {name: name, id: pv.id(), value: v};
- for (var i = 0; i < properties.length; i++) {
- if (properties[i].name == name) {
- properties.splice(i, 1);
- break;
- }
- }
- properties.push(p);
- return p;
-};
-
-/* Define all global properties. */
-pv.Mark.prototype
- .property("data")
- .property("visible", Boolean)
- .property("left", Number)
- .property("right", Number)
- .property("top", Number)
- .property("bottom", Number)
- .property("cursor", String)
- .property("title", String)
- .property("reverse", Boolean)
- .property("antialias", Boolean)
- .property("events", String);
-
-/**
- * The mark type; a lower camelCase name. The type name controls rendering
- * behavior, and unless the rendering engine is extended, must be one of the
- * built-in concrete mark types: area, bar, dot, image, label, line, panel,
- * rule, or wedge.
- *
- * @type string
- * @name pv.Mark.prototype.type
- */
-
-/**
- * The mark prototype, possibly undefined, from which to inherit property
- * functions. The mark prototype is not necessarily of the same type as this
- * mark. Any properties defined on this mark will override properties inherited
- * either from the prototype or from the type-specific defaults.
- *
- * @type pv.Mark
- * @name pv.Mark.prototype.proto
- */
-
-/**
- * The mark anchor target, possibly undefined.
- *
- * @type pv.Mark
- * @name pv.Mark.prototype.target
- */
-
-/**
- * The enclosing parent panel. The parent panel is generally undefined only for
- * the root panel; however, it is possible to create "offscreen" marks that are
- * used only for inheritance purposes.
- *
- * @type pv.Panel
- * @name pv.Mark.prototype.parent
- */
-
-/**
- * The child index. -1 if the enclosing parent panel is null; otherwise, the
- * zero-based index of this mark into the parent panel's <tt>children</tt> array.
- *
- * @type number
- */
-pv.Mark.prototype.childIndex = -1;
-
-/**
- * The mark index. The value of this field depends on which instance (i.e.,
- * which element of the data array) is currently being evaluated. During the
- * build phase, the index is incremented over each datum; when handling events,
- * the index is set to the instance that triggered the event.
- *
- * @type number
- */
-pv.Mark.prototype.index = -1;
-
-/**
- * The current scale factor, based on any enclosing transforms. The current
- * scale can be used to create scale-independent graphics. For example, to
- * define a dot that has a radius of 10 irrespective of any zooming, say:
- *
- * <pre>dot.radius(function() 10 / this.scale)</pre>
- *
- * Note that the stroke width and font size are defined irrespective of scale
- * (i.e., in screen space) already. Also note that when a transform is applied
- * to a panel, the scale affects only the child marks, not the panel itself.
- *
- * @type number
- * @see pv.Panel#transform
- */
-pv.Mark.prototype.scale = 1;
-
-/**
- * @private The scene graph. The scene graph is an array of objects; each object
- * (or "node") corresponds to an instance of this mark and an element in the
- * data array. The scene graph can be traversed to lookup previously-evaluated
- * properties.
- *
- * @name pv.Mark.prototype.scene
- */
-
-/**
- * The root parent panel. This may be undefined for "offscreen" marks that are
- * created for inheritance purposes only.
- *
- * @type pv.Panel
- * @name pv.Mark.prototype.root
- */
-
-/**
- * The data property; an array of objects. The size of the array determines the
- * number of marks that will be instantiated; each element in the array will be
- * passed to property functions to compute the property values. Typically, the
- * data property is specified as a constant array, such as
- *
- * <pre>m.data([1, 2, 3, 4, 5]);</pre>
- *
- * However, it is perfectly acceptable to define the data property as a
- * function. This function might compute the data dynamically, allowing
- * different data to be used per enclosing panel. For instance, in the stacked
- * area graph example (see {@link #scene}), the data function on the area mark
- * dereferences each series.
- *
- * @type array
- * @name pv.Mark.prototype.data
- */
-
-/**
- * The visible property; a boolean determining whether or not the mark instance
- * is visible. If a mark instance is not visible, its other properties will not
- * be evaluated. Similarly, for panels no child marks will be rendered.
- *
- * @type boolean
- * @name pv.Mark.prototype.visible
- */
-
-/**
- * The left margin; the distance, in pixels, between the left edge of the
- * enclosing panel and the left edge of this mark. Note that in some cases this
- * property may be redundant with the right property, or with the conjunction of
- * right and width.
- *
- * @type number
- * @name pv.Mark.prototype.left
- */
-
-/**
- * The right margin; the distance, in pixels, between the right edge of the
- * enclosing panel and the right edge of this mark. Note that in some cases this
- * property may be redundant with the left property, or with the conjunction of
- * left and width.
- *
- * @type number
- * @name pv.Mark.prototype.right
- */
-
-/**
- * The top margin; the distance, in pixels, between the top edge of the
- * enclosing panel and the top edge of this mark. Note that in some cases this
- * property may be redundant with the bottom property, or with the conjunction
- * of bottom and height.
- *
- * @type number
- * @name pv.Mark.prototype.top
- */
-
-/**
- * The bottom margin; the distance, in pixels, between the bottom edge of the
- * enclosing panel and the bottom edge of this mark. Note that in some cases
- * this property may be redundant with the top property, or with the conjunction
- * of top and height.
- *
- * @type number
- * @name pv.Mark.prototype.bottom
- */
-
-/**
- * The cursor property; corresponds to the CSS cursor property. This is
- * typically used in conjunction with event handlers to indicate interactivity.
- *
- * @type string
- * @name pv.Mark.prototype.cursor
- * @see <a href="http://www.w3.org/TR/CSS2/ui.html#propdef-cursor">CSS2 cursor</a>
- */
-
-/**
- * The title property; corresponds to the HTML/SVG title property, allowing the
- * general of simple plain text tooltips.
- *
- * @type string
- * @name pv.Mark.prototype.title
- */
-
-/**
- * The events property; corresponds to the SVG pointer-events property,
- * specifying how the mark should participate in mouse events. The default value
- * is "painted". Supported values are:
- *
- * <p>"painted": The given mark may receive events when the mouse is over a
- * "painted" area. The painted areas are the interior (i.e., fill) of the mark
- * if a 'fillStyle' is specified, and the perimeter (i.e., stroke) of the mark
- * if a 'strokeStyle' is specified.
- *
- * <p>"all": The given mark may receive events when the mouse is over either the
- * interior (i.e., fill) or the perimeter (i.e., stroke) of the mark, regardless
- * of the specified fillStyle and strokeStyle.
- *
- * <p>"none": The given mark may not receive events.
- *
- * @type string
- * @name pv.Mark.prototype.events
- */
-
-/**
- * The reverse property; a boolean determining whether marks are ordered from
- * front-to-back or back-to-front. SVG does not support explicit z-ordering;
- * shapes are rendered in the order they appear. Thus, by default, marks are
- * rendered in data order. Setting the reverse property to false reverses the
- * order in which they are rendered; however, the properties are still evaluated
- * (i.e., built) in forward order.
- *
- * @type boolean
- * @name pv.Mark.prototype.reverse
- */
-
-/**
- * Default properties for all mark types. By default, the data array is the
- * parent data as a single-element array; if the data property is not specified,
- * this causes each mark to be instantiated as a singleton with the parents
- * datum. The visible property is true by default, and the reverse property is
- * false.
- *
- * @type pv.Mark
- */
-pv.Mark.prototype.defaults = new pv.Mark()
- .data(function(d) { return [d]; })
- .visible(true)
- .antialias(true)
- .events("painted");
-
-/**
- * Sets the prototype of this mark to the specified mark. Any properties not
- * defined on this mark may be inherited from the specified prototype mark, or
- * its prototype, and so on. The prototype mark need not be the same type of
- * mark as this mark. (Note that for inheritance to be useful, properties with
- * the same name on different mark types should have equivalent meaning.)
- *
- * @param {pv.Mark} proto the new prototype.
- * @returns {pv.Mark} this mark.
- * @see #add
- */
-pv.Mark.prototype.extend = function(proto) {
- this.proto = proto;
- this.target = proto.target;
- return this;
-};
-
-/**
- * Adds a new mark of the specified type to the enclosing parent panel, whilst
- * simultaneously setting the prototype of the new mark to be this mark.
- *
- * @param {function} type the type of mark to add; a constructor, such as
- * <tt>pv.Bar</tt>.
- * @returns {pv.Mark} the new mark.
- * @see #extend
- */
-pv.Mark.prototype.add = function(type) {
- return this.parent.add(type).extend(this);
-};
-
-/**
- * Defines a custom property on this mark. Custom properties are currently
- * fixed, in that they are initialized once per mark set (i.e., per parent panel
- * instance). Custom properties can be used to store local state for the mark,
- * such as data needed by other properties (e.g., a custom scale) or interaction
- * state.
- *
- * <p>WARNING We plan on changing this feature in a future release to define
- * standard properties, as opposed to <i>fixed</i> properties that behave
- * idiosyncratically within event handlers. Furthermore, we recommend storing
- * state in an external data structure, rather than tying it to the
- * visualization specification as with defs.
- *
- * @param {string} name the name of the local variable.
- * @param {function} [v] an optional initializer; may be a constant or a
- * function.
- */
-pv.Mark.prototype.def = function(name, v) {
- this.propertyMethod(name, true);
- return this[name](arguments.length > 1 ? v : null);
-};
-
-/**
- * Returns an anchor with the specified name. All marks support the five
- * standard anchor names:<ul>
- *
- * <li>top
- * <li>left
- * <li>center
- * <li>bottom
- * <li>right
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline). Text is
- * rendered to appear inside the mark by default.
- *
- * <p>To facilitate stacking, anchors are defined in terms of their opposite
- * edge. For example, the top anchor defines the bottom property, such that the
- * mark extends upwards; the bottom anchor instead defines the top property,
- * such that the mark extends downwards. See also {@link pv.Layout.Stack}.
- *
- * <p>While anchor names are typically constants, the anchor name is a true
- * property, which means you can specify a function to compute the anchor name
- * dynamically. See the {@link pv.Anchor#name} property for details.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor} the new anchor.
- */
-pv.Mark.prototype.anchor = function(name) {
- if (!name) name = "center"; // default anchor name
- return new pv.Anchor(this)
- .name(name)
- .data(function() {
- return this.scene.target.map(function(s) { return s.data; });
- })
- .visible(function() {
- return this.scene.target[this.index].visible;
- })
- .left(function() {
- var s = this.scene.target[this.index], w = s.width || 0;
- switch (this.name()) {
- case "bottom":
- case "top":
- case "center": return s.left + w / 2;
- case "left": return null;
- }
- return s.left + w;
- })
- .top(function() {
- var s = this.scene.target[this.index], h = s.height || 0;
- switch (this.name()) {
- case "left":
- case "right":
- case "center": return s.top + h / 2;
- case "top": return null;
- }
- return s.top + h;
- })
- .right(function() {
- var s = this.scene.target[this.index];
- return this.name() == "left" ? s.right + (s.width || 0) : null;
- })
- .bottom(function() {
- var s = this.scene.target[this.index];
- return this.name() == "top" ? s.bottom + (s.height || 0) : null;
- })
- .textAlign(function() {
- switch (this.name()) {
- case "bottom":
- case "top":
- case "center": return "center";
- case "right": return "right";
- }
- return "left";
- })
- .textBaseline(function() {
- switch (this.name()) {
- case "right":
- case "left":
- case "center": return "middle";
- case "top": return "top";
- }
- return "bottom";
- });
-};
-
-/** @deprecated Replaced by {@link #target}. */
-pv.Mark.prototype.anchorTarget = function() {
- return this.target;
-};
-
-/**
- * Alias for setting the left, right, top and bottom properties simultaneously.
- *
- * @see #left
- * @see #right
- * @see #top
- * @see #bottom
- * @returns {pv.Mark} this.
- */
-pv.Mark.prototype.margin = function(n) {
- return this.left(n).right(n).top(n).bottom(n);
-};
-
-/**
- * @private Returns the current instance of this mark in the scene graph. This
- * is typically equivalent to <tt>this.scene[this.index]</tt>, however if the
- * scene or index is unset, the default instance of the mark is returned. If no
- * default is set, the default is the last instance. Similarly, if the scene or
- * index of the parent panel is unset, the default instance of this mark in the
- * last instance of the enclosing panel is returned, and so on.
- *
- * @returns a node in the scene graph.
- */
-pv.Mark.prototype.instance = function(defaultIndex) {
- var scene = this.scene || this.parent.instance(-1).children[this.childIndex],
- index = !arguments.length || this.hasOwnProperty("index") ? this.index : defaultIndex;
- return scene[index < 0 ? scene.length - 1 : index];
-};
-
-/**
- * @private Find the instances of this mark that match source.
- *
- * @see pv.Anchor
- */
-pv.Mark.prototype.instances = function(source) {
- var mark = this, index = [], scene;
-
- /* Mirrored descent. */
- while (!(scene = mark.scene)) {
- source = source.parent;
- index.push({index: source.index, childIndex: mark.childIndex});
- mark = mark.parent;
- }
- while (index.length) {
- var i = index.pop();
- scene = scene[i.index].children[i.childIndex];
- }
-
- /*
- * When the anchor target is also an ancestor, as in the case of adding
- * to a panel anchor, only generate one instance per panel. Also, set
- * the margins to zero, since they are offset by the enclosing panel.
- */
- if (this.hasOwnProperty("index")) {
- var s = pv.extend(scene[this.index]);
- s.right = s.top = s.left = s.bottom = 0;
- return [s];
- }
- return scene;
-};
-
-/**
- * @private Returns the first instance of this mark in the scene graph. This
- * method can only be called when the mark is bound to the scene graph (for
- * example, from an event handler, or within a property function).
- *
- * @returns a node in the scene graph.
- */
-pv.Mark.prototype.first = function() {
- return this.scene[0];
-};
-
-/**
- * @private Returns the last instance of this mark in the scene graph. This
- * method can only be called when the mark is bound to the scene graph (for
- * example, from an event handler, or within a property function). In addition,
- * note that mark instances are built sequentially, so the last instance of this
- * mark may not yet be constructed.
- *
- * @returns a node in the scene graph.
- */
-pv.Mark.prototype.last = function() {
- return this.scene[this.scene.length - 1];
-};
-
-/**
- * @private Returns the previous instance of this mark in the scene graph, or
- * null if this is the first instance.
- *
- * @returns a node in the scene graph, or null.
- */
-pv.Mark.prototype.sibling = function() {
- return (this.index == 0) ? null : this.scene[this.index - 1];
-};
-
-/**
- * @private Returns the current instance in the scene graph of this mark, in the
- * previous instance of the enclosing parent panel. May return null if this
- * instance could not be found.
- *
- * @returns a node in the scene graph, or null.
- */
-pv.Mark.prototype.cousin = function() {
- var p = this.parent, s = p && p.sibling();
- return (s && s.children) ? s.children[this.childIndex][this.index] : null;
-};
-
-/**
- * Renders this mark, including recursively rendering all child marks if this is
- * a panel. This method finds all instances of this mark and renders them. This
- * method descends recursively to the level of the mark to be rendered, finding
- * all visible instances of the mark. After the marks are rendered, the scene
- * and index attributes are removed from the mark to restore them to a clean
- * state.
- *
- * <p>If an enclosing panel has an index property set (as is the case inside in
- * an event handler), then only instances of this mark inside the given instance
- * of the panel will be rendered; otherwise, all visible instances of the mark
- * will be rendered.
- */
-pv.Mark.prototype.render = function() {
- var parent = this.parent,
- stack = pv.Mark.stack;
-
- /* For the first render, take it from the top. */
- if (parent && !this.root.scene) {
- this.root.render();
- return;
- }
-
- /* Record the path to this mark. */
- var indexes = [];
- for (var mark = this; mark.parent; mark = mark.parent) {
- indexes.unshift(mark.childIndex);
- }
-
- /** @private */
- function render(mark, depth, scale) {
- mark.scale = scale;
- if (depth < indexes.length) {
- stack.unshift(null);
- if (mark.hasOwnProperty("index")) {
- renderInstance(mark, depth, scale);
- } else {
- for (var i = 0, n = mark.scene.length; i < n; i++) {
- mark.index = i;
- renderInstance(mark, depth, scale);
- }
- delete mark.index;
- }
- stack.shift();
- } else {
- mark.build();
-
- /*
- * In the update phase, the scene is rendered by creating and updating
- * elements and attributes in the SVG image. No properties are evaluated
- * during the update phase; instead the values computed previously in the
- * build phase are simply translated into SVG. The update phase is
- * decoupled (see pv.Scene) to allow different rendering engines.
- */
- pv.Scene.scale = scale;
- pv.Scene.updateAll(mark.scene);
- }
- delete mark.scale;
- }
-
- /**
- * @private Recursively renders the current instance of the specified mark.
- * This is slightly tricky because `index` and `scene` properties may or may
- * not already be set; if they are set, it means we are rendering only a
- * specific instance; if they are unset, we are rendering all instances.
- * Furthermore, we must preserve the original context of these properties when
- * rendering completes.
- *
- * <p>Another tricky aspect is that the `scene` attribute should be set for
- * any preceding children, so as to allow property chaining. This is
- * consistent with first-pass rendering.
- */
- function renderInstance(mark, depth, scale) {
- var s = mark.scene[mark.index], i;
- if (s.visible) {
- var childIndex = indexes[depth],
- child = mark.children[childIndex];
-
- /* Set preceding child scenes. */
- for (i = 0; i < childIndex; i++) {
- mark.children[i].scene = s.children[i];
- }
-
- /* Set current child scene, if necessary. */
- stack[0] = s.data;
- if (child.scene) {
- render(child, depth + 1, scale * s.transform.k);
- } else {
- child.scene = s.children[childIndex];
- render(child, depth + 1, scale * s.transform.k);
- delete child.scene;
- }
-
- /* Clear preceding child scenes. */
- for (i = 0; i < childIndex; i++) {
- delete mark.children[i].scene;
- }
- }
- }
-
- /* Bind this mark's property definitions. */
- this.bind();
-
- /* The render context is the first ancestor with an explicit index. */
- while (parent && !parent.hasOwnProperty("index")) parent = parent.parent;
-
- /* Recursively render all instances of this mark. */
- this.context(
- parent ? parent.scene : undefined,
- parent ? parent.index : -1,
- function() { render(this.root, 0, 1); });
-};
-
-/** @private Stores the current data stack. */
-pv.Mark.stack = [];
-
-/**
- * @private In the bind phase, inherited property definitions are cached so they
- * do not need to be queried during build.
- */
-pv.Mark.prototype.bind = function() {
- var seen = {}, types = [[], [], [], []], data, visible;
-
- /** Scans the proto chain for the specified mark. */
- function bind(mark) {
- do {
- var properties = mark.$properties;
- for (var i = properties.length - 1; i >= 0 ; i--) {
- var p = properties[i];
- if (!(p.name in seen)) {
- seen[p.name] = p;
- switch (p.name) {
- case "data": data = p; break;
- case "visible": visible = p; break;
- default: types[p.type].push(p); break;
- }
- }
- }
- } while (mark = mark.proto);
- }
-
- /* Scan the proto chain for all defined properties. */
- bind(this);
- bind(this.defaults);
- types[1].reverse();
- types[3].reverse();
-
- /* Any undefined properties are null. */
- var mark = this;
- do for (var name in mark.properties) {
- if (!(name in seen)) {
- types[2].push(seen[name] = {name: name, type: 2, value: null});
- }
- } while (mark = mark.proto);
-
- /* Define setter-getter for inherited defs. */
- var defs = types[0].concat(types[1]);
- for (var i = 0; i < defs.length; i++) {
- this.propertyMethod(defs[i].name, true);
- }
-
- /* Setup binds to evaluate constants before functions. */
- this.binds = {
- properties: seen,
- data: data,
- defs: defs,
- required: [visible],
- optional: pv.blend(types)
- };
-};
-
-/**
- * @private Evaluates properties and computes implied properties. Properties are
- * stored in the {@link #scene} array for each instance of this mark.
- *
- * <p>As marks are built recursively, the {@link #index} property is updated to
- * match the current index into the data array for each mark. Note that the
- * index property is only set for the mark currently being built and its
- * enclosing parent panels. The index property for other marks is unset, but is
- * inherited from the global <tt>Mark</tt> class prototype. This allows mark
- * properties to refer to properties on other marks <i>in the same panel</i>
- * conveniently; however, in general it is better to reference mark instances
- * specifically through the scene graph rather than depending on the magical
- * behavior of {@link #index}.
- *
- * <p>The root scene array has a special property, <tt>data</tt>, which stores
- * the current data stack. The first element in this stack is the current datum,
- * followed by the datum of the enclosing parent panel, and so on. The data
- * stack should not be accessed directly; instead, property functions are passed
- * the current data stack as arguments.
- *
- * <p>The evaluation of the <tt>data</tt> and <tt>visible</tt> properties is
- * special. The <tt>data</tt> property is evaluated first; unlike the other
- * properties, the data stack is from the parent panel, rather than the current
- * mark, since the data is not defined until the data property is evaluated.
- * The <tt>visisble</tt> property is subsequently evaluated for each instance;
- * only if true will the {@link #buildInstance} method be called, evaluating
- * other properties and recursively building the scene graph.
- *
- * <p>If this mark is being re-built, any old instances of this mark that no
- * longer exist (because the new data array contains fewer elements) will be
- * cleared using {@link #clearInstance}.
- *
- * @param parent the instance of the parent panel from the scene graph.
- */
-pv.Mark.prototype.build = function() {
- var scene = this.scene, stack = pv.Mark.stack;
- if (!scene) {
- scene = this.scene = [];
- scene.mark = this;
- scene.type = this.type;
- scene.childIndex = this.childIndex;
- if (this.parent) {
- scene.parent = this.parent.scene;
- scene.parentIndex = this.parent.index;
- }
- }
-
- /* Resolve anchor target. */
- if (this.target) scene.target = this.target.instances(scene);
-
- /* Evaluate defs. */
- if (this.binds.defs.length) {
- var defs = scene.defs;
- if (!defs) scene.defs = defs = {};
- for (var i = 0; i < this.binds.defs.length; i++) {
- var p = this.binds.defs[i], d = defs[p.name];
- if (!d || (p.id > d.id)) {
- defs[p.name] = {
- id: 0, // this def will be re-evaluated on next build
- value: (p.type & 1) ? p.value.apply(this, stack) : p.value
- };
- }
- }
- }
-
- /* Evaluate special data property. */
- var data = this.binds.data;
- data = data.type & 1 ? data.value.apply(this, stack) : data.value;
-
- /* Create, update and delete scene nodes. */
- stack.unshift(null);
- scene.length = data.length;
- for (var i = 0; i < data.length; i++) {
- pv.Mark.prototype.index = this.index = i;
- var s = scene[i];
- if (!s) scene[i] = s = {};
- s.data = stack[0] = data[i];
- this.buildInstance(s);
- }
- pv.Mark.prototype.index = -1;
- delete this.index;
- stack.shift();
-
- return this;
-};
-
-/**
- * @private Evaluates the specified array of properties for the specified
- * instance <tt>s</tt> in the scene graph.
- *
- * @param s a node in the scene graph; the instance of the mark to build.
- * @param properties an array of properties.
- */
-pv.Mark.prototype.buildProperties = function(s, properties) {
- for (var i = 0, n = properties.length; i < n; i++) {
- var p = properties[i], v = p.value; // assume case 2 (constant)
- switch (p.type) {
- case 0:
- case 1: v = this.scene.defs[p.name].value; break;
- case 3: v = v.apply(this, pv.Mark.stack); break;
- }
- s[p.name] = v;
- }
-};
-
-/**
- * @private Evaluates all of the properties for this mark for the specified
- * instance <tt>s</tt> in the scene graph. The set of properties to evaluate is
- * retrieved from the {@link #properties} array for this mark type (see {@link
- * #type}). After these properties are evaluated, any <b>implied</b> properties
- * may be computed by the mark and set on the scene graph; see
- * {@link #buildImplied}.
- *
- * <p>For panels, this method recursively builds the scene graph for all child
- * marks as well. In general, this method should not need to be overridden by
- * concrete mark types.
- *
- * @param s a node in the scene graph; the instance of the mark to build.
- */
-pv.Mark.prototype.buildInstance = function(s) {
- this.buildProperties(s, this.binds.required);
- if (s.visible) {
- this.buildProperties(s, this.binds.optional);
- this.buildImplied(s);
- }
-};
-
-/**
- * @private Computes the implied properties for this mark for the specified
- * instance <tt>s</tt> in the scene graph. Implied properties are those with
- * dependencies on multiple other properties; for example, the width property
- * may be implied if the left and right properties are set. This method can be
- * overridden by concrete mark types to define new implied properties, if
- * necessary.
- *
- * @param s a node in the scene graph; the instance of the mark to build.
- */
-pv.Mark.prototype.buildImplied = function(s) {
- var l = s.left;
- var r = s.right;
- var t = s.top;
- var b = s.bottom;
-
- /* Assume width and height are zero if not supported by this mark type. */
- var p = this.properties;
- var w = p.width ? s.width : 0;
- var h = p.height ? s.height : 0;
-
- /* Compute implied width, right and left. */
- var width = this.parent ? this.parent.width() : (w + l + r);
- if (w == null) {
- w = width - (r = r || 0) - (l = l || 0);
- } else if (r == null) {
- if (l == null) {
- l = r = (width - w) / 2;
- } else {
- r = width - w - (l = l || 0);
- }
- } else if (l == null) {
- l = width - w - r;
- }
-
- /* Compute implied height, bottom and top. */
- var height = this.parent ? this.parent.height() : (h + t + b);
- if (h == null) {
- h = height - (t = t || 0) - (b = b || 0);
- } else if (b == null) {
- if (t == null) {
- b = t = (height - h) / 2;
- } else {
- b = height - h - (t = t || 0);
- }
- } else if (t == null) {
- t = height - h - b;
- }
-
- s.left = l;
- s.right = r;
- s.top = t;
- s.bottom = b;
-
- /* Only set width and height if they are supported by this mark type. */
- if (p.width) s.width = w;
- if (p.height) s.height = h;
-
- /* Set any null colors to pv.Color.transparent. */
- if (p.textStyle && !s.textStyle) s.textStyle = pv.Color.transparent;
- if (p.fillStyle && !s.fillStyle) s.fillStyle = pv.Color.transparent;
- if (p.strokeStyle && !s.strokeStyle) s.strokeStyle = pv.Color.transparent;
-};
-
-/**
- * Returns the current location of the mouse (cursor) relative to this mark's
- * parent. The <i>x</i> coordinate corresponds to the left margin, while the
- * <i>y</i> coordinate corresponds to the top margin.
- *
- * @returns {pv.Vector} the mouse location.
- */
-pv.Mark.prototype.mouse = function() {
-
- /* Compute xy-coordinates relative to the panel. */
- var x = pv.event.pageX || 0,
- y = pv.event.pageY || 0,
- n = this.root.canvas();
- do {
- x -= n.offsetLeft;
- y -= n.offsetTop;
- } while (n = n.offsetParent);
-
- /* Compute the inverse transform of all enclosing panels. */
- var t = pv.Transform.identity,
- p = this.properties.transform ? this : this.parent,
- pz = [];
- do { pz.push(p); } while (p = p.parent);
- while (p = pz.pop()) t = t.translate(p.left(), p.top()).times(p.transform());
- t = t.invert();
-
- return pv.vector(x * t.k + t.x, y * t.k + t.y);
-};
-
-/**
- * Registers an event handler for the specified event type with this mark. When
- * an event of the specified type is triggered, the specified handler will be
- * invoked. The handler is invoked in a similar method to property functions:
- * the context is <tt>this</tt> mark instance, and the arguments are the full
- * data stack. Event handlers can use property methods to manipulate the display
- * properties of the mark:
- *
- * <pre>m.event("click", function() this.fillStyle("red"));</pre>
- *
- * Alternatively, the external data can be manipulated and the visualization
- * redrawn:
- *
- * <pre>m.event("click", function(d) {
- * data = all.filter(function(k) k.name == d);
- * vis.render();
- * });</pre>
- *
- * The return value of the event handler determines which mark gets re-rendered.
- * Use defs ({@link #def}) to set temporary state from event handlers.
- *
- * <p>The complete set of event types is defined by SVG; see the reference
- * below. The set of supported event types is:<ul>
- *
- * <li>click
- * <li>mousedown
- * <li>mouseup
- * <li>mouseover
- * <li>mousemove
- * <li>mouseout
- *
- * </ul>Since Protovis does not specify any concept of focus, it does not
- * support key events; these should be handled outside the visualization using
- * standard JavaScript. In the future, support for interaction may be extended
- * to support additional event types, particularly those most relevant to
- * interactive visualization, such as selection.
- *
- * <p>TODO In the current implementation, event handlers are not inherited from
- * prototype marks. They must be defined explicitly on each interactive mark. In
- * addition, only one event handler for a given event type can be defined; when
- * specifying multiple event handlers for the same type, only the last one will
- * be used.
- *
- * @see <a href="http://www.w3.org/TR/SVGTiny12/interact.html#SVGEvents">SVG events</a>
- * @param {string} type the event type.
- * @param {function} handler the event handler.
- * @returns {pv.Mark} this.
- */
-pv.Mark.prototype.event = function(type, handler) {
- this.$handlers[type] = pv.functor(handler);
- return this;
-};
-
-/** @private Evaluates the function <i>f</i> with the specified context. */
-pv.Mark.prototype.context = function(scene, index, f) {
- var proto = pv.Mark.prototype,
- stack = pv.Mark.stack,
- oscene = pv.Mark.scene,
- oindex = proto.index;
-
- /** @private Sets the context. */
- function apply(scene, index) {
- pv.Mark.scene = scene;
- proto.index = index;
- if (!scene) return;
-
- var that = scene.mark,
- mark = that,
- ancestors = [];
-
- /* Set ancestors' scene and index; populate data stack. */
- do {
- ancestors.push(mark);
- stack.push(scene[index].data);
- mark.index = index;
- mark.scene = scene;
- index = scene.parentIndex;
- scene = scene.parent;
- } while (mark = mark.parent);
-
- /* Set ancestors' scale; requires top-down. */
- for (var i = ancestors.length - 1, k = 1; i > 0; i--) {
- mark = ancestors[i];
- mark.scale = k;
- k *= mark.scene[mark.index].transform.k;
- }
-
- /* Set children's scene and scale. */
- if (that.children) for (var i = 0, n = that.children.length; i < n; i++) {
- mark = that.children[i];
- mark.scene = that.scene[that.index].children[i];
- mark.scale = k;
- }
- }
-
- /** @private Clears the context. */
- function clear(scene, index) {
- if (!scene) return;
- var that = scene.mark,
- mark;
-
- /* Reset children. */
- if (that.children) for (var i = 0, n = that.children.length; i < n; i++) {
- mark = that.children[i];
- delete mark.scene;
- delete mark.scale;
- }
-
- /* Reset ancestors. */
- mark = that;
- do {
- stack.pop();
- if (mark.parent) {
- delete mark.scene;
- delete mark.scale;
- }
- delete mark.index;
- } while (mark = mark.parent);
- }
-
- /* Context switch, invoke the function, then switch back. */
- clear(oscene, oindex);
- apply(scene, index);
- try {
- f.apply(this, stack);
- } finally {
- clear(scene, index);
- apply(oscene, oindex);
- }
-};
-
-/** @private Execute the event listener, then re-render. */
-pv.Mark.dispatch = function(type, scene, index) {
- var m = scene.mark, p = scene.parent, l = m.$handlers[type];
- if (!l) return p && pv.Mark.dispatch(type, p, scene.parentIndex);
- m.context(scene, index, function() {
- m = l.apply(m, pv.Mark.stack);
- if (m && m.render) m.render();
- });
- return true;
-};
-/**
- * Constructs a new mark anchor with default properties.
- *
- * @class Represents an anchor on a given mark. An anchor is itself a mark, but
- * without a visual representation. It serves only to provide useful default
- * properties that can be inherited by other marks. Each type of mark can define
- * any number of named anchors for convenience. If the concrete mark type does
- * not define an anchor implementation specifically, one will be inherited from
- * the mark's parent class.
- *
- * <p>For example, the bar mark provides anchors for its four sides: left,
- * right, top and bottom. Adding a label to the top anchor of a bar,
- *
- * <pre>bar.anchor("top").add(pv.Label);</pre>
- *
- * will render a text label on the top edge of the bar; the top anchor defines
- * the appropriate position properties (top and left), as well as text-rendering
- * properties for convenience (textAlign and textBaseline).
- *
- * <p>Note that anchors do not <i>inherit</i> from their targets; the positional
- * properties are copied from the scene graph, which guarantees that the anchors
- * are positioned correctly, even if the positional properties are not defined
- * deterministically. (In addition, it also improves performance by avoiding
- * re-evaluating expensive properties.) If you want the anchor to inherit from
- * the target, use {@link pv.Mark#extend} before adding. For example:
- *
- * <pre>bar.anchor("top").extend(bar).add(pv.Label);</pre>
- *
- * The anchor defines it's own positional properties, but other properties (such
- * as the title property, say) can be inherited using the above idiom. Also note
- * that you can override positional properties in the anchor for custom
- * behavior.
- *
- * @extends pv.Mark
- * @param {pv.Mark} target the anchor target.
- */
-pv.Anchor = function(target) {
- pv.Mark.call(this);
- this.target = target;
- this.parent = target.parent;
-};
-
-pv.Anchor.prototype = pv.extend(pv.Mark)
- .property("name", String);
-
-/**
- * The anchor name. The set of supported anchor names is dependent on the
- * concrete mark type; see the mark type for details. For example, bars support
- * left, right, top and bottom anchors.
- *
- * <p>While anchor names are typically constants, the anchor name is a true
- * property, which means you can specify a function to compute the anchor name
- * dynamically. For instance, if you wanted to alternate top and bottom anchors,
- * saying
- *
- * <pre>m.anchor(function() (this.index % 2) ? "top" : "bottom").add(pv.Dot);</pre>
- *
- * would have the desired effect.
- *
- * @type string
- * @name pv.Anchor.prototype.name
- */
-
-/**
- * Sets the prototype of this anchor to the specified mark. Any properties not
- * defined on this mark may be inherited from the specified prototype mark, or
- * its prototype, and so on. The prototype mark need not be the same type of
- * mark as this mark. (Note that for inheritance to be useful, properties with
- * the same name on different mark types should have equivalent meaning.)
- *
- * <p>This method differs slightly from the normal mark behavior in that the
- * anchor's target is preserved.
- *
- * @param {pv.Mark} proto the new prototype.
- * @returns {pv.Anchor} this anchor.
- * @see pv.Mark#add
- */
-pv.Anchor.prototype.extend = function(proto) {
- this.proto = proto;
- return this;
-};
-/**
- * Constructs a new area mark with default properties. Areas are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents an area mark: the solid area between two series of
- * connected line segments. Unsurprisingly, areas are used most frequently for
- * area charts.
- *
- * <p>Just as a line represents a polyline, the <tt>Area</tt> mark type
- * represents a <i>polygon</i>. However, an area is not an arbitrary polygon;
- * vertices are paired either horizontally or vertically into parallel
- * <i>spans</i>, and each span corresponds to an associated datum. Either the
- * width or the height must be specified, but not both; this determines whether
- * the area is horizontally-oriented or vertically-oriented. Like lines, areas
- * can be stroked and filled with arbitrary colors.
- *
- * <p>See also the <a href="../../api/Area.html">Area guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Area = function() {
- pv.Mark.call(this);
-};
-
-pv.Area.prototype = pv.extend(pv.Mark)
- .property("width", Number)
- .property("height", Number)
- .property("lineWidth", Number)
- .property("strokeStyle", pv.color)
- .property("fillStyle", pv.color)
- .property("segmented", Boolean)
- .property("interpolate", String)
- .property("tension", Number);
-
-pv.Area.prototype.type = "area";
-
-/**
- * The width of a given span, in pixels; used for horizontal spans. If the width
- * is specified, the height property should be 0 (the default). Either the top
- * or bottom property should be used to space the spans vertically, typically as
- * a multiple of the index.
- *
- * @type number
- * @name pv.Area.prototype.width
- */
-
-/**
- * The height of a given span, in pixels; used for vertical spans. If the height
- * is specified, the width property should be 0 (the default). Either the left
- * or right property should be used to space the spans horizontally, typically
- * as a multiple of the index.
- *
- * @type number
- * @name pv.Area.prototype.height
- */
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the perimeter of the area. Unlike the
- * {@link Line} mark type, the entire perimeter is stroked, rather than just one
- * edge. The default value of this property is 1.5, but since the default stroke
- * style is null, area marks are not stroked by default.
- *
- * <p>This property is <i>fixed</i> for non-segmented areas. See
- * {@link pv.Mark}.
- *
- * @type number
- * @name pv.Area.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the perimeter of the area. Unlike the {@link Line} mark type, the
- * entire perimeter is stroked, rather than just one edge. The default value of
- * this property is null, meaning areas are not stroked by default.
- *
- * <p>This property is <i>fixed</i> for non-segmented areas. See
- * {@link pv.Mark}.
- *
- * @type string
- * @name pv.Area.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * The area fill style; if non-null, the interior of the polygon forming the
- * area is filled with the specified color. The default value of this property
- * is a categorical color.
- *
- * <p>This property is <i>fixed</i> for non-segmented areas. See
- * {@link pv.Mark}.
- *
- * @type string
- * @name pv.Area.prototype.fillStyle
- * @see pv.color
- */
-
-/**
- * Whether the area is segmented; whether variations in fill style, stroke
- * style, and the other properties are treated as fixed. Rendering segmented
- * areas is noticeably slower than non-segmented areas.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type boolean
- * @name pv.Area.prototype.segmented
- */
-
-/**
- * How to interpolate between values. Linear interpolation ("linear") is the
- * default, producing a straight line between points. For piecewise constant
- * functions (i.e., step functions), either "step-before" or "step-after" can be
- * specified. To draw open uniform b-splines, specify "basis". To draw cardinal
- * splines, specify "cardinal"; see also {@link #tension}.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type string
- * @name pv.Area.prototype.interpolate
- */
-
-/**
- * The tension of cardinal splines; used in conjunction with
- * interpolate("cardinal"). A value between 0 and 1 draws cardinal splines with
- * the given tension. In some sense, the tension can be interpreted as the
- * "length" of the tangent; a tension of 1 will yield all zero tangents (i.e.,
- * linear interpolation), and a tension of 0 yields a Catmull-Rom spline. The
- * default value is 0.7.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type number
- * @name pv.Area.prototype.tension
- */
-
-/**
- * Default properties for areas. By default, there is no stroke and the fill
- * style is a categorical color.
- *
- * @type pv.Area
- */
-pv.Area.prototype.defaults = new pv.Area()
- .extend(pv.Mark.prototype.defaults)
- .lineWidth(1.5)
- .fillStyle(pv.Colors.category20().by(pv.parent))
- .interpolate("linear")
- .tension(.7);
-
-/** @private Sets width and height to zero if null. */
-pv.Area.prototype.buildImplied = function(s) {
- if (s.height == null) s.height = 0;
- if (s.width == null) s.width = 0;
- pv.Mark.prototype.buildImplied.call(this, s);
-};
-
-/** @private Records which properties may be fixed. */
-pv.Area.fixed = {
- lineWidth: 1,
- lineJoin: 1,
- strokeStyle: 1,
- fillStyle: 1,
- segmented: 1,
- interpolate: 1,
- tension: 1
-};
-
-/**
- * @private Make segmented required, such that this fixed property is always
- * evaluated, even if the first segment is not visible. Also cache which
- * properties are normally fixed.
- */
-pv.Area.prototype.bind = function() {
- pv.Mark.prototype.bind.call(this);
- var binds = this.binds,
- required = binds.required,
- optional = binds.optional;
- for (var i = 0, n = optional.length; i < n; i++) {
- var p = optional[i];
- p.fixed = p.name in pv.Area.fixed;
- if (p.name == "segmented") {
- required.push(p);
- optional.splice(i, 1);
- i--;
- n--;
- }
- }
-
- /* Cache the original arrays so they can be restored on build. */
- this.binds.$required = required;
- this.binds.$optional = optional;
-};
-
-/**
- * @private Override the default build behavior such that fixed properties are
- * determined dynamically, based on the value of the (always) fixed segmented
- * property. Any fixed properties are only evaluated on the first instance,
- * although their values are propagated to subsequent instances, so that they
- * are available for property chaining and the like.
- */
-pv.Area.prototype.buildInstance = function(s) {
- var binds = this.binds;
-
- /* Handle fixed properties on secondary instances. */
- if (this.index) {
- var fixed = binds.fixed;
-
- /* Determine which properties are fixed. */
- if (!fixed) {
- fixed = binds.fixed = [];
- function f(p) { return !p.fixed || (fixed.push(p), false); }
- binds.required = binds.required.filter(f);
- if (!this.scene[0].segmented) binds.optional = binds.optional.filter(f);
- }
-
- /* Copy fixed property values from the first instance. */
- for (var i = 0, n = fixed.length; i < n; i++) {
- var p = fixed[i].name;
- s[p] = this.scene[0][p];
- }
- }
-
- /* Evaluate all properties on the first instance. */
- else {
- binds.required = binds.$required;
- binds.optional = binds.$optional;
- binds.fixed = null;
- }
-
- pv.Mark.prototype.buildInstance.call(this, s);
-};
-
-/**
- * Constructs a new area anchor with default properties. Areas support five
- * different anchors:<ul>
- *
- * <li>top
- * <li>left
- * <li>center
- * <li>bottom
- * <li>right
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline). Text
- * is rendered to appear inside the area. The area anchor also propagates the
- * interpolate, eccentricity, and tension properties such that an anchored area
- * or line will match positions between control points.
- *
- * <p>For consistency with the other mark types, the anchor positions are
- * defined in terms of their opposite edge. For example, the top anchor defines
- * the bottom property, such that an area added to the top anchor grows upward.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor}
- */
-pv.Area.prototype.anchor = function(name) {
- return pv.Mark.prototype.anchor.call(this, name)
- .interpolate(function() {
- return this.scene.target[this.index].interpolate;
- })
- .eccentricity(function() {
- return this.scene.target[this.index].eccentricity;
- })
- .tension(function() {
- return this.scene.target[this.index].tension;
- });
-};
-/**
- * Constructs a new bar mark with default properties. Bars are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a bar: an axis-aligned rectangle that can be stroked and
- * filled. Bars are used for many chart types, including bar charts, histograms
- * and Gantt charts. Bars can also be used as decorations, for example to draw a
- * frame border around a panel; in fact, a panel is a special type (a subclass)
- * of bar.
- *
- * <p>Bars can be positioned in several ways. Most commonly, one of the four
- * corners is fixed using two margins, and then the width and height properties
- * determine the extent of the bar relative to this fixed location. For example,
- * using the bottom and left properties fixes the bottom-left corner; the width
- * then extends to the right, while the height extends to the top. As an
- * alternative to the four corners, a bar can be positioned exclusively using
- * margins; this is convenient as an inset from the containing panel, for
- * example. See {@link pv.Mark} for details on the prioritization of redundant
- * positioning properties.
- *
- * <p>See also the <a href="../../api/Bar.html">Bar guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Bar = function() {
- pv.Mark.call(this);
-};
-
-pv.Bar.prototype = pv.extend(pv.Mark)
- .property("width", Number)
- .property("height", Number)
- .property("lineWidth", Number)
- .property("strokeStyle", pv.color)
- .property("fillStyle", pv.color);
-
-pv.Bar.prototype.type = "bar";
-
-/**
- * The width of the bar, in pixels. If the left position is specified, the bar
- * extends rightward from the left edge; if the right position is specified, the
- * bar extends leftward from the right edge.
- *
- * @type number
- * @name pv.Bar.prototype.width
- */
-
-/**
- * The height of the bar, in pixels. If the bottom position is specified, the
- * bar extends upward from the bottom edge; if the top position is specified,
- * the bar extends downward from the top edge.
- *
- * @type number
- * @name pv.Bar.prototype.height
- */
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the bar's border.
- *
- * @type number
- * @name pv.Bar.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the bar's border. The default value of this property is null, meaning
- * bars are not stroked by default.
- *
- * @type string
- * @name pv.Bar.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * The bar fill style; if non-null, the interior of the bar is filled with the
- * specified color. The default value of this property is a categorical color.
- *
- * @type string
- * @name pv.Bar.prototype.fillStyle
- * @see pv.color
- */
-
-/**
- * Default properties for bars. By default, there is no stroke and the fill
- * style is a categorical color.
- *
- * @type pv.Bar
- */
-pv.Bar.prototype.defaults = new pv.Bar()
- .extend(pv.Mark.prototype.defaults)
- .lineWidth(1.5)
- .fillStyle(pv.Colors.category20().by(pv.parent));
-/**
- * Constructs a new dot mark with default properties. Dots are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a dot; a dot is simply a sized glyph centered at a given
- * point that can also be stroked and filled. The <tt>size</tt> property is
- * proportional to the area of the rendered glyph to encourage meaningful visual
- * encodings. Dots can visually encode up to eight dimensions of data, though
- * this may be unwise due to integrality. See {@link pv.Mark} for details on the
- * prioritization of redundant positioning properties.
- *
- * <p>See also the <a href="../../api/Dot.html">Dot guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Dot = function() {
- pv.Mark.call(this);
-};
-
-pv.Dot.prototype = pv.extend(pv.Mark)
- .property("size", Number)
- .property("radius", Number)
- .property("shape", String)
- .property("angle", Number)
- .property("lineWidth", Number)
- .property("strokeStyle", pv.color)
- .property("fillStyle", pv.color);
-
-pv.Dot.prototype.type = "dot";
-
-/**
- * The size of the dot, in square pixels. Square pixels are used such that the
- * area of the dot is linearly proportional to the value of the size property,
- * facilitating representative encodings.
- *
- * @see #radius
- * @type number
- * @name pv.Dot.prototype.size
- */
-
-/**
- * The radius of the dot, in pixels. This is an alternative to using
- * {@link #size}.
- *
- * @see #size
- * @type number
- * @name pv.Dot.prototype.radius
- */
-
-/**
- * The shape name. Several shapes are supported:<ul>
- *
- * <li>cross
- * <li>triangle
- * <li>diamond
- * <li>square
- * <li>circle
- * <li>tick
- * <li>bar
- *
- * </ul>These shapes can be further changed using the {@link #angle} property;
- * for instance, a cross can be turned into a plus by rotating. Similarly, the
- * tick, which is vertical by default, can be rotated horizontally. Note that
- * some shapes (cross and tick) do not have interior areas, and thus do not
- * support fill style meaningfully.
- *
- * <p>Note: it may be more natural to use the {@link pv.Rule} mark for
- * horizontal and vertical ticks. The tick shape is only necessary if angled
- * ticks are needed.
- *
- * @type string
- * @name pv.Dot.prototype.shape
- */
-
-/**
- * The rotation angle, in radians. Used to rotate shapes, such as to turn a
- * cross into a plus.
- *
- * @type number
- * @name pv.Dot.prototype.angle
- */
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the dot's shape.
- *
- * @type number
- * @name pv.Dot.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the dot's shape. The default value of this property is a categorical
- * color.
- *
- * @type string
- * @name pv.Dot.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * The fill style; if non-null, the interior of the dot is filled with the
- * specified color. The default value of this property is null, meaning dots are
- * not filled by default.
- *
- * @type string
- * @name pv.Dot.prototype.fillStyle
- * @see pv.color
- */
-
-/**
- * Default properties for dots. By default, there is no fill and the stroke
- * style is a categorical color. The default shape is "circle" with size 20.
- *
- * @type pv.Dot
- */
-pv.Dot.prototype.defaults = new pv.Dot()
- .extend(pv.Mark.prototype.defaults)
- .size(20)
- .shape("circle")
- .lineWidth(1.5)
- .strokeStyle(pv.Colors.category10().by(pv.parent));
-
-/**
- * Constructs a new dot anchor with default properties. Dots support five
- * different anchors:<ul>
- *
- * <li>top
- * <li>left
- * <li>center
- * <li>bottom
- * <li>right
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline). Text is
- * rendered to appear outside the dot. Note that this behavior is different from
- * other mark anchors, which default to rendering text <i>inside</i> the mark.
- *
- * <p>For consistency with the other mark types, the anchor positions are
- * defined in terms of their opposite edge. For example, the top anchor defines
- * the bottom property, such that a bar added to the top anchor grows upward.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor}
- */
-pv.Dot.prototype.anchor = function(name) {
- return pv.Mark.prototype.anchor.call(this, name)
- .left(function() {
- var s = this.scene.target[this.index];
- switch (this.name()) {
- case "bottom":
- case "top":
- case "center": return s.left;
- case "left": return null;
- }
- return s.left + s.radius;
- })
- .right(function() {
- var s = this.scene.target[this.index];
- return this.name() == "left" ? s.right + s.radius : null;
- })
- .top(function() {
- var s = this.scene.target[this.index];
- switch (this.name()) {
- case "left":
- case "right":
- case "center": return s.top;
- case "top": return null;
- }
- return s.top + s.radius;
- })
- .bottom(function() {
- var s = this.scene.target[this.index];
- return this.name() == "top" ? s.bottom + s.radius : null;
- })
- .textAlign(function() {
- switch (this.name()) {
- case "left": return "right";
- case "bottom":
- case "top":
- case "center": return "center";
- }
- return "left";
- })
- .textBaseline(function() {
- switch (this.name()) {
- case "right":
- case "left":
- case "center": return "middle";
- case "bottom": return "top";
- }
- return "bottom";
- });
-};
-
-/** @private Sets radius based on size or vice versa. */
-pv.Dot.prototype.buildImplied = function(s) {
- if (s.radius == null) s.radius = Math.sqrt(s.size);
- else if (s.size == null) s.size = s.radius * s.radius;
- pv.Mark.prototype.buildImplied.call(this, s);
-};
-/**
- * Constructs a new label mark with default properties. Labels are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a text label, allowing textual annotation of other marks or
- * arbitrary text within the visualization. The character data must be plain
- * text (unicode), though the text can be styled using the {@link #font}
- * property. If rich text is needed, external HTML elements can be overlaid on
- * the canvas by hand.
- *
- * <p>Labels are positioned using the box model, similarly to {@link Dot}. Thus,
- * a label has no width or height, but merely a text anchor location. The text
- * is positioned relative to this anchor location based on the
- * {@link #textAlign}, {@link #textBaseline} and {@link #textMargin} properties.
- * Furthermore, the text may be rotated using {@link #textAngle}.
- *
- * <p>Labels ignore events, so as to not interfere with event handlers on
- * underlying marks, such as bars. In the future, we may support event handlers
- * on labels.
- *
- * <p>See also the <a href="../../api/Label.html">Label guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Label = function() {
- pv.Mark.call(this);
-};
-
-pv.Label.prototype = pv.extend(pv.Mark)
- .property("text", String)
- .property("font", String)
- .property("textAngle", Number)
- .property("textStyle", pv.color)
- .property("textAlign", String)
- .property("textBaseline", String)
- .property("textMargin", Number)
- .property("textDecoration", String)
- .property("textShadow", String);
-
-pv.Label.prototype.type = "label";
-
-/**
- * The character data to render; a string. The default value of the text
- * property is the identity function, meaning the label's associated datum will
- * be rendered using its <tt>toString</tt>.
- *
- * @type string
- * @name pv.Label.prototype.text
- */
-
-/**
- * The font format, per the CSS Level 2 specification. The default font is "10px
- * sans-serif", for consistency with the HTML 5 canvas element specification.
- * Note that since text is not wrapped, any line-height property will be
- * ignored. The other font-style, font-variant, font-weight, font-size and
- * font-family properties are supported.
- *
- * @see <a href="http://www.w3.org/TR/CSS2/fonts.html#font-shorthand">CSS2 fonts</a>
- * @type string
- * @name pv.Label.prototype.font
- */
-
-/**
- * The rotation angle, in radians. Text is rotated clockwise relative to the
- * anchor location. For example, with the default left alignment, an angle of
- * Math.PI / 2 causes text to proceed downwards. The default angle is zero.
- *
- * @type number
- * @name pv.Label.prototype.textAngle
- */
-
-/**
- * The text color. The name "textStyle" is used for consistency with "fillStyle"
- * and "strokeStyle", although it might be better to rename this property (and
- * perhaps use the same name as "strokeStyle"). The default color is black.
- *
- * @type string
- * @name pv.Label.prototype.textStyle
- * @see pv.color
- */
-
-/**
- * The horizontal text alignment. One of:<ul>
- *
- * <li>left
- * <li>center
- * <li>right
- *
- * </ul>The default horizontal alignment is left.
- *
- * @type string
- * @name pv.Label.prototype.textAlign
- */
-
-/**
- * The vertical text alignment. One of:<ul>
- *
- * <li>top
- * <li>middle
- * <li>bottom
- *
- * </ul>The default vertical alignment is bottom.
- *
- * @type string
- * @name pv.Label.prototype.textBaseline
- */
-
-/**
- * The text margin; may be specified in pixels, or in font-dependent units (such
- * as ".1ex"). The margin can be used to pad text away from its anchor location,
- * in a direction dependent on the horizontal and vertical alignment
- * properties. For example, if the text is left- and middle-aligned, the margin
- * shifts the text to the right. The default margin is 3 pixels.
- *
- * @type number
- * @name pv.Label.prototype.textMargin
- */
-
-/**
- * A list of shadow effects to be applied to text, per the CSS Text Level 3
- * text-shadow property. An example specification is "0.1em 0.1em 0.1em
- * rgba(0,0,0,.5)"; the first length is the horizontal offset, the second the
- * vertical offset, and the third the blur radius.
- *
- * @see <a href="http://www.w3.org/TR/css3-text/#text-shadow">CSS3 text</a>
- * @type string
- * @name pv.Label.prototype.textShadow
- */
-
-/**
- * A list of decoration to be applied to text, per the CSS Text Level 3
- * text-decoration property. An example specification is "underline".
- *
- * @see <a href="http://www.w3.org/TR/css3-text/#text-decoration">CSS3 text</a>
- * @type string
- * @name pv.Label.prototype.textDecoration
- */
-
-/**
- * Default properties for labels. See the individual properties for the default
- * values.
- *
- * @type pv.Label
- */
-pv.Label.prototype.defaults = new pv.Label()
- .extend(pv.Mark.prototype.defaults)
- .events("none")
- .text(pv.identity)
- .font("10px sans-serif")
- .textAngle(0)
- .textStyle("black")
- .textAlign("left")
- .textBaseline("bottom")
- .textMargin(3);
-/**
- * Constructs a new line mark with default properties. Lines are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a series of connected line segments, or <i>polyline</i>,
- * that can be stroked with a configurable color and thickness. Each
- * articulation point in the line corresponds to a datum; for <i>n</i> points,
- * <i>n</i>-1 connected line segments are drawn. The point is positioned using
- * the box model. Arbitrary paths are also possible, allowing radar plots and
- * other custom visualizations.
- *
- * <p>Like areas, lines can be stroked and filled with arbitrary colors. In most
- * cases, lines are only stroked, but the fill style can be used to construct
- * arbitrary polygons.
- *
- * <p>See also the <a href="../../api/Line.html">Line guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Line = function() {
- pv.Mark.call(this);
-};
-
-pv.Line.prototype = pv.extend(pv.Mark)
- .property("lineWidth", Number)
- .property("lineJoin", String)
- .property("strokeStyle", pv.color)
- .property("fillStyle", pv.color)
- .property("segmented", Boolean)
- .property("interpolate", String)
- .property("eccentricity", Number)
- .property("tension", Number);
-
-pv.Line.prototype.type = "line";
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the line.
- *
- * @type number
- * @name pv.Line.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the line. The default value of this property is a categorical color.
- *
- * @type string
- * @name pv.Line.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * The type of corners where two lines meet. Accepted values are "bevel",
- * "round" and "miter". The default value is "miter".
- *
- * <p>For segmented lines, only "miter" joins and "linear" interpolation are
- * currently supported. Any other value, including null, will disable joins,
- * producing disjoint line segments. Note that the miter joins must be computed
- * manually (at least in the current SVG renderer); since this calculation may
- * be expensive and unnecessary for small lines, specifying null can improve
- * performance significantly.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type string
- * @name pv.Line.prototype.lineJoin
- */
-
-/**
- * The line fill style; if non-null, the interior of the line is closed and
- * filled with the specified color. The default value of this property is a
- * null, meaning that lines are not filled by default.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type string
- * @name pv.Line.prototype.fillStyle
- * @see pv.color
- */
-
-/**
- * Whether the line is segmented; whether variations in stroke style, line width
- * and the other properties are treated as fixed. Rendering segmented lines is
- * noticeably slower than non-segmented lines.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type boolean
- * @name pv.Line.prototype.segmented
- */
-
-/**
- * How to interpolate between values. Linear interpolation ("linear") is the
- * default, producing a straight line between points. For piecewise constant
- * functions (i.e., step functions), either "step-before" or "step-after" can be
- * specified. To draw a clockwise circular arc between points, specify "polar";
- * to draw a counterclockwise circular arc between points, specify
- * "polar-reverse". To draw open uniform b-splines, specify "basis". To draw
- * cardinal splines, specify "cardinal"; see also {@link #tension}.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type string
- * @name pv.Line.prototype.interpolate
- */
-
-/**
- * The eccentricity of polar line segments; used in conjunction with
- * interpolate("polar"). The default value of 0 means that line segments are
- * drawn as circular arcs. A value of 1 draws a straight line. A value between 0
- * and 1 draws an elliptical arc with the given eccentricity.
- *
- * @type number
- * @name pv.Line.prototype.eccentricity
- */
-
-/**
- * The tension of cardinal splines; used in conjunction with
- * interpolate("cardinal"). A value between 0 and 1 draws cardinal splines with
- * the given tension. In some sense, the tension can be interpreted as the
- * "length" of the tangent; a tension of 1 will yield all zero tangents (i.e.,
- * linear interpolation), and a tension of 0 yields a Catmull-Rom spline. The
- * default value is 0.7.
- *
- * <p>This property is <i>fixed</i>. See {@link pv.Mark}.
- *
- * @type number
- * @name pv.Line.prototype.tension
- */
-
-/**
- * Default properties for lines. By default, there is no fill and the stroke
- * style is a categorical color. The default interpolation is linear.
- *
- * @type pv.Line
- */
-pv.Line.prototype.defaults = new pv.Line()
- .extend(pv.Mark.prototype.defaults)
- .lineJoin("miter")
- .lineWidth(1.5)
- .strokeStyle(pv.Colors.category10().by(pv.parent))
- .interpolate("linear")
- .eccentricity(0)
- .tension(.7);
-
-/** @private Reuse Area's implementation for segmented bind & build. */
-pv.Line.prototype.bind = pv.Area.prototype.bind;
-pv.Line.prototype.buildInstance = pv.Area.prototype.buildInstance;
-
-/**
- * Constructs a new line anchor with default properties. Lines support five
- * different anchors:<ul>
- *
- * <li>top
- * <li>left
- * <li>center
- * <li>bottom
- * <li>right
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline). Text is
- * rendered to appear outside the line. Note that this behavior is different
- * from other mark anchors, which default to rendering text <i>inside</i> the
- * mark.
- *
- * <p>For consistency with the other mark types, the anchor positions are
- * defined in terms of their opposite edge. For example, the top anchor defines
- * the bottom property, such that a bar added to the top anchor grows upward.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor}
- */
-pv.Line.prototype.anchor = function(name) {
- return pv.Area.prototype.anchor.call(this, name)
- .textAlign(function(d) {
- switch (this.name()) {
- case "left": return "right";
- case "bottom":
- case "top":
- case "center": return "center";
- case "right": return "left";
- }
- })
- .textBaseline(function(d) {
- switch (this.name()) {
- case "right":
- case "left":
- case "center": return "middle";
- case "top": return "bottom";
- case "bottom": return "top";
- }
- });
-};
-/**
- * Constructs a new rule with default properties. Rules are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a horizontal or vertical rule. Rules are frequently used
- * for axes and grid lines. For example, specifying only the bottom property
- * draws horizontal rules, while specifying only the left draws vertical
- * rules. Rules can also be used as thin bars. The visual style is controlled in
- * the same manner as lines.
- *
- * <p>Rules are positioned exclusively the standard box model properties. The
- * following combinations of properties are supported:
- *
- * <table>
- * <thead><th style="width:12em;">Properties</th><th>Orientation</th></thead>
- * <tbody>
- * <tr><td>left</td><td>vertical</td></tr>
- * <tr><td>right</td><td>vertical</td></tr>
- * <tr><td>left, bottom, top</td><td>vertical</td></tr>
- * <tr><td>right, bottom, top</td><td>vertical</td></tr>
- * <tr><td>top</td><td>horizontal</td></tr>
- * <tr><td>bottom</td><td>horizontal</td></tr>
- * <tr><td>top, left, right</td><td>horizontal</td></tr>
- * <tr><td>bottom, left, right</td><td>horizontal</td></tr>
- * <tr><td>left, top, height</td><td>vertical</td></tr>
- * <tr><td>left, bottom, height</td><td>vertical</td></tr>
- * <tr><td>right, top, height</td><td>vertical</td></tr>
- * <tr><td>right, bottom, height</td><td>vertical</td></tr>
- * <tr><td>left, top, width</td><td>horizontal</td></tr>
- * <tr><td>left, bottom, width</td><td>horizontal</td></tr>
- * <tr><td>right, top, width</td><td>horizontal</td></tr>
- * <tr><td>right, bottom, width</td><td>horizontal</td></tr>
- * </tbody>
- * </table>
- *
- * <p>Small rules can be used as tick marks; alternatively, a {@link Dot} with
- * the "tick" shape can be used.
- *
- * <p>See also the <a href="../../api/Rule.html">Rule guide</a>.
- *
- * @see pv.Line
- * @extends pv.Mark
- */
-pv.Rule = function() {
- pv.Mark.call(this);
-};
-
-pv.Rule.prototype = pv.extend(pv.Mark)
- .property("width", Number)
- .property("height", Number)
- .property("lineWidth", Number)
- .property("strokeStyle", pv.color);
-
-pv.Rule.prototype.type = "rule";
-
-/**
- * The width of the rule, in pixels. If the left position is specified, the rule
- * extends rightward from the left edge; if the right position is specified, the
- * rule extends leftward from the right edge.
- *
- * @type number
- * @name pv.Rule.prototype.width
- */
-
-/**
- * The height of the rule, in pixels. If the bottom position is specified, the
- * rule extends upward from the bottom edge; if the top position is specified,
- * the rule extends downward from the top edge.
- *
- * @type number
- * @name pv.Rule.prototype.height
- */
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the rule. The default value is 1 pixel.
- *
- * @type number
- * @name pv.Rule.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the rule. The default value of this property is black.
- *
- * @type string
- * @name pv.Rule.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * Default properties for rules. By default, a single-pixel black line is
- * stroked.
- *
- * @type pv.Rule
- */
-pv.Rule.prototype.defaults = new pv.Rule()
- .extend(pv.Mark.prototype.defaults)
- .lineWidth(1)
- .strokeStyle("black")
- .antialias(false);
-
-/**
- * Constructs a new rule anchor with default properties. Rules support five
- * different anchors:<ul>
- *
- * <li>top
- * <li>left
- * <li>center
- * <li>bottom
- * <li>right
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline). Text is
- * rendered to appear outside the rule. Note that this behavior is different
- * from other mark anchors, which default to rendering text <i>inside</i> the
- * mark.
- *
- * <p>For consistency with the other mark types, the anchor positions are
- * defined in terms of their opposite edge. For example, the top anchor defines
- * the bottom property, such that a bar added to the top anchor grows upward.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor}
- */
-pv.Rule.prototype.anchor = pv.Line.prototype.anchor;
-
-/** @private Sets width or height based on orientation. */
-pv.Rule.prototype.buildImplied = function(s) {
- var l = s.left, r = s.right, t = s.top, b = s.bottom;
-
- /* Determine horizontal or vertical orientation. */
- if ((s.width != null)
- || ((l == null) && (r == null))
- || ((r != null) && (l != null))) {
- s.height = 0;
- } else {
- s.width = 0;
- }
-
- pv.Mark.prototype.buildImplied.call(this, s);
-};
-/**
- * Constructs a new, empty panel with default properties. Panels, with the
- * exception of the root panel, are not typically constructed directly; instead,
- * they are added to an existing panel or mark via {@link pv.Mark#add}.
- *
- * @class Represents a container mark. Panels allow repeated or nested
- * structures, commonly used in small multiple displays where a small
- * visualization is tiled to facilitate comparison across one or more
- * dimensions. Other types of visualizations may benefit from repeated and
- * possibly overlapping structure as well, such as stacked area charts. Panels
- * can also offset the position of marks to provide padding from surrounding
- * content.
- *
- * <p>All Protovis displays have at least one panel; this is the root panel to
- * which marks are rendered. The box model properties (four margins, width and
- * height) are used to offset the positions of contained marks. The data
- * property determines the panel count: a panel is generated once per associated
- * datum. When nested panels are used, property functions can declare additional
- * arguments to access the data associated with enclosing panels.
- *
- * <p>Panels can be rendered inline, facilitating the creation of sparklines.
- * This allows designers to reuse browser layout features, such as text flow and
- * tables; designers can also overlay HTML elements such as rich text and
- * images.
- *
- * <p>All panels have a <tt>children</tt> array (possibly empty) containing the
- * child marks in the order they were added. Panels also have a <tt>root</tt>
- * field which points to the root (outermost) panel; the root panel's root field
- * points to itself.
- *
- * <p>See also the <a href="../../api/">Protovis guide</a>.
- *
- * @extends pv.Bar
- */
-pv.Panel = function() {
- pv.Bar.call(this);
-
- /**
- * The child marks; zero or more {@link pv.Mark}s in the order they were
- * added.
- *
- * @see #add
- * @type pv.Mark[]
- */
- this.children = [];
- this.root = this;
-
- /**
- * The internal $dom field is set by the Protovis loader; see lang/init.js. It
- * refers to the script element that contains the Protovis specification, so
- * that the panel knows where in the DOM to insert the generated SVG element.
- *
- * @private
- */
- this.$dom = pv.$ && pv.$.s;
-};
-
-pv.Panel.prototype = pv.extend(pv.Bar)
- .property("transform")
- .property("overflow", String)
- .property("canvas", function(c) {
- return (typeof c == "string")
- ? document.getElementById(c)
- : c; // assume that c is the passed-in element
- });
-
-pv.Panel.prototype.type = "panel";
-
-/**
- * The canvas element; either the string ID of the canvas element in the current
- * document, or a reference to the canvas element itself. If null, a canvas
- * element will be created and inserted into the document at the location of the
- * script element containing the current Protovis specification. This property
- * only applies to root panels and is ignored on nested panels.
- *
- * <p>Note: the "canvas" element here refers to a <tt>div</tt> (or other suitable
- * HTML container element), <i>not</i> a <tt>canvas</tt> element. The name of
- * this property is a historical anachronism from the first implementation that
- * used HTML 5 canvas, rather than SVG.
- *
- * @type string
- * @name pv.Panel.prototype.canvas
- */
-
-/**
- * Specifies whether child marks are clipped when they overflow this panel.
- * This affects the clipping of all this panel's descendant marks.
- *
- * @type string
- * @name pv.Panel.prototype.overflow
- * @see <a href="http://www.w3.org/TR/CSS2/visufx.html#overflow">CSS2</a>
- */
-
-/**
- * The transform to be applied to child marks. The default transform is
- * identity, which has no effect. Note that the panel's own fill and stroke are
- * not affected by the transform, and panel's transform only affects the
- * <tt>scale</tt> of child marks, not the panel itself.
- *
- * @type pv.Transform
- * @name pv.Panel.prototype.transform
- * @see pv.Mark#scale
- */
-
-/**
- * Default properties for panels. By default, the margins are zero, the fill
- * style is transparent.
- *
- * @type pv.Panel
- */
-pv.Panel.prototype.defaults = new pv.Panel()
- .extend(pv.Bar.prototype.defaults)
- .fillStyle(null) // override Bar default
- .overflow("visible");
-
-/**
- * Returns an anchor with the specified name. This method is overridden such
- * that adding to a panel's anchor adds to the panel, rather than to the panel's
- * parent.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor} the new anchor.
- */
-pv.Panel.prototype.anchor = function(name) {
- var anchor = pv.Bar.prototype.anchor.call(this, name);
- anchor.parent = this;
- return anchor;
-};
-
-/**
- * Adds a new mark of the specified type to this panel. Unlike the normal
- * {@link Mark#add} behavior, adding a mark to a panel does not cause the mark
- * to inherit from the panel. Since the contained marks are offset by the panel
- * margins already, inheriting properties is generally undesirable; of course,
- * it is always possible to change this behavior by calling {@link Mark#extend}
- * explicitly.
- *
- * @param {function} type the type of the new mark to add.
- * @returns {pv.Mark} the new mark.
- */
-pv.Panel.prototype.add = function(type) {
- var child = new type();
- child.parent = this;
- child.root = this.root;
- child.childIndex = this.children.length;
- this.children.push(child);
- return child;
-};
-
-/** @private Bind this panel, then any child marks recursively. */
-pv.Panel.prototype.bind = function() {
- pv.Mark.prototype.bind.call(this);
- for (var i = 0; i < this.children.length; i++) {
- this.children[i].bind();
- }
-};
-
-/**
- * @private Evaluates all of the properties for this panel for the specified
- * instance <tt>s</tt> in the scene graph, including recursively building the
- * scene graph for child marks.
- *
- * @param s a node in the scene graph; the instance of the panel to build.
- * @see Mark#scene
- */
-pv.Panel.prototype.buildInstance = function(s) {
- pv.Bar.prototype.buildInstance.call(this, s);
- if (!s.visible) return;
- if (!s.children) s.children = [];
-
- /*
- * Multiply the current scale factor by this panel's transform. Also clear the
- * default index as we recurse into child marks; it will be reset to the
- * current index when the next panel instance is built.
- */
- var scale = this.scale * s.transform.k, child, n = this.children.length;
- pv.Mark.prototype.index = -1;
-
- /*
- * Build each child, passing in the parent (this panel) scene graph node. The
- * child mark's scene is initialized from the corresponding entry in the
- * existing scene graph, such that properties from the previous build can be
- * reused; this is largely to facilitate the recycling of SVG elements.
- */
- for (var i = 0; i < n; i++) {
- child = this.children[i];
- child.scene = s.children[i]; // possibly undefined
- child.scale = scale;
- child.build();
- }
-
- /*
- * Once the child marks have been built, the new scene graph nodes are removed
- * from the child marks and placed into the scene graph. The nodes cannot
- * remain on the child nodes because this panel (or a parent panel) may be
- * instantiated multiple times!
- */
- for (var i = 0; i < n; i++) {
- child = this.children[i];
- s.children[i] = child.scene;
- delete child.scene;
- delete child.scale;
- }
-
- /* Delete any expired child scenes. */
- s.children.length = n;
-};
-
-/**
- * @private Computes the implied properties for this panel for the specified
- * instance <tt>s</tt> in the scene graph. Panels have two implied
- * properties:<ul>
- *
- * <li>The <tt>canvas</tt> property references the DOM element, typically a DIV,
- * that contains the SVG element that is used to display the visualization. This
- * property may be specified as a string, referring to the unique ID of the
- * element in the DOM. The string is converted to a reference to the DOM
- * element. The width and height of the SVG element is inferred from this DOM
- * element. If no canvas property is specified, a new SVG element is created and
- * inserted into the document, using the panel dimensions; see
- * {@link #createCanvas}.
- *
- * <li>The <tt>children</tt> array, while not a property per se, contains the
- * scene graph for each child mark. This array is initialized to be empty, and
- * is populated above in {@link #buildInstance}.
- *
- * </ul>The current implementation creates the SVG element, if necessary, during
- * the build phase; in the future, it may be preferrable to move this to the
- * update phase, although then the canvas property would be undefined. In
- * addition, DOM inspection is necessary to define the implied width and height
- * properties that may be inferred from the DOM.
- *
- * @param s a node in the scene graph; the instance of the panel to build.
- */
-pv.Panel.prototype.buildImplied = function(s) {
- if (!this.parent) {
- var c = s.canvas;
- if (c) {
- /* Clear the container if it's not associated with this panel. */
- if (c.$panel != this) {
- c.$panel = this;
- while (c.lastChild) c.removeChild(c.lastChild);
- }
-
- /* If width and height weren't specified, inspect the container. */
- var w, h;
- if (s.width == null) {
- w = parseFloat(pv.css(c, "width"));
- s.width = w - s.left - s.right;
- }
- if (s.height == null) {
- h = parseFloat(pv.css(c, "height"));
- s.height = h - s.top - s.bottom;
- }
- } else {
- var cache = this.$canvas || (this.$canvas = []);
- if (!(c = cache[this.index])) {
- c = cache[this.index] = document.createElement("span");
- if (this.$dom) { // script element for text/javascript+protovis
- this.$dom.parentNode.insertBefore(c, this.$dom);
- } else { // find the last element in the body
- var n = document.body;
- while (n.lastChild && n.lastChild.tagName) n = n.lastChild;
- if (n != document.body) n = n.parentNode;
- n.appendChild(c);
- }
- }
- }
- s.canvas = c;
- }
- if (!s.transform) s.transform = pv.Transform.identity;
- pv.Mark.prototype.buildImplied.call(this, s);
-};
-/**
- * Constructs a new image with default properties. Images are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents an image, either a static resource or a dynamically-
- * generated pixel buffer. Images share the same layout and style properties as
- * bars. The external image resource is specified via the {@link #url}
- * property. The optional fill, if specified, appears beneath the image, while
- * the optional stroke appears above the image.
- *
- * <p>Dynamic images such as heatmaps are supported using the {@link #image}
- * psuedo-property. This function is passed the <i>x</i> and <i>y</i> index, in
- * addition to the current data stack. The return value is a {@link pv.Color},
- * or null for transparent. A string can also be returned, which will be parsed
- * into a color; however, it is typically much faster to return an object with
- * <tt>r</tt>, <tt>g</tt>, <tt>b</tt> and <tt>a</tt> attributes, to avoid the
- * cost of parsing and object instantiation.
- *
- * <p>See {@link pv.Bar} for details on positioning properties.
- *
- * @extends pv.Bar
- */
-pv.Image = function() {
- pv.Bar.call(this);
-};
-
-pv.Image.prototype = pv.extend(pv.Bar)
- .property("url", String)
- .property("imageWidth", Number)
- .property("imageHeight", Number);
-
-pv.Image.prototype.type = "image";
-
-/**
- * The URL of the image to display. The set of supported image types is
- * browser-dependent; PNG and JPEG are recommended.
- *
- * @type string
- * @name pv.Image.prototype.url
- */
-
-/**
- * The width of the image in pixels. For static images, this property is
- * computed implicitly from the loaded image resources. For dynamic images, this
- * property can be used to specify the width of the pixel buffer; otherwise, the
- * value is derived from the <tt>width</tt> property.
- *
- * @type number
- * @name pv.Image.prototype.imageWidth
- */
-
-/**
- * The height of the image in pixels. For static images, this property is
- * computed implicitly from the loaded image resources. For dynamic images, this
- * property can be used to specify the height of the pixel buffer; otherwise, the
- * value is derived from the <tt>height</tt> property.
- *
- * @type number
- * @name pv.Image.prototype.imageHeight
- */
-
-/**
- * Default properties for images. By default, there is no stroke or fill style.
- *
- * @type pv.Image
- */
-pv.Image.prototype.defaults = new pv.Image()
- .extend(pv.Bar.prototype.defaults)
- .fillStyle(null);
-
-/**
- * Specifies the dynamic image function. By default, no image function is
- * specified and the <tt>url</tt> property is used to load a static image
- * resource. If an image function is specified, it will be invoked for each
- * pixel in the image, based on the related <tt>imageWidth</tt> and
- * <tt>imageHeight</tt> properties.
- *
- * <p>For example, given a two-dimensional array <tt>heatmap</tt>, containing
- * numbers in the range [0, 1] in row-major order, a simple monochrome heatmap
- * image can be specified as:
- *
- * <pre>vis.add(pv.Image)
- * .imageWidth(heatmap[0].length)
- * .imageHeight(heatmap.length)
- * .image(pv.ramp("white", "black").by(function(x, y) heatmap[y][x]));</pre>
- *
- * For fastest performance, use an ordinal scale which caches the fixed color
- * palette, or return an object literal with <tt>r</tt>, <tt>g</tt>, <tt>b</tt>
- * and <tt>a</tt> attributes. A {@link pv.Color} or string can also be returned,
- * though this typically results in slower performance.
- *
- * @param {function} f the new sizing function.
- * @returns {pv.Layout.Pack} this.
- */
-pv.Image.prototype.image = function(f) {
- /** @private */
- this.$image = function() {
- var c = f.apply(this, arguments);
- return c == null ? pv.Color.transparent
- : typeof c == "string" ? pv.color(c)
- : c;
- };
- return this;
-};
-
-/** @private Scan the proto chain for an image function. */
-pv.Image.prototype.bind = function() {
- pv.Bar.prototype.bind.call(this);
- var binds = this.binds, mark = this;
- do {
- binds.image = mark.$image;
- } while (!binds.image && (mark = mark.proto));
-};
-
-/** @private */
-pv.Image.prototype.buildImplied = function(s) {
- pv.Bar.prototype.buildImplied.call(this, s);
- if (!s.visible) return;
-
- /* Compute the implied image dimensions. */
- if (s.imageWidth == null) s.imageWidth = s.width;
- if (s.imageHeight == null) s.imageHeight = s.height;
-
- /* Compute the pixel values. */
- if ((s.url == null) && this.binds.image) {
-
- /* Cache the canvas element to reuse across renders. */
- var canvas = this.$canvas || (this.$canvas = document.createElement("canvas")),
- context = canvas.getContext("2d"),
- w = s.imageWidth,
- h = s.imageHeight,
- stack = pv.Mark.stack,
- data;
-
- /* Evaluate the image function, storing into a CanvasPixelArray. */
- canvas.width = w;
- canvas.height = h;
- data = (s.image = context.createImageData(w, h)).data;
- stack.unshift(null, null);
- for (var y = 0, p = 0; y < h; y++) {
- stack[1] = y;
- for (var x = 0; x < w; x++) {
- stack[0] = x;
- var color = this.binds.image.apply(this, stack);
- data[p++] = color.r;
- data[p++] = color.g;
- data[p++] = color.b;
- data[p++] = 255 * color.a;
- }
- }
- stack.splice(0, 2);
- }
-};
-/**
- * Constructs a new wedge with default properties. Wedges are not typically
- * constructed directly, but by adding to a panel or an existing mark via
- * {@link pv.Mark#add}.
- *
- * @class Represents a wedge, or pie slice. Specified in terms of start and end
- * angle, inner and outer radius, wedges can be used to construct donut charts
- * and polar bar charts as well. If the {@link #angle} property is used, the end
- * angle is implied by adding this value to start angle. By default, the start
- * angle is the previously-generated wedge's end angle. This design allows
- * explicit control over the wedge placement if desired, while offering
- * convenient defaults for the construction of radial graphs.
- *
- * <p>The center point of the circle is positioned using the standard box model.
- * The wedge can be stroked and filled, similar to {@link pv.Bar}.
- *
- * <p>See also the <a href="../../api/Wedge.html">Wedge guide</a>.
- *
- * @extends pv.Mark
- */
-pv.Wedge = function() {
- pv.Mark.call(this);
-};
-
-pv.Wedge.prototype = pv.extend(pv.Mark)
- .property("startAngle", Number)
- .property("endAngle", Number)
- .property("angle", Number)
- .property("innerRadius", Number)
- .property("outerRadius", Number)
- .property("lineWidth", Number)
- .property("strokeStyle", pv.color)
- .property("fillStyle", pv.color);
-
-pv.Wedge.prototype.type = "wedge";
-
-/**
- * The start angle of the wedge, in radians. The start angle is measured
- * clockwise from the 3 o'clock position. The default value of this property is
- * the end angle of the previous instance (the {@link Mark#sibling}), or -PI / 2
- * for the first wedge; for pie and donut charts, typically only the
- * {@link #angle} property needs to be specified.
- *
- * @type number
- * @name pv.Wedge.prototype.startAngle
- */
-
-/**
- * The end angle of the wedge, in radians. If not specified, the end angle is
- * implied as the start angle plus the {@link #angle}.
- *
- * @type number
- * @name pv.Wedge.prototype.endAngle
- */
-
-/**
- * The angular span of the wedge, in radians. This property is used if end angle
- * is not specified.
- *
- * @type number
- * @name pv.Wedge.prototype.angle
- */
-
-/**
- * The inner radius of the wedge, in pixels. The default value of this property
- * is zero; a positive value will produce a donut slice rather than a pie slice.
- * The inner radius can vary per-wedge.
- *
- * @type number
- * @name pv.Wedge.prototype.innerRadius
- */
-
-/**
- * The outer radius of the wedge, in pixels. This property is required. For
- * pies, only this radius is required; for donuts, the inner radius must be
- * specified as well. The outer radius can vary per-wedge.
- *
- * @type number
- * @name pv.Wedge.prototype.outerRadius
- */
-
-/**
- * The width of stroked lines, in pixels; used in conjunction with
- * <tt>strokeStyle</tt> to stroke the wedge's border.
- *
- * @type number
- * @name pv.Wedge.prototype.lineWidth
- */
-
-/**
- * The style of stroked lines; used in conjunction with <tt>lineWidth</tt> to
- * stroke the wedge's border. The default value of this property is null,
- * meaning wedges are not stroked by default.
- *
- * @type string
- * @name pv.Wedge.prototype.strokeStyle
- * @see pv.color
- */
-
-/**
- * The wedge fill style; if non-null, the interior of the wedge is filled with
- * the specified color. The default value of this property is a categorical
- * color.
- *
- * @type string
- * @name pv.Wedge.prototype.fillStyle
- * @see pv.color
- */
-
-/**
- * Default properties for wedges. By default, there is no stroke and the fill
- * style is a categorical color.
- *
- * @type pv.Wedge
- */
-pv.Wedge.prototype.defaults = new pv.Wedge()
- .extend(pv.Mark.prototype.defaults)
- .startAngle(function() {
- var s = this.sibling();
- return s ? s.endAngle : -Math.PI / 2;
- })
- .innerRadius(0)
- .lineWidth(1.5)
- .strokeStyle(null)
- .fillStyle(pv.Colors.category20().by(pv.index));
-
-/**
- * Returns the mid-radius of the wedge, which is defined as half-way between the
- * inner and outer radii.
- *
- * @see #innerRadius
- * @see #outerRadius
- * @returns {number} the mid-radius, in pixels.
- */
-pv.Wedge.prototype.midRadius = function() {
- return (this.innerRadius() + this.outerRadius()) / 2;
-};
-
-/**
- * Returns the mid-angle of the wedge, which is defined as half-way between the
- * start and end angles.
- *
- * @see #startAngle
- * @see #endAngle
- * @returns {number} the mid-angle, in radians.
- */
-pv.Wedge.prototype.midAngle = function() {
- return (this.startAngle() + this.endAngle()) / 2;
-};
-
-/**
- * Constructs a new wedge anchor with default properties. Wedges support five
- * different anchors:<ul>
- *
- * <li>outer
- * <li>inner
- * <li>center
- * <li>start
- * <li>end
- *
- * </ul>In addition to positioning properties (left, right, top bottom), the
- * anchors support text rendering properties (text-align, text-baseline,
- * textAngle). Text is rendered to appear inside the wedge.
- *
- * @param {string} name the anchor name; either a string or a property function.
- * @returns {pv.Anchor}
- */
-pv.Wedge.prototype.anchor = function(name) {
- function partial(s) { return s.innerRadius || s.angle < 2 * Math.PI; }
- function midRadius(s) { return (s.innerRadius + s.outerRadius) / 2; }
- function midAngle(s) { return (s.startAngle + s.endAngle) / 2; }
- return pv.Mark.prototype.anchor.call(this, name)
- .left(function() {
- var s = this.scene.target[this.index];
- if (partial(s)) switch (this.name()) {
- case "outer": return s.left + s.outerRadius * Math.cos(midAngle(s));
- case "inner": return s.left + s.innerRadius * Math.cos(midAngle(s));
- case "start": return s.left + midRadius(s) * Math.cos(s.startAngle);
- case "center": return s.left + midRadius(s) * Math.cos(midAngle(s));
- case "end": return s.left + midRadius(s) * Math.cos(s.endAngle);
- }
- return s.left;
- })
- .top(function() {
- var s = this.scene.target[this.index];
- if (partial(s)) switch (this.name()) {
- case "outer": return s.top + s.outerRadius * Math.sin(midAngle(s));
- case "inner": return s.top + s.innerRadius * Math.sin(midAngle(s));
- case "start": return s.top + midRadius(s) * Math.sin(s.startAngle);
- case "center": return s.top + midRadius(s) * Math.sin(midAngle(s));
- case "end": return s.top + midRadius(s) * Math.sin(s.endAngle);
- }
- return s.top;
- })
- .textAlign(function() {
- var s = this.scene.target[this.index];
- if (partial(s)) switch (this.name()) {
- case "outer": return pv.Wedge.upright(midAngle(s)) ? "right" : "left";
- case "inner": return pv.Wedge.upright(midAngle(s)) ? "left" : "right";
- }
- return "center";
- })
- .textBaseline(function() {
- var s = this.scene.target[this.index];
- if (partial(s)) switch (this.name()) {
- case "start": return pv.Wedge.upright(s.startAngle) ? "top" : "bottom";
- case "end": return pv.Wedge.upright(s.endAngle) ? "bottom" : "top";
- }
- return "middle";
- })
- .textAngle(function() {
- var s = this.scene.target[this.index], a = 0;
- if (partial(s)) switch (this.name()) {
- case "center":
- case "inner":
- case "outer": a = midAngle(s); break;
- case "start": a = s.startAngle; break;
- case "end": a = s.endAngle; break;
- }
- return pv.Wedge.upright(a) ? a : (a + Math.PI);
- });
-};
-
-/**
- * Returns true if the specified angle is considered "upright", as in, text
- * rendered at that angle would appear upright. If the angle is not upright,
- * text is rotated 180 degrees to be upright, and the text alignment properties
- * are correspondingly changed.
- *
- * @param {number} angle an angle, in radius.
- * @returns {boolean} true if the specified angle is upright.
- */
-pv.Wedge.upright = function(angle) {
- angle = angle % (2 * Math.PI);
- angle = (angle < 0) ? (2 * Math.PI + angle) : angle;
- return (angle < Math.PI / 2) || (angle >= 3 * Math.PI / 2);
-};
-
-/** @private Sets angle based on endAngle or vice versa. */
-pv.Wedge.prototype.buildImplied = function(s) {
- if (s.angle == null) s.angle = s.endAngle - s.startAngle;
- else if (s.endAngle == null) s.endAngle = s.startAngle + s.angle;
- pv.Mark.prototype.buildImplied.call(this, s);
-};
-/**
- * Abstract; not implemented. There is no explicit constructor; this class
- * merely serves to document the attributes that are used on particles in
- * physics simulations.
- *
- * @class A weighted particle that can participate in a force simulation.
- *
- * @name pv.Particle
- */
-
-/**
- * The next particle in the simulation. Particles form a singly-linked list.
- *
- * @field
- * @type pv.Particle
- * @name pv.Particle.prototype.next
- */
-
-/**
- * The <i>x</i>-position of the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.x
- */
-
-/**
- * The <i>y</i>-position of the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.y
- */
-
-/**
- * The <i>x</i>-velocity of the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.vx
- */
-
-/**
- * The <i>y</i>-velocity of the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.vy
- */
-
-/**
- * The <i>x</i>-position of the particle at -dt.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.px
- */
-
-/**
- * The <i>y</i>-position of the particle at -dt.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.py
- */
-
-/**
- * The <i>x</i>-force on the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.fx
- */
-
-/**
- * The <i>y</i>-force on the particle.
- *
- * @field
- * @type number
- * @name pv.Particle.prototype.fy
- */
-/**
- * Constructs a new empty simulation.
- *
- * @param {array} particles
- * @returns {pv.Simulation} a new simulation for the specified particles.
- * @see pv.Simulation
- */
-pv.simulation = function(particles) {
- return new pv.Simulation(particles);
-};
-
-/**
- * Constructs a new simulation for the specified particles.
- *
- * @class Represents a particle simulation. Particles are massive points in
- * two-dimensional space. Forces can be applied to these particles, causing them
- * to move. Constraints can also be applied to restrict particle movement, for
- * example, constraining particles to a fixed position, or simulating collision
- * between circular particles with area.
- *
- * <p>The simulation uses <a
- * href="http://en.wikipedia.org/wiki/Verlet_integration">Position Verlet</a>
- * integration, due to the ease with which <a
- * href="http://www.teknikus.dk/tj/gdc2001.htm">geometric constraints</a> can be
- * implemented. For each time step, Verlet integration is performed, new forces
- * are accumulated, and then constraints are applied.
- *
- * <p>The simulation makes two simplifying assumptions: all particles are
- * equal-mass, and the time step of the simulation is fixed. It would be easy to
- * incorporate variable-mass particles as a future enhancement. Variable time
- * steps are also possible, but are likely to introduce instability in the
- * simulation.
- *
- * <p>This class can be used directly to simulate particle interaction.
- * Alternatively, for network diagrams, see {@link pv.Layout.Force}.
- *
- * @param {array} particles an array of {@link pv.Particle}s to simulate.
- * @see pv.Layout.Force
- * @see pv.Force
- * @see pv.Constraint
- */
-pv.Simulation = function(particles) {
- for (var i = 0; i < particles.length; i++) this.particle(particles[i]);
-};
-
-/**
- * The particles in the simulation. Particles are stored as a linked list; this
- * field represents the first particle in the simulation.
- *
- * @field
- * @type pv.Particle
- * @name pv.Simulation.prototype.particles
- */
-
-/**
- * The forces in the simulation. Forces are stored as a linked list; this field
- * represents the first force in the simulation.
- *
- * @field
- * @type pv.Force
- * @name pv.Simulation.prototype.forces
- */
-
-/**
- * The constraints in the simulation. Constraints are stored as a linked list;
- * this field represents the first constraint in the simulation.
- *
- * @field
- * @type pv.Constraint
- * @name pv.Simulation.prototype.constraints
- */
-
-/**
- * Adds the specified particle to the simulation.
- *
- * @param {pv.Particle} p the new particle.
- * @returns {pv.Simulation} this.
- */
-pv.Simulation.prototype.particle = function(p) {
- p.next = this.particles;
- /* Default velocities and forces to zero if unset. */
- if (isNaN(p.px)) p.px = p.x;
- if (isNaN(p.py)) p.py = p.y;
- if (isNaN(p.fx)) p.fx = 0;
- if (isNaN(p.fy)) p.fy = 0;
- this.particles = p;
- return this;
-};
-
-/**
- * Adds the specified force to the simulation.
- *
- * @param {pv.Force} f the new force.
- * @returns {pv.Simulation} this.
- */
-pv.Simulation.prototype.force = function(f) {
- f.next = this.forces;
- this.forces = f;
- return this;
-};
-
-/**
- * Adds the specified constraint to the simulation.
- *
- * @param {pv.Constraint} c the new constraint.
- * @returns {pv.Simulation} this.
- */
-pv.Simulation.prototype.constraint = function(c) {
- c.next = this.constraints;
- this.constraints = c;
- return this;
-};
-
-/**
- * Apply constraints, and then set the velocities to zero.
- *
- * @returns {pv.Simulation} this.
- */
-pv.Simulation.prototype.stabilize = function(n) {
- var c;
- if (!arguments.length) n = 3; // TODO use cooling schedule
- for (var i = 0; i < n; i++) {
- var q = new pv.Quadtree(this.particles);
- for (c = this.constraints; c; c = c.next) c.apply(this.particles, q);
- }
- for (var p = this.particles; p; p = p.next) {
- p.px = p.x;
- p.py = p.y;
- }
- return this;
-};
-
-/**
- * Advances the simulation one time-step.
- */
-pv.Simulation.prototype.step = function() {
- var p, f, c;
-
- /*
- * Assumptions:
- * - The mass (m) of every particles is 1.
- * - The time step (dt) is 1.
- */
-
- /* Position Verlet integration. */
- for (p = this.particles; p; p = p.next) {
- var px = p.px, py = p.py;
- p.px = p.x;
- p.py = p.y;
- p.x += p.vx = ((p.x - px) + p.fx);
- p.y += p.vy = ((p.y - py) + p.fy);
- }
-
- /* Apply constraints, then accumulate new forces. */
- var q = new pv.Quadtree(this.particles);
- for (c = this.constraints; c; c = c.next) c.apply(this.particles, q);
- for (p = this.particles; p; p = p.next) p.fx = p.fy = 0;
- for (f = this.forces; f; f = f.next) f.apply(this.particles, q);
-};
-/**
- * Constructs a new quadtree for the specified array of particles.
- *
- * @class Represents a quadtree: a two-dimensional recursive spatial
- * subdivision. This particular implementation uses square partitions, dividing
- * each square into four equally-sized squares. Each particle exists in a unique
- * node; if multiple particles are in the same position, some particles may be
- * stored on internal nodes rather than leaf nodes.
- *
- * <p>This quadtree can be used to accelerate various spatial operations, such
- * as the Barnes-Hut approximation for computing n-body forces, or collision
- * detection.
- *
- * @see pv.Force.charge
- * @see pv.Constraint.collision
- * @param {pv.Particle} particles the linked list of particles.
- */
-pv.Quadtree = function(particles) {
- var p;
-
- /* Compute bounds. */
- var x1 = Number.POSITIVE_INFINITY, y1 = x1,
- x2 = Number.NEGATIVE_INFINITY, y2 = x2;
- for (p = particles; p; p = p.next) {
- if (p.x < x1) x1 = p.x;
- if (p.y < y1) y1 = p.y;
- if (p.x > x2) x2 = p.x;
- if (p.y > y2) y2 = p.y;
- }
-
- /* Squarify the bounds. */
- var dx = x2 - x1, dy = y2 - y1;
- if (dx > dy) y2 = y1 + dx;
- else x2 = x1 + dy;
- this.xMin = x1;
- this.yMin = y1;
- this.xMax = x2;
- this.yMax = y2;
-
- /**
- * @ignore Recursively inserts the specified particle <i>p</i> at the node
- * <i>n</i> or one of its descendants. The bounds are defined by [<i>x1</i>,
- * <i>x2</i>] and [<i>y1</i>, <i>y2</i>].
- */
- function insert(n, p, x1, y1, x2, y2) {
- if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid particles
- if (n.leaf) {
- if (n.p) {
- /*
- * If the particle at this leaf node is at the same position as the new
- * particle we are adding, we leave the particle associated with the
- * internal node while adding the new particle to a child node. This
- * avoids infinite recursion.
- */
- if ((Math.abs(n.p.x - p.x) + Math.abs(n.p.y - p.y)) < .01) {
- insertChild(n, p, x1, y1, x2, y2);
- } else {
- var v = n.p;
- n.p = null;
- insertChild(n, v, x1, y1, x2, y2);
- insertChild(n, p, x1, y1, x2, y2);
- }
- } else {
- n.p = p;
- }
- } else {
- insertChild(n, p, x1, y1, x2, y2);
- }
- }
-
- /**
- * @ignore Recursively inserts the specified particle <i>p</i> into a
- * descendant of node <i>n</i>. The bounds are defined by [<i>x1</i>,
- * <i>x2</i>] and [<i>y1</i>, <i>y2</i>].
- */
- function insertChild(n, p, x1, y1, x2, y2) {
- /* Compute the split point, and the quadrant in which to insert p. */
- var sx = (x1 + x2) * .5,
- sy = (y1 + y2) * .5,
- right = p.x >= sx,
- bottom = p.y >= sy;
-
- /* Recursively insert into the child node. */
- n.leaf = false;
- switch ((bottom << 1) + right) {
- case 0: n = n.c1 || (n.c1 = new pv.Quadtree.Node()); break;
- case 1: n = n.c2 || (n.c2 = new pv.Quadtree.Node()); break;
- case 2: n = n.c3 || (n.c3 = new pv.Quadtree.Node()); break;
- case 3: n = n.c4 || (n.c4 = new pv.Quadtree.Node()); break;
- }
-
- /* Update the bounds as we recurse. */
- if (right) x1 = sx; else x2 = sx;
- if (bottom) y1 = sy; else y2 = sy;
- insert(n, p, x1, y1, x2, y2);
- }
-
- /* Insert all particles. */
- this.root = new pv.Quadtree.Node();
- for (p = particles; p; p = p.next) insert(this.root, p, x1, y1, x2, y2);
-};
-
-/**
- * The root node of the quadtree.
- *
- * @type pv.Quadtree.Node
- * @name pv.Quadtree.prototype.root
- */
-
-/**
- * The minimum x-coordinate value of all contained particles.
- *
- * @type number
- * @name pv.Quadtree.prototype.xMin
- */
-
-/**
- * The maximum x-coordinate value of all contained particles.
- *
- * @type number
- * @name pv.Quadtree.prototype.xMax
- */
-
-/**
- * The minimum y-coordinate value of all contained particles.
- *
- * @type number
- * @name pv.Quadtree.prototype.yMin
- */
-
-/**
- * The maximum y-coordinate value of all contained particles.
- *
- * @type number
- * @name pv.Quadtree.prototype.yMax
- */
-
-/**
- * Constructs a new node.
- *
- * @class A node in a quadtree.
- *
- * @see pv.Quadtree
- */
-pv.Quadtree.Node = function() {
- /*
- * Prepopulating all attributes significantly increases performance! Also,
- * letting the language interpreter manage garbage collection was moderately
- * faster than creating a cache pool.
- */
- this.leaf = true;
- this.c1 = null;
- this.c2 = null;
- this.c3 = null;
- this.c4 = null;
- this.p = null;
-};
-
-/**
- * True if this node is a leaf node; i.e., it has no children. Note that both
- * leaf nodes and non-leaf (internal) nodes may have associated particles. If
- * this is a non-leaf node, then at least one of {@link #c1}, {@link #c2},
- * {@link #c3} or {@link #c4} is guaranteed to be non-null.
- *
- * @type boolean
- * @name pv.Quadtree.Node.prototype.leaf
- */
-
-/**
- * The particle associated with this node, if any.
- *
- * @type pv.Particle
- * @name pv.Quadtree.Node.prototype.p
- */
-
-/**
- * The child node for the second quadrant, if any.
- *
- * @type pv.Quadtree.Node
- * @name pv.Quadtree.Node.prototype.c2
- */
-
-/**
- * The child node for the third quadrant, if any.
- *
- * @type pv.Quadtree.Node
- * @name pv.Quadtree.Node.prototype.c3
- */
-
-/**
- * The child node for the fourth quadrant, if any.
- *
- * @type pv.Quadtree.Node
- * @name pv.Quadtree.Node.prototype.c4
- */
-/**
- * Abstract; see an implementing class.
- *
- * @class Represents a force that acts on particles. Note that this interface
- * does not specify how to bind a force to specific particles; in general,
- * forces are applied globally to all particles. However, some forces may be
- * applied to specific particles or between particles, such as spring forces,
- * through additional specialization.
- *
- * @see pv.Simulation
- * @see pv.Particle
- * @see pv.Force.charge
- * @see pv.Force.drag
- * @see pv.Force.spring
- */
-pv.Force = {};
-
-/**
- * Applies this force to the specified particles.
- *
- * @function
- * @name pv.Force.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this force.
- * @param {pv.Quadtree} q a quadtree for spatial acceleration.
- */
-/**
- * Constructs a new charge force, with an optional charge constant. The charge
- * constant can be negative for repulsion (e.g., particles with electrical
- * charge of equal sign), or positive for attraction (e.g., massive particles
- * with mutual gravity). The default charge constant is -40.
- *
- * @class An n-body force, as defined by Coulomb's law or Newton's law of
- * gravitation, inversely proportional to the square of the distance between
- * particles. Note that the force is independent of the <i>mass</i> of the
- * associated particles, and that the particles do not have charges of varying
- * magnitude; instead, the attraction or repulsion of all particles is globally
- * specified as the charge {@link #constant}.
- *
- * <p>This particular implementation uses the Barnes-Hut algorithm. For details,
- * see <a
- * href="http://www.nature.com/nature/journal/v324/n6096/abs/324446a0.html">"A
- * hierarchical O(N log N) force-calculation algorithm"</a>, J. Barnes &amp;
- * P. Hut, <i>Nature</i> 1986.
- *
- * @name pv.Force.charge
- * @param {number} [k] the charge constant.
- */
-pv.Force.charge = function(k) {
- var min = 2, // minimum distance at which to observe forces
- min1 = 1 / min,
- max = 500, // maximum distance at which to observe forces
- max1 = 1 / max,
- theta = .9, // Barnes-Hut theta approximation constant
- force = {};
-
- if (!arguments.length) k = -40; // default charge constant (repulsion)
-
- /**
- * Sets or gets the charge constant. If an argument is specified, it is the
- * new charge constant. The charge constant can be negative for repulsion
- * (e.g., particles with electrical charge of equal sign), or positive for
- * attraction (e.g., massive particles with mutual gravity). The default
- * charge constant is -40.
- *
- * @function
- * @name pv.Force.charge.prototype.constant
- * @param {number} x the charge constant.
- * @returns {pv.Force.charge} this.
- */
- force.constant = function(x) {
- if (arguments.length) {
- k = Number(x);
- return force;
- }
- return k;
- };
-
- /**
- * Sets or gets the domain; specifies the minimum and maximum domain within
- * which charge forces are applied. A minimum distance threshold avoids
- * applying forces that are two strong (due to granularity of the simulation's
- * numeric integration). A maximum distance threshold improves performance by
- * skipping force calculations for particles that are far apart.
- *
- * <p>The default domain is [2, 500].
- *
- * @function
- * @name pv.Force.charge.prototype.domain
- * @param {number} a
- * @param {number} b
- * @returns {pv.Force.charge} this.
- */
- force.domain = function(a, b) {
- if (arguments.length) {
- min = Number(a);
- min1 = 1 / min;
- max = Number(b);
- max1 = 1 / max;
- return force;
- }
- return [min, max];
- };
-
- /**
- * Sets or gets the Barnes-Hut approximation factor. The Barnes-Hut
- * approximation criterion is the ratio of the size of the quadtree node to
- * the distance from the point to the node's center of mass is beneath some
- * threshold.
- *
- * @function
- * @name pv.Force.charge.prototype.theta
- * @param {number} x the new Barnes-Hut approximation factor.
- * @returns {pv.Force.charge} this.
- */
- force.theta = function(x) {
- if (arguments.length) {
- theta = Number(x);
- return force;
- }
- return theta;
- };
-
- /**
- * @ignore Recursively computes the center of charge for each node in the
- * quadtree. This is equivalent to the center of mass, assuming that all
- * particles have unit weight.
- */
- function accumulate(n) {
- var cx = 0, cy = 0;
- n.cn = 0;
- function accumulateChild(c) {
- accumulate(c);
- n.cn += c.cn;
- cx += c.cn * c.cx;
- cy += c.cn * c.cy;
- }
- if (!n.leaf) {
- if (n.c1) accumulateChild(n.c1);
- if (n.c2) accumulateChild(n.c2);
- if (n.c3) accumulateChild(n.c3);
- if (n.c4) accumulateChild(n.c4);
- }
- if (n.p) {
- n.cn += k;
- cx += k * n.p.x;
- cy += k * n.p.y;
- }
- n.cx = cx / n.cn;
- n.cy = cy / n.cn;
- }
-
- /**
- * @ignore Recursively computes forces on the given particle using the given
- * quadtree node. The Barnes-Hut approximation criterion is the ratio of the
- * size of the quadtree node to the distance from the point to the node's
- * center of mass is beneath some threshold.
- */
- function forces(n, p, x1, y1, x2, y2) {
- var dx = n.cx - p.x,
- dy = n.cy - p.y,
- dn = 1 / Math.sqrt(dx * dx + dy * dy);
-
- /* Barnes-Hut criterion. */
- if ((n.leaf && (n.p != p)) || ((x2 - x1) * dn < theta)) {
- if (dn < max1) return;
- if (dn > min1) dn = min1;
- var kc = n.cn * dn * dn * dn,
- fx = dx * kc,
- fy = dy * kc;
- p.fx += fx;
- p.fy += fy;
- } else if (!n.leaf) {
- var sx = (x1 + x2) * .5, sy = (y1 + y2) * .5;
- if (n.c1) forces(n.c1, p, x1, y1, sx, sy);
- if (n.c2) forces(n.c2, p, sx, y1, x2, sy);
- if (n.c3) forces(n.c3, p, x1, sy, sx, y2);
- if (n.c4) forces(n.c4, p, sx, sy, x2, y2);
- if (dn < max1) return;
- if (dn > min1) dn = min1;
- if (n.p && (n.p != p)) {
- var kc = k * dn * dn * dn,
- fx = dx * kc,
- fy = dy * kc;
- p.fx += fx;
- p.fy += fy;
- }
- }
- }
-
- /**
- * Applies this force to the specified particles. The force is applied between
- * all pairs of particles within the domain, using the specified quadtree to
- * accelerate n-body force calculation using the Barnes-Hut approximation
- * criterion.
- *
- * @function
- * @name pv.Force.charge.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this force.
- * @param {pv.Quadtree} q a quadtree for spatial acceleration.
- */
- force.apply = function(particles, q) {
- accumulate(q.root);
- for (var p = particles; p; p = p.next) {
- forces(q.root, p, q.xMin, q.yMin, q.xMax, q.yMax);
- }
- };
-
- return force;
-};
-/**
- * Constructs a new drag force with the specified constant.
- *
- * @class Implements a drag force, simulating friction. The drag force is
- * applied in the opposite direction of the particle's velocity. Since Position
- * Verlet integration does not track velocities explicitly, the error term with
- * this estimate of velocity is fairly high, so the drag force may be
- * inaccurate.
- *
- * @extends pv.Force
- * @param {number} k the drag constant.
- * @see #constant
- */
-pv.Force.drag = function(k) {
- var force = {};
-
- if (!arguments.length) k = .1; // default drag constant
-
- /**
- * Sets or gets the drag constant, in the range [0,1]. The default drag
- * constant is 0.1. The drag forces scales linearly with the particle's
- * velocity based on the given drag constant.
- *
- * @function
- * @name pv.Force.drag.prototype.constant
- * @param {number} x the new drag constant.
- * @returns {pv.Force.drag} this, or the current drag constant.
- */
- force.constant = function(x) {
- if (arguments.length) { k = x; return force; }
- return k;
- };
-
- /**
- * Applies this force to the specified particles.
- *
- * @function
- * @name pv.Force.drag.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this force.
- */
- force.apply = function(particles) {
- if (k) for (var p = particles; p; p = p.next) {
- p.fx -= k * p.vx;
- p.fy -= k * p.vy;
- }
- };
-
- return force;
-};
-/**
- * Constructs a new spring force with the specified constant. The links
- * associated with this spring force must be specified before the spring force
- * can be applied.
- *
- * @class Implements a spring force, per Hooke's law. The spring force can be
- * configured with a tension constant, rest length, and damping factor. The
- * tension and damping will automatically be normalized using the inverse square
- * root of the maximum link degree of attached nodes; this makes springs weaker
- * between nodes of high link degree.
- *
- * <p>Unlike other forces (such as charge and drag forces) which may be applied
- * globally, spring forces are only applied between linked particles. Therefore,
- * an array of links must be specified before this force can be applied; the
- * links should be an array of {@link pv.Layout.Network.Link}s. See also
- * {@link pv.Layout.Force} for an example of using spring and charge forces for
- * network layout.
- *
- * @extends pv.Force
- * @param {number} k the spring constant.
- * @see #constant
- * @see #links
- */
-pv.Force.spring = function(k) {
- var d = .1, // default damping factor
- l = 20, // default rest length
- links, // links on which to apply spring forces
- kl, // per-spring normalization
- force = {};
-
- if (!arguments.length) k = .1; // default spring constant (tension)
-
- /**
- * Sets or gets the links associated with this spring force. Unlike other
- * forces (such as charge and drag forces) which may be applied globally,
- * spring forces are only applied between linked particles. Therefore, an
- * array of links must be specified before this force can be applied; the
- * links should be an array of {@link pv.Layout.Network.Link}s.
- *
- * @function
- * @name pv.Force.spring.prototype.links
- * @param {array} x the new array of links.
- * @returns {pv.Force.spring} this, or the current array of links.
- */
- force.links = function(x) {
- if (arguments.length) {
- links = x;
- kl = x.map(function(l) {
- return 1 / Math.sqrt(Math.max(
- l.sourceNode.linkDegree,
- l.targetNode.linkDegree));
- });
- return force;
- }
- return links;
- };
-
- /**
- * Sets or gets the spring constant. The default value is 0.1; greater values
- * will result in stronger tension. The spring tension is automatically
- * normalized using the inverse square root of the maximum link degree of
- * attached nodes.
- *
- * @function
- * @name pv.Force.spring.prototype.constant
- * @param {number} x the new spring constant.
- * @returns {pv.Force.spring} this, or the current spring constant.
- */
- force.constant = function(x) {
- if (arguments.length) {
- k = Number(x);
- return force;
- }
- return k;
- };
-
- /**
- * The spring damping factor, in the range [0,1]. Damping functions
- * identically to drag forces, damping spring bounciness by applying a force
- * in the opposite direction of attached nodes' velocities. The default value
- * is 0.1. The spring damping is automatically normalized using the inverse
- * square root of the maximum link degree of attached nodes.
- *
- * @function
- * @name pv.Force.spring.prototype.damping
- * @param {number} x the new spring damping factor.
- * @returns {pv.Force.spring} this, or the current spring damping factor.
- */
- force.damping = function(x) {
- if (arguments.length) {
- d = Number(x);
- return force;
- }
- return d;
- };
-
- /**
- * The spring rest length. The default value is 20 pixels.
- *
- * @function
- * @name pv.Force.spring.prototype.length
- * @param {number} x the new spring rest length.
- * @returns {pv.Force.spring} this, or the current spring rest length.
- */
- force.length = function(x) {
- if (arguments.length) {
- l = Number(x);
- return force;
- }
- return l;
- };
-
- /**
- * Applies this force to the specified particles.
- *
- * @function
- * @name pv.Force.spring.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this force.
- */
- force.apply = function(particles) {
- for (var i = 0; i < links.length; i++) {
- var a = links[i].sourceNode,
- b = links[i].targetNode,
- dx = a.x - b.x,
- dy = a.y - b.y,
- dn = Math.sqrt(dx * dx + dy * dy),
- dd = dn ? (1 / dn) : 1,
- ks = k * kl[i], // normalized tension
- kd = d * kl[i], // normalized damping
- kk = (ks * (dn - l) + kd * (dx * (a.vx - b.vx) + dy * (a.vy - b.vy)) * dd) * dd,
- fx = -kk * (dn ? dx : (.01 * (.5 - Math.random()))),
- fy = -kk * (dn ? dy : (.01 * (.5 - Math.random())));
- a.fx += fx;
- a.fy += fy;
- b.fx -= fx;
- b.fy -= fy;
- }
- };
-
- return force;
-};
-/**
- * Abstract; see an implementing class.
- *
- * @class Represents a constraint that acts on particles. Note that this
- * interface does not specify how to bind a constraint to specific particles; in
- * general, constraints are applied globally to all particles. However, some
- * constraints may be applied to specific particles or between particles, such
- * as position constraints, through additional specialization.
- *
- * @see pv.Simulation
- * @see pv.Particle
- * @see pv.Constraint.bound
- * @see pv.Constraint.collision
- * @see pv.Constraint.position
- */
-pv.Constraint = {};
-
-/**
- * Applies this constraint to the specified particles.
- *
- * @function
- * @name pv.Constraint.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this constraint.
- * @param {pv.Quadtree} q a quadtree for spatial acceleration.
- * @returns {pv.Constraint} this.
- */
-/**
- * Constructs a new collision constraint. The default search radius is 10, and
- * the default repeat count is 1. A radius function must be specified to compute
- * the radius of particles.
- *
- * @class Constraints circles to avoid overlap. Each particle is treated as a
- * circle, with the radius of the particle computed using a specified function.
- * For example, if the particle has an <tt>r</tt> attribute storing the radius,
- * the radius <tt>function(d) d.r</tt> specifies a collision constraint using
- * this radius. The radius function is passed each {@link pv.Particle} as the
- * first argument.
- *
- * <p>To accelerate collision detection, this implementation uses a quadtree and
- * a search radius. The search radius is computed as the maximum radius of all
- * particles in the simulation.
- *
- * @see pv.Constraint
- * @param {function} radius the radius function.
- */
-pv.Constraint.collision = function(radius) {
- var n = 1, // number of times to repeat the constraint
- r1,
- px1,
- py1,
- px2,
- py2,
- constraint = {};
-
- if (!arguments.length) r1 = 10; // default search radius
-
- /**
- * Sets or gets the repeat count. If the repeat count is greater than 1, the
- * constraint will be applied repeatedly; this is a form of the Gauss-Seidel
- * method for constraints relaxation. Repeating the collision constraint makes
- * the constraint have more of an effect when there is a potential for many
- * co-occurring collisions.
- *
- * @function
- * @name pv.Constraint.collision.prototype.repeat
- * @param {number} x the number of times to repeat this constraint.
- * @returns {pv.Constraint.collision} this.
- */
- constraint.repeat = function(x) {
- if (arguments.length) {
- n = Number(x);
- return constraint;
- }
- return n;
- };
-
- /** @private */
- function constrain(n, p, x1, y1, x2, y2) {
- if (!n.leaf) {
- var sx = (x1 + x2) * .5,
- sy = (y1 + y2) * .5,
- top = sy > py1,
- bottom = sy < py2,
- left = sx > px1,
- right = sx < px2;
- if (top) {
- if (n.c1 && left) constrain(n.c1, p, x1, y1, sx, sy);
- if (n.c2 && right) constrain(n.c2, p, sx, y1, x2, sy);
- }
- if (bottom) {
- if (n.c3 && left) constrain(n.c3, p, x1, sy, sx, y2);
- if (n.c4 && right) constrain(n.c4, p, sx, sy, x2, y2);
- }
- }
- if (n.p && (n.p != p)) {
- var dx = p.x - n.p.x,
- dy = p.y - n.p.y,
- l = Math.sqrt(dx * dx + dy * dy),
- d = r1 + radius(n.p);
- if (l < d) {
- var k = (l - d) / l * .5;
- dx *= k;
- dy *= k;
- p.x -= dx;
- p.y -= dy;
- n.p.x += dx;
- n.p.y += dy;
- }
- }
- }
-
- /**
- * Applies this constraint to the specified particles.
- *
- * @function
- * @name pv.Constraint.collision.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this constraint.
- * @param {pv.Quadtree} q a quadtree for spatial acceleration.
- */
- constraint.apply = function(particles, q) {
- var p, r, max = -Infinity;
- for (p = particles; p; p = p.next) {
- r = radius(p);
- if (r > max) max = r;
- }
- for (var i = 0; i < n; i++) {
- for (p = particles; p; p = p.next) {
- r = (r1 = radius(p)) + max;
- px1 = p.x - r;
- px2 = p.x + r;
- py1 = p.y - r;
- py2 = p.y + r;
- constrain(q.root, p, q.xMin, q.yMin, q.xMax, q.yMax);
- }
- }
- };
-
- return constraint;
-};
-/**
- * Constructs a default position constraint using the <tt>fix</tt> attribute.
- * An optional position function can be specified to determine how the fixed
- * position per-particle is determined.
- *
- * @class Constraints particles to a fixed position. The fixed position per
- * particle is determined using a given position function, which defaults to
- * <tt>function(d) d.fix</tt>.
- *
- * <p>If the position function returns null, then no position constraint is
- * applied to the given particle. Otherwise, the particle's position is set to
- * the returned position, as expressed by a {@link pv.Vector}. (Note: the
- * position does not need to be an instance of <tt>pv.Vector</tt>, but simply an
- * object with <tt>x</tt> and <tt>y</tt> attributes.)
- *
- * <p>This constraint also supports a configurable alpha parameter, which
- * defaults to 1. If the alpha parameter is in the range [0,1], then rather than
- * setting the particle's new position directly to the position returned by the
- * supplied position function, the particle's position is interpolated towards
- * the fixed position. This results is a smooth (exponential) drift towards the
- * fixed position, which can increase the stability of the physics simulation.
- * In addition, the alpha parameter can be decayed over time, relaxing the
- * position constraint, which helps to stabilize on an optimal solution.
- *
- * @param {function} [f] the position function.
- */
-pv.Constraint.position = function(f) {
- var a = 1, // default alpha
- constraint = {};
-
- if (!arguments.length) /** @ignore */ f = function(p) { return p.fix; };
-
- /**
- * Sets or gets the alpha parameter for position interpolation. If the alpha
- * parameter is in the range [0,1], then rather than setting the particle's
- * new position directly to the position returned by the supplied position
- * function, the particle's position is interpolated towards the fixed
- * position.
- *
- * @function
- * @name pv.Constraint.position.prototype.alpha
- * @param {number} x the new alpha parameter, in the range [0,1].
- * @returns {pv.Constraint.position} this.
- */
- constraint.alpha = function(x) {
- if (arguments.length) {
- a = Number(x);
- return constraint;
- }
- return a;
- };
-
- /**
- * Applies this constraint to the specified particles.
- *
- * @function
- * @name pv.Constraint.position.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this constraint.
- */
- constraint.apply = function(particles) {
- for (var p = particles; p; p = p.next) {
- var v = f(p);
- if (v) {
- p.x += (v.x - p.x) * a;
- p.y += (v.y - p.y) * a;
- p.fx = p.fy = p.vx = p.vy = 0;
- }
- }
- };
-
- return constraint;
-};
-/**
- * Constructs a new bound constraint. Before the constraint can be used, the
- * {@link #x} and {@link #y} methods must be call to specify the bounds.
- *
- * @class Constrains particles to within fixed rectangular bounds. For example,
- * this constraint can be used to constrain particles in a physics simulation
- * within the bounds of an enclosing panel.
- *
- * <p>Note that the current implementation treats particles as points, with no
- * area. If the particles are rendered as dots, be sure to include some
- * additional padding to inset the bounds such that the edges of the dots do not
- * get clipped by the panel bounds. If the particles have different radii, this
- * constraint would need to be extended using a radius function, similar to
- * {@link pv.Constraint.collision}.
- *
- * @see pv.Layout.Force
- * @extends pv.Constraint
- */
-pv.Constraint.bound = function() {
- var constraint = {},
- x,
- y;
-
- /**
- * Sets or gets the bounds on the x-coordinate.
- *
- * @function
- * @name pv.Constraint.bound.prototype.x
- * @param {number} min the minimum allowed x-coordinate.
- * @param {number} max the maximum allowed x-coordinate.
- * @returns {pv.Constraint.bound} this.
- */
- constraint.x = function(min, max) {
- if (arguments.length) {
- x = {min: Math.min(min, max), max: Math.max(min, max)};
- return this;
- }
- return x;
- };
-
- /**
- * Sets or gets the bounds on the y-coordinate.
- *
- * @function
- * @name pv.Constraint.bound.prototype.y
- * @param {number} min the minimum allowed y-coordinate.
- * @param {number} max the maximum allowed y-coordinate.
- * @returns {pv.Constraint.bound} this.
- */
- constraint.y = function(min, max) {
- if (arguments.length) {
- y = {min: Math.min(min, max), max: Math.max(min, max)};
- return this;
- }
- return y;
- };
-
- /**
- * Applies this constraint to the specified particles.
- *
- * @function
- * @name pv.Constraint.bound.prototype.apply
- * @param {pv.Particle} particles particles to which to apply this constraint.
- */
- constraint.apply = function(particles) {
- if (x) for (var p = particles; p; p = p.next) {
- p.x = p.x < x.min ? x.min : (p.x > x.max ? x.max : p.x);
- }
- if (y) for (var p = particles; p; p = p.next) {
- p.y = p.y < y.min ? y.min : (p.y > y.max ? y.max : p.y);
- }
- };
-
- return constraint;
-};
-/**
- * Constructs a new, empty layout with default properties. Layouts are not
- * typically constructed directly; instead, a concrete subclass is added to an
- * existing panel via {@link pv.Mark#add}.
- *
- * @class Represents an abstract layout, encapsulating a visualization technique
- * such as a streamgraph or treemap. Layouts are themselves containers,
- * extending from {@link pv.Panel}, and defining a set of mark prototypes as
- * children. These mark prototypes provide default properties that together
- * implement the given visualization technique.
- *
- * <p>Layouts do not initially contain any marks; any exported marks (such as a
- * network layout's <tt>link</tt> and <tt>node</tt>) are intended to be used as
- * prototypes. By adding a concrete mark, such as a {@link pv.Bar}, to the
- * appropriate mark prototype, the mark is added to the layout and inherits the
- * given properties. This approach allows further customization of the layout,
- * either by choosing a different mark type to add, or more simply by overriding
- * some of the layout's defined properties.
- *
- * <p>Each concrete layout, such as treemap or circle-packing, has different
- * behavior and may export different mark prototypes, depending on what marks
- * are typically needed to render the desired visualization. Therefore it is
- * important to understand how each layout is structured, such that the provided
- * mark prototypes are used appropriately.
- *
- * <p>In addition to the mark prototypes, layouts may define custom properties
- * that affect the overall behavior of the layout. For example, a treemap layout
- * might use a property to specify which layout algorithm to use. These
- * properties are just like other mark properties, and can be defined as
- * constants or as functions. As with panels, the data property can be used to
- * replicate layouts, and properties can be defined to in terms of layout data.
- *
- * @extends pv.Panel
- */
-pv.Layout = function() {
- pv.Panel.call(this);
-};
-
-pv.Layout.prototype = pv.extend(pv.Panel);
-
-/**
- * @private Defines a local property with the specified name and cast. Note that
- * although the property method is only defined locally, the cast function is
- * global, which is necessary since properties are inherited!
- *
- * @param {string} name the property name.
- * @param {function} [cast] the cast function for this property.
- */
-pv.Layout.prototype.property = function(name, cast) {
- if (!this.hasOwnProperty("properties")) {
- this.properties = pv.extend(this.properties);
- }
- this.properties[name] = true;
- this.propertyMethod(name, false, pv.Mark.cast[name] = cast);
- return this;
-};
-/**
- * Constructs a new, empty network layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Represents an abstract layout for network diagrams. This class
- * provides the basic structure for both node-link diagrams (such as
- * force-directed graph layout) and space-filling network diagrams (such as
- * sunbursts and treemaps). Note that "network" here is a general term that
- * includes hierarchical structures; a tree is represented using links from
- * child to parent.
- *
- * <p>Network layouts require the graph data structure to be defined using two
- * properties:<ul>
- *
- * <li><tt>nodes</tt> - an array of objects representing nodes. Objects in this
- * array must conform to the {@link pv.Layout.Network.Node} interface; which is
- * to say, be careful to avoid naming collisions with automatic attributes such
- * as <tt>index</tt> and <tt>linkDegree</tt>. If the nodes property is defined
- * as an array of primitives, such as numbers or strings, these primitives are
- * automatically wrapped in an object; the resulting object's <tt>nodeValue</tt>
- * attribute points to the original primitive value.
- *
- * <p><li><tt>links</tt> - an array of objects representing links. Objects in
- * this array must conform to the {@link pv.Layout.Network.Link} interface; at a
- * minimum, either <tt>source</tt> and <tt>target</tt> indexes or
- * <tt>sourceNode</tt> and <tt>targetNode</tt> references must be set. Note that
- * if the links property is defined after the nodes property, the links can be
- * defined in terms of <tt>this.nodes()</tt>.
- *
- * </ul>
- *
- * <p>Three standard mark prototypes are provided:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}. The node
- * mark is added directly to the layout, with the data property defined via the
- * layout's <tt>nodes</tt> property. Properties such as <tt>strokeStyle</tt> and
- * <tt>fillStyle</tt> can be overridden to compute properties from node data
- * dynamically.
- *
- * <p><li><tt>link</tt> - for rendering links; typically a {@link pv.Line}. The
- * link mark is added to a child panel, whose data property is defined as
- * layout's <tt>links</tt> property. The link's data property is then a
- * two-element array of the source node and target node. Thus, poperties such as
- * <tt>strokeStyle</tt> and <tt>fillStyle</tt> can be overridden to compute
- * properties from either the node data (the first argument) or the link data
- * (the second argument; the parent panel data) dynamically.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}. The label mark is added directly to the layout, with the
- * data property defined via the layout's <tt>nodes</tt> property. Properties
- * such as <tt>strokeStyle</tt> and <tt>fillStyle</tt> can be overridden to
- * compute properties from node data dynamically.
- *
- * </ul>Note that some network implementations may not support all three
- * standard mark prototypes; for example, space-filling hierarchical layouts
- * typically do not use a <tt>link</tt> prototype, as the parent-child links are
- * implied by the structure of the space-filling <tt>node</tt> marks. Check the
- * specific network layout for implementation details.
- *
- * <p>Network layout properties, including <tt>nodes</tt> and <tt>links</tt>,
- * are typically cached rather than re-evaluated with every call to render. This
- * is a performance optimization, as network layout algorithms can be
- * expensive. If the network structure changes, call {@link #reset} to clear the
- * cache before rendering. Note that although the network layout properties are
- * cached, child mark properties, such as the marks used to render the nodes and
- * links, <i>are not</i>. Therefore, non-structural changes to the network
- * layout, such as changing the color of a mark on mouseover, do not need to
- * reset the layout.
- *
- * @see pv.Layout.Hierarchy
- * @see pv.Layout.Force
- * @see pv.Layout.Matrix
- * @see pv.Layout.Arc
- * @see pv.Layout.Rollup
- * @extends pv.Layout
- */
-pv.Layout.Network = function() {
- pv.Layout.call(this);
- var that = this;
-
- /* @private Version tracking to cache layout state, improving performance. */
- this.$id = pv.id();
-
- /**
- * The node prototype. This prototype is intended to be used with a Dot mark
- * in conjunction with the link prototype.
- *
- * @type pv.Mark
- * @name pv.Layout.Network.prototype.node
- */
- (this.node = new pv.Mark()
- .data(function() { return that.nodes(); })
- .strokeStyle("#1f77b4")
- .fillStyle("#fff")
- .left(function(n) { return n.x; })
- .top(function(n) { return n.y; })).parent = this;
-
- /**
- * The link prototype, which renders edges between source nodes and target
- * nodes. This prototype is intended to be used with a Line mark in
- * conjunction with the node prototype.
- *
- * @type pv.Mark
- * @name pv.Layout.Network.prototype.link
- */
- this.link = new pv.Mark()
- .extend(this.node)
- .data(function(p) { return [p.sourceNode, p.targetNode]; })
- .fillStyle(null)
- .lineWidth(function(d, p) { return p.linkValue * 1.5; })
- .strokeStyle("rgba(0,0,0,.2)");
-
- this.link.add = function(type) {
- return that.add(pv.Panel)
- .data(function() { return that.links(); })
- .add(type)
- .extend(this);
- };
-
- /**
- * The node label prototype, which renders the node name adjacent to the node.
- * This prototype is provided as an alternative to using the anchor on the
- * node mark; it is primarily intended to be used with radial node-link
- * layouts, since it provides a convenient mechanism to set the text angle.
- *
- * @type pv.Mark
- * @name pv.Layout.Network.prototype.label
- */
- (this.label = new pv.Mark()
- .extend(this.node)
- .textMargin(7)
- .textBaseline("middle")
- .text(function(n) { return n.nodeName || n.nodeValue; })
- .textAngle(function(n) {
- var a = n.midAngle;
- return pv.Wedge.upright(a) ? a : (a + Math.PI);
- })
- .textAlign(function(n) {
- return pv.Wedge.upright(n.midAngle) ? "left" : "right";
- })).parent = this;
-};
-
-/**
- * @class Represents a node in a network layout. There is no explicit
- * constructor; this class merely serves to document the attributes that are
- * used on nodes in network layouts. (Note that hierarchical nodes place
- * additional requirements on node representation, vis {@link pv.Dom.Node}.)
- *
- * @see pv.Layout.Network
- * @name pv.Layout.Network.Node
- */
-
-/**
- * The node index, zero-based. This attribute is populated automatically based
- * on the index in the array returned by the <tt>nodes</tt> property.
- *
- * @type number
- * @name pv.Layout.Network.Node.prototype.index
- */
-
-/**
- * The link degree; the sum of link values for all incoming and outgoing links.
- * This attribute is populated automatically.
- *
- * @type number
- * @name pv.Layout.Network.Node.prototype.linkDegree
- */
-
-/**
- * The node name; optional. If present, this attribute will be used to provide
- * the text for node labels. If not present, the label text will fallback to the
- * <tt>nodeValue</tt> attribute.
- *
- * @type string
- * @name pv.Layout.Network.Node.prototype.nodeName
- */
-
-/**
- * The node value; optional. If present, and no <tt>nodeName</tt> attribute is
- * present, the node value will be used as the label text. This attribute is
- * also automatically populated if the nodes are specified as an array of
- * primitives, such as strings or numbers.
- *
- * @type object
- * @name pv.Layout.Network.Node.prototype.nodeValue
- */
-
-/**
- * @class Represents a link in a network layout. There is no explicit
- * constructor; this class merely serves to document the attributes that are
- * used on links in network layouts. For hierarchical layouts, this class is
- * used to represent the parent-child links.
- *
- * @see pv.Layout.Network
- * @name pv.Layout.Network.Link
- */
-
-/**
- * The link value, or weight; optional. If not specified (or not a number), the
- * default value of 1 is used.
- *
- * @type number
- * @name pv.Layout.Network.Link.prototype.linkValue
- */
-
-/**
- * The link's source node. If not set, this value will be derived from the
- * <tt>source</tt> attribute index.
- *
- * @type pv.Layout.Network.Node
- * @name pv.Layout.Network.Link.prototype.sourceNode
- */
-
-/**
- * The link's target node. If not set, this value will be derived from the
- * <tt>target</tt> attribute index.
- *
- * @type pv.Layout.Network.Node
- * @name pv.Layout.Network.Link.prototype.targetNode
- */
-
-/**
- * Alias for <tt>sourceNode</tt>, as expressed by the index of the source node.
- * This attribute is not populated automatically, but may be used as a more
- * convenient identification of the link's source, for example in a static JSON
- * representation.
- *
- * @type number
- * @name pv.Layout.Network.Link.prototype.source
- */
-
-/**
- * Alias for <tt>targetNode</tt>, as expressed by the index of the target node.
- * This attribute is not populated automatically, but may be used as a more
- * convenient identification of the link's target, for example in a static JSON
- * representation.
- *
- * @type number
- * @name pv.Layout.Network.Link.prototype.target
- */
-
-/**
- * Alias for <tt>linkValue</tt>. This attribute is not populated automatically,
- * but may be used instead of the <tt>linkValue</tt> attribute when specifying
- * links.
- *
- * @type number
- * @name pv.Layout.Network.Link.prototype.value
- */
-
-/** @private Transform nodes and links on cast. */
-pv.Layout.Network.prototype = pv.extend(pv.Layout)
- .property("nodes", function(v) {
- return v.map(function(d, i) {
- if (typeof d != "object") d = {nodeValue: d};
- d.index = i;
- return d;
- });
- })
- .property("links", function(v) {
- return v.map(function(d) {
- if (isNaN(d.linkValue)) d.linkValue = isNaN(d.value) ? 1 : d.value;
- return d;
- });
- });
-
-/**
- * Resets the cache, such that changes to layout property definitions will be
- * visible on subsequent render. Unlike normal marks (and normal layouts),
- * properties associated with network layouts are not automatically re-evaluated
- * on render; the properties are cached, and any expensive layout algorithms are
- * only run after the layout is explicitly reset.
- *
- * @returns {pv.Layout.Network} this.
- */
-pv.Layout.Network.prototype.reset = function() {
- this.$id = pv.id();
- return this;
-};
-
-/** @private Skip evaluating properties if cached. */
-pv.Layout.Network.prototype.buildProperties = function(s, properties) {
- if ((s.$id || 0) < this.$id) {
- pv.Layout.prototype.buildProperties.call(this, s, properties);
- }
-};
-
-/** @private Compute link degrees; map source and target indexes to nodes. */
-pv.Layout.Network.prototype.buildImplied = function(s) {
- pv.Layout.prototype.buildImplied.call(this, s);
- if (s.$id >= this.$id) return true;
- s.$id = this.$id;
- s.nodes.forEach(function(d) {
- d.linkDegree = 0;
- });
- s.links.forEach(function(d) {
- var v = d.linkValue;
- (d.sourceNode || (d.sourceNode = s.nodes[d.source])).linkDegree += v;
- (d.targetNode || (d.targetNode = s.nodes[d.target])).linkDegree += v;
- });
-};
-/**
- * Constructs a new, empty hierarchy layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Represents an abstract layout for hierarchy diagrams. This class is a
- * specialization of {@link pv.Layout.Network}, providing the basic structure
- * for both hierarchical node-link diagrams (such as Reingold-Tilford trees) and
- * space-filling hierarchy diagrams (such as sunbursts and treemaps).
- *
- * <p>Unlike general network layouts, the <tt>links</tt> property need not be
- * defined explicitly. Instead, the links are computed implicitly from the
- * <tt>parentNode</tt> attribute of the node objects, as defined by the
- * <tt>nodes</tt> property. This implementation is also available as
- * {@link #links}, for reuse with non-hierarchical layouts; for example, to
- * render a tree using force-directed layout.
- *
- * <p>Correspondingly, the <tt>nodes</tt> property is represented as a union of
- * {@link pv.Layout.Network.Node} and {@link pv.Dom.Node}. To construct a node
- * hierarchy from a simple JSON map, use the {@link pv.Dom} operator; this
- * operator also provides an easy way to sort nodes before passing them to the
- * layout.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Network}.
- *
- * @see pv.Layout.Cluster
- * @see pv.Layout.Partition
- * @see pv.Layout.Tree
- * @see pv.Layout.Treemap
- * @see pv.Layout.Indent
- * @see pv.Layout.Pack
- * @extends pv.Layout.Network
- */
-pv.Layout.Hierarchy = function() {
- pv.Layout.Network.call(this);
- this.link.strokeStyle("#ccc");
-};
-
-pv.Layout.Hierarchy.prototype = pv.extend(pv.Layout.Network);
-
-/** @private Compute the implied links. (Links are null by default.) */
-pv.Layout.Hierarchy.prototype.buildImplied = function(s) {
- if (!s.links) s.links = pv.Layout.Hierarchy.links.call(this);
- pv.Layout.Network.prototype.buildImplied.call(this, s);
-};
-
-/** The implied links; computes links using the <tt>parentNode</tt> attribute. */
-pv.Layout.Hierarchy.links = function() {
- return this.nodes()
- .filter(function(n) { return n.parentNode; })
- .map(function(n) {
- return {
- sourceNode: n,
- targetNode: n.parentNode,
- linkValue: 1
- };
- });
-};
-
-/** @private Provides standard node-link layout based on breadth & depth. */
-pv.Layout.Hierarchy.NodeLink = {
-
- /** @private */
- buildImplied: function(s) {
- var nodes = s.nodes,
- orient = s.orient,
- horizontal = /^(top|bottom)$/.test(orient),
- w = s.width,
- h = s.height;
-
- /* Compute default inner and outer radius. */
- if (orient == "radial") {
- var ir = s.innerRadius, or = s.outerRadius;
- if (ir == null) ir = 0;
- if (or == null) or = Math.min(w, h) / 2;
- }
-
- /** @private Returns the radius of the given node. */
- function radius(n) {
- return n.parentNode ? (n.depth * (or - ir) + ir) : 0;
- }
-
- /** @private Returns the angle of the given node. */
- function midAngle(n) {
- return (n.parentNode ? (n.breadth - .25) * 2 * Math.PI : 0);
- }
-
- /** @private */
- function x(n) {
- switch (orient) {
- case "left": return n.depth * w;
- case "right": return w - n.depth * w;
- case "top": return n.breadth * w;
- case "bottom": return w - n.breadth * w;
- case "radial": return w / 2 + radius(n) * Math.cos(n.midAngle);
- }
- }
-
- /** @private */
- function y(n) {
- switch (orient) {
- case "left": return n.breadth * h;
- case "right": return h - n.breadth * h;
- case "top": return n.depth * h;
- case "bottom": return h - n.depth * h;
- case "radial": return h / 2 + radius(n) * Math.sin(n.midAngle);
- }
- }
-
- for (var i = 0; i < nodes.length; i++) {
- var n = nodes[i];
- n.midAngle = orient == "radial" ? midAngle(n)
- : horizontal ? Math.PI / 2 : 0;
- n.x = x(n);
- n.y = y(n);
- if (n.firstChild) n.midAngle += Math.PI;
- }
- }
-};
-
-/** @private Provides standard space-filling layout based on breadth & depth. */
-pv.Layout.Hierarchy.Fill = {
-
- /** @private */
- constructor: function() {
- this.node
- .strokeStyle("#fff")
- .fillStyle("#ccc")
- .width(function(n) { return n.dx; })
- .height(function(n) { return n.dy; })
- .innerRadius(function(n) { return n.innerRadius; })
- .outerRadius(function(n) { return n.outerRadius; })
- .startAngle(function(n) { return n.startAngle; })
- .angle(function(n) { return n.angle; });
-
- this.label
- .textAlign("center")
- .left(function(n) { return n.x + (n.dx / 2); })
- .top(function(n) { return n.y + (n.dy / 2); });
-
- /* Hide unsupported link. */
- delete this.link;
- },
-
- /** @private */
- buildImplied: function(s) {
- var nodes = s.nodes,
- orient = s.orient,
- horizontal = /^(top|bottom)$/.test(orient),
- w = s.width,
- h = s.height,
- depth = -nodes[0].minDepth;
-
- /* Compute default inner and outer radius. */
- if (orient == "radial") {
- var ir = s.innerRadius, or = s.outerRadius;
- if (ir == null) ir = 0;
- if (ir) depth *= 2; // use full depth step for root
- if (or == null) or = Math.min(w, h) / 2;
- }
-
- /** @private Scales the specified depth for a space-filling layout. */
- function scale(d, depth) {
- return (d + depth) / (1 + depth);
- }
-
- /** @private */
- function x(n) {
- switch (orient) {
- case "left": return scale(n.minDepth, depth) * w;
- case "right": return (1 - scale(n.maxDepth, depth)) * w;
- case "top": return n.minBreadth * w;
- case "bottom": return (1 - n.maxBreadth) * w;
- case "radial": return w / 2;
- }
- }
-
- /** @private */
- function y(n) {
- switch (orient) {
- case "left": return n.minBreadth * h;
- case "right": return (1 - n.maxBreadth) * h;
- case "top": return scale(n.minDepth, depth) * h;
- case "bottom": return (1 - scale(n.maxDepth, depth)) * h;
- case "radial": return h / 2;
- }
- }
-
- /** @private */
- function dx(n) {
- switch (orient) {
- case "left":
- case "right": return (n.maxDepth - n.minDepth) / (1 + depth) * w;
- case "top":
- case "bottom": return (n.maxBreadth - n.minBreadth) * w;
- case "radial": return n.parentNode ? (n.innerRadius + n.outerRadius) * Math.cos(n.midAngle) : 0;
- }
- }
-
- /** @private */
- function dy(n) {
- switch (orient) {
- case "left":
- case "right": return (n.maxBreadth - n.minBreadth) * h;
- case "top":
- case "bottom": return (n.maxDepth - n.minDepth) / (1 + depth) * h;
- case "radial": return n.parentNode ? (n.innerRadius + n.outerRadius) * Math.sin(n.midAngle) : 0;
- }
- }
-
- /** @private */
- function innerRadius(n) {
- return Math.max(0, scale(n.minDepth, depth / 2)) * (or - ir) + ir;
- }
-
- /** @private */
- function outerRadius(n) {
- return scale(n.maxDepth, depth / 2) * (or - ir) + ir;
- }
-
- /** @private */
- function startAngle(n) {
- return (n.parentNode ? n.minBreadth - .25 : 0) * 2 * Math.PI;
- }
-
- /** @private */
- function angle(n) {
- return (n.parentNode ? n.maxBreadth - n.minBreadth : 1) * 2 * Math.PI;
- }
-
- for (var i = 0; i < nodes.length; i++) {
- var n = nodes[i];
- n.x = x(n);
- n.y = y(n);
- if (orient == "radial") {
- n.innerRadius = innerRadius(n);
- n.outerRadius = outerRadius(n);
- n.startAngle = startAngle(n);
- n.angle = angle(n);
- n.midAngle = n.startAngle + n.angle / 2;
- } else {
- n.midAngle = horizontal ? -Math.PI / 2 : 0;
- }
- n.dx = dx(n);
- n.dy = dy(n);
- }
- }
-};
-/**
- * Constructs a new, empty grid layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a grid layout with regularly-sized rows and columns. The
- * number of rows and columns are determined from their respective
- * properties. For example, the 2&times;3 array:
- *
- * <pre>1 2 3
- * 4 5 6</pre>
- *
- * can be represented using the <tt>rows</tt> property as:
- *
- * <pre>[[1, 2, 3], [4, 5, 6]]</pre>
- *
- * If your data is in column-major order, you can equivalently use the
- * <tt>columns</tt> property. If the <tt>rows</tt> property is an array, it
- * takes priority over the <tt>columns</tt> property. The data is implicitly
- * transposed, as if the {@link pv.transpose} operator were applied.
- *
- * <p>This layout exports a single <tt>cell</tt> mark prototype, which is
- * intended to be used with a bar, panel, layout, or subclass thereof. The data
- * property of the cell prototype is defined as the elements in the array. For
- * example, if the array is a two-dimensional array of values in the range
- * [0,1], a simple heatmap can be generated as:
- *
- * <pre>vis.add(pv.Layout.Grid)
- * .rows(arrays)
- * .cell.add(pv.Bar)
- * .fillStyle(pv.ramp("white", "black"))</pre>
- *
- * The grid subdivides the full width and height of the parent panel into equal
- * rectangles. Note, however, that for large, interactive, or animated heatmaps,
- * you may see significantly better performance through dynamic {@link pv.Image}
- * generation.
- *
- * <p>For irregular grids using value-based spatial partitioning, see {@link
- * pv.Layout.Treemap}.
- *
- * @extends pv.Layout
- */
-pv.Layout.Grid = function() {
- pv.Layout.call(this);
- var that = this;
-
- /**
- * The cell prototype. This prototype is intended to be used with a bar,
- * panel, or layout (or subclass thereof) to render the grid cells.
- *
- * @type pv.Mark
- * @name pv.Layout.Grid.prototype.cell
- */
- (this.cell = new pv.Mark()
- .data(function() {
- return that.scene[that.index].$grid;
- })
- .width(function() {
- return that.width() / that.cols();
- })
- .height(function() {
- return that.height() / that.rows();
- })
- .left(function() {
- return this.width() * (this.index % that.cols());
- })
- .top(function() {
- return this.height() * Math.floor(this.index / that.cols());
- })).parent = this;
-};
-
-pv.Layout.Grid.prototype = pv.extend(pv.Layout)
- .property("rows")
- .property("cols");
-
-/**
- * Default properties for grid layouts. By default, there is one row and one
- * column, and the data is the propagated to the child cell.
- *
- * @type pv.Layout.Grid
- */
-pv.Layout.Grid.prototype.defaults = new pv.Layout.Grid()
- .extend(pv.Layout.prototype.defaults)
- .rows(1)
- .cols(1);
-
-/** @private */
-pv.Layout.Grid.prototype.buildImplied = function(s) {
- pv.Layout.prototype.buildImplied.call(this, s);
- var r = s.rows, c = s.cols;
- if (typeof c == "object") r = pv.transpose(c);
- if (typeof r == "object") {
- s.$grid = pv.blend(r);
- s.rows = r.length;
- s.cols = r[0] ? r[0].length : 0;
- } else {
- s.$grid = pv.repeat([s.data], r * c);
- }
-};
-
-/**
- * The number of rows. This property can also be specified as the data in
- * row-major order; in this case, the rows property is implicitly set to the
- * length of the array, and the cols property is set to the length of the first
- * element in the array.
- *
- * @type number
- * @name pv.Layout.Grid.prototype.rows
- */
-
-/**
- * The number of columns. This property can also be specified as the data in
- * column-major order; in this case, the cols property is implicitly set to the
- * length of the array, and the rows property is set to the length of the first
- * element in the array.
- *
- * @type number
- * @name pv.Layout.Grid.prototype.cols
- */
-/**
- * Constructs a new, empty stack layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a layout for stacked visualizations, ranging from simple
- * stacked bar charts to more elaborate "streamgraphs" composed of stacked
- * areas. Stack layouts uses length as a visual encoding, as opposed to
- * position, as the layers do not share an aligned axis.
- *
- * <p>Marks can be stacked vertically or horizontally. For example,
- *
- * <pre>vis.add(pv.Layout.Stack)
- * .layers([[1, 1.2, 1.7, 1.5, 1.7],
- * [.5, 1, .8, 1.1, 1.3],
- * [.2, .5, .8, .9, 1]])
- * .x(function() this.index * 35)
- * .y(function(d) d * 40)
- * .layer.add(pv.Area);</pre>
- *
- * specifies a vertically-stacked area chart, using the default "bottom-left"
- * orientation with "zero" offset. This visualization can be easily changed into
- * a streamgraph using the "wiggle" offset, which attempts to minimize change in
- * slope weighted by layer thickness. See the {@link #offset} property for more
- * supported streamgraph algorithms.
- *
- * <p>In the simplest case, the layer data can be specified as a two-dimensional
- * array of numbers. The <tt>x</tt> and <tt>y</tt> psuedo-properties are used to
- * define the thickness of each layer at the given position, respectively; in
- * the above example of the "bottom-left" orientation, the <tt>x</tt> and
- * <tt>y</tt> psuedo-properties are equivalent to the <tt>left</tt> and
- * <tt>height</tt> properties that you might use if you implemented a stacked
- * area by hand.
- *
- * <p>The advantage of using the stack layout is that the baseline, i.e., the
- * <tt>bottom</tt> property is computed automatically using the specified offset
- * algorithm. In addition, the order of layers can be computed using a built-in
- * algorithm via the <tt>order</tt> property.
- *
- * <p>With the exception of the "expand" <tt>offset</tt>, the stack layout does
- * not perform any automatic scaling of data; the values returned from
- * <tt>x</tt> and <tt>y</tt> specify pixel sizes. To simplify scaling math, use
- * this layout in conjunction with {@link pv.Scale.linear} or similar.
- *
- * <p>In other cases, the <tt>values</tt> psuedo-property can be used to define
- * the data more flexibly. As with a typical panel &amp; area, the
- * <tt>layers</tt> property corresponds to the data in the enclosing panel,
- * while the <tt>values</tt> psuedo-property corresponds to the data for the
- * area within the panel. For example, given an array of data values:
- *
- * <pre>var crimea = [
- * { date: "4/1854", wounds: 0, other: 110, disease: 110 },
- * { date: "5/1854", wounds: 0, other: 95, disease: 105 },
- * { date: "6/1854", wounds: 0, other: 40, disease: 95 },
- * ...</pre>
- *
- * and a corresponding array of series names:
- *
- * <pre>var causes = ["wounds", "other", "disease"];</pre>
- *
- * Separate layers can be defined for each cause like so:
- *
- * <pre>vis.add(pv.Layout.Stack)
- * .layers(causes)
- * .values(crimea)
- * .x(function(d) x(d.date))
- * .y(function(d, p) y(d[p]))
- * .layer.add(pv.Area)
- * ...</pre>
- *
- * As with the panel &amp; area case, the datum that is passed to the
- * psuedo-properties <tt>x</tt> and <tt>y</tt> are the values (an element in
- * <tt>crimea</tt>); the second argument is the layer data (a string in
- * <tt>causes</tt>). Additional arguments specify the data of enclosing panels,
- * if any.
- *
- * @extends pv.Layout
- */
-pv.Layout.Stack = function() {
- pv.Layout.call(this);
- var that = this,
- /** @ignore */ none = function() { return null; },
- prop = {t: none, l: none, r: none, b: none, w: none, h: none},
- values,
- buildImplied = that.buildImplied;
-
- /** @private Proxy the given property on the layer. */
- function proxy(name) {
- return function() {
- return prop[name](this.parent.index, this.index);
- };
- }
-
- /** @private Compute the layout! */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
-
- var data = s.layers,
- n = data.length,
- m,
- orient = s.orient,
- horizontal = /^(top|bottom)\b/.test(orient),
- h = this.parent[horizontal ? "height" : "width"](),
- x = [],
- y = [],
- dy = [];
-
- /*
- * Iterate over the data, evaluating the values, x and y functions. The
- * context in which the x and y psuedo-properties are evaluated is a
- * pseudo-mark that is a grandchild of this layout.
- */
- var stack = pv.Mark.stack, o = {parent: {parent: this}};
- stack.unshift(null);
- values = [];
- for (var i = 0; i < n; i++) {
- dy[i] = [];
- y[i] = [];
- o.parent.index = i;
- stack[0] = data[i];
- values[i] = this.$values.apply(o.parent, stack);
- if (!i) m = values[i].length;
- stack.unshift(null);
- for (var j = 0; j < m; j++) {
- stack[0] = values[i][j];
- o.index = j;
- if (!i) x[j] = this.$x.apply(o, stack);
- dy[i][j] = this.$y.apply(o, stack);
- }
- stack.shift();
- }
- stack.shift();
-
- /* order */
- var index;
- switch (s.order) {
- case "inside-out": {
- var max = dy.map(function(v) { return pv.max.index(v); }),
- map = pv.range(n).sort(function(a, b) { return max[a] - max[b]; }),
- sums = dy.map(function(v) { return pv.sum(v); }),
- top = 0,
- bottom = 0,
- tops = [],
- bottoms = [];
- for (var i = 0; i < n; i++) {
- var j = map[i];
- if (top < bottom) {
- top += sums[j];
- tops.push(j);
- } else {
- bottom += sums[j];
- bottoms.push(j);
- }
- }
- index = bottoms.reverse().concat(tops);
- break;
- }
- case "reverse": index = pv.range(n - 1, -1, -1); break;
- default: index = pv.range(n); break;
- }
-
- /* offset */
- switch (s.offset) {
- case "silohouette": {
- for (var j = 0; j < m; j++) {
- var o = 0;
- for (var i = 0; i < n; i++) o += dy[i][j];
- y[index[0]][j] = (h - o) / 2;
- }
- break;
- }
- case "wiggle": {
- var o = 0;
- for (var i = 0; i < n; i++) o += dy[i][0];
- y[index[0]][0] = o = (h - o) / 2;
- for (var j = 1; j < m; j++) {
- var s1 = 0, s2 = 0, dx = x[j] - x[j - 1];
- for (var i = 0; i < n; i++) s1 += dy[i][j];
- for (var i = 0; i < n; i++) {
- var s3 = (dy[index[i]][j] - dy[index[i]][j - 1]) / (2 * dx);
- for (var k = 0; k < i; k++) {
- s3 += (dy[index[k]][j] - dy[index[k]][j - 1]) / dx;
- }
- s2 += s3 * dy[index[i]][j];
- }
- y[index[0]][j] = o -= s1 ? s2 / s1 * dx : 0;
- }
- break;
- }
- case "expand": {
- for (var j = 0; j < m; j++) {
- y[index[0]][j] = 0;
- var k = 0;
- for (var i = 0; i < n; i++) k += dy[i][j];
- if (k) {
- k = h / k;
- for (var i = 0; i < n; i++) dy[i][j] *= k;
- } else {
- k = h / n;
- for (var i = 0; i < n; i++) dy[i][j] = k;
- }
- }
- break;
- }
- default: {
- for (var j = 0; j < m; j++) y[index[0]][j] = 0;
- break;
- }
- }
-
- /* Propagate the offset to the other series. */
- for (var j = 0; j < m; j++) {
- var o = y[index[0]][j];
- for (var i = 1; i < n; i++) {
- o += dy[index[i - 1]][j];
- y[index[i]][j] = o;
- }
- }
-
- /* Find the property definitions for dynamic substitution. */
- var i = orient.indexOf("-"),
- pdy = horizontal ? "h" : "w",
- px = i < 0 ? (horizontal ? "l" : "b") : orient.charAt(i + 1),
- py = orient.charAt(0);
- for (var p in prop) prop[p] = none;
- prop[px] = function(i, j) { return x[j]; };
- prop[py] = function(i, j) { return y[i][j]; };
- prop[pdy] = function(i, j) { return dy[i][j]; };
- };
-
- /**
- * The layer prototype. This prototype is intended to be used with an area,
- * bar or panel mark (or subclass thereof). Other mark types may be possible,
- * though note that the stack layout is not currently designed to support
- * radial stacked visualizations using wedges.
- *
- * <p>The layer is not a direct child of the stack layout; a hidden panel is
- * used to replicate layers.
- *
- * @type pv.Mark
- * @name pv.Layout.Stack.prototype.layer
- */
- this.layer = new pv.Mark()
- .data(function() { return values[this.parent.index]; })
- .top(proxy("t"))
- .left(proxy("l"))
- .right(proxy("r"))
- .bottom(proxy("b"))
- .width(proxy("w"))
- .height(proxy("h"));
-
- this.layer.add = function(type) {
- return that.add(pv.Panel)
- .data(function() { return that.layers(); })
- .add(type)
- .extend(this);
- };
-};
-
-pv.Layout.Stack.prototype = pv.extend(pv.Layout)
- .property("orient", String)
- .property("offset", String)
- .property("order", String)
- .property("layers");
-
-/**
- * Default properties for stack layouts. The default orientation is
- * "bottom-left", the default offset is "zero", and the default layers is
- * <tt>[[]]</tt>.
- *
- * @type pv.Layout.Stack
- */
-pv.Layout.Stack.prototype.defaults = new pv.Layout.Stack()
- .extend(pv.Layout.prototype.defaults)
- .orient("bottom-left")
- .offset("zero")
- .layers([[]]);
-
-/** @private */
-pv.Layout.Stack.prototype.$x
- = /** @private */ pv.Layout.Stack.prototype.$y
- = function() { return 0; };
-
-/**
- * The x psuedo-property; determines the position of the value within the layer.
- * This typically corresponds to the independent variable. For example, with the
- * default "bottom-left" orientation, this function defines the "left" property.
- *
- * @param {function} f the x function.
- * @returns {pv.Layout.Stack} this.
- */
-pv.Layout.Stack.prototype.x = function(f) {
- /** @private */ this.$x = pv.functor(f);
- return this;
-};
-
-/**
- * The y psuedo-property; determines the thickness of the layer at the given
- * value. This typically corresponds to the dependent variable. For example,
- * with the default "bottom-left" orientation, this function defines the
- * "height" property.
- *
- * @param {function} f the y function.
- * @returns {pv.Layout.Stack} this.
- */
-pv.Layout.Stack.prototype.y = function(f) {
- /** @private */ this.$y = pv.functor(f);
- return this;
-};
-
-/** @private The default value function; identity. */
-pv.Layout.Stack.prototype.$values = pv.identity;
-
-/**
- * The values function; determines the values for a given layer. The default
- * value is the identity function, which assumes that the layers property is
- * specified as a two-dimensional (i.e., nested) array.
- *
- * @param {function} f the values function.
- * @returns {pv.Layout.Stack} this.
- */
-pv.Layout.Stack.prototype.values = function(f) {
- this.$values = pv.functor(f);
- return this;
-};
-
-/**
- * The layer data in row-major order. The value of this property is typically a
- * two-dimensional (i.e., nested) array, but any array can be used, provided the
- * values psuedo-property is defined accordingly.
- *
- * @type array[]
- * @name pv.Layout.Stack.prototype.layers
- */
-
-/**
- * The layer orientation. The following values are supported:<ul>
- *
- * <li>bottom-left == bottom
- * <li>bottom-right
- * <li>top-left == top
- * <li>top-right
- * <li>left-top
- * <li>left-bottom == left
- * <li>right-top
- * <li>right-bottom == right
- *
- * </ul>. The default value is "bottom-left", which means that the layers will
- * be built from the bottom-up, and the values within layers will be laid out
- * from left-to-right.
- *
- * <p>Note that with non-zero baselines, some orientations may give similar
- * results. For example, offset("silohouette") centers the layers, resulting in
- * a streamgraph. Thus, the orientations "bottom-left" and "top-left" will
- * produce similar results, differing only in the layer order.
- *
- * @type string
- * @name pv.Layout.Stack.prototype.orient
- */
-
-/**
- * The layer order. The following values are supported:<ul>
- *
- * <li><i>null</i> - use given layer order.
- * <li>inside-out - sort by maximum value, with balanced order.
- * <li>reverse - use reverse of given layer order.
- *
- * </ul>For details on the inside-out order algorithm, refer to "Stacked Graphs
- * -- Geometry &amp; Aesthetics" by L. Byron and M. Wattenberg, IEEE TVCG
- * November/December 2008.
- *
- * @type string
- * @name pv.Layout.Stack.prototype.order
- */
-
-/**
- * The layer offset; the y-position of the bottom of the lowest layer. The
- * following values are supported:<ul>
- *
- * <li>zero - use a zero baseline, i.e., the y-axis.
- * <li>silohouette - center the stream, i.e., ThemeRiver.
- * <li>wiggle - minimize weighted change in slope.
- * <li>expand - expand layers to fill the enclosing layout dimensions.
- *
- * </ul>For details on these offset algorithms, refer to "Stacked Graphs --
- * Geometry &amp; Aesthetics" by L. Byron and M. Wattenberg, IEEE TVCG
- * November/December 2008.
- *
- * @type string
- * @name pv.Layout.Stack.prototype.offset
- */
-/**
- * Constructs a new, empty treemap layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a space-filling rectangular layout, with the hierarchy
- * represented via containment. Treemaps represent nodes as boxes, with child
- * nodes placed within parent boxes. The size of each box is proportional to the
- * size of the node in the tree. This particular algorithm is taken from Bruls,
- * D.M., C. Huizing, and J.J. van Wijk, <a
- * href="http://www.win.tue.nl/~vanwijk/stm.pdf">"Squarified Treemaps"</a> in
- * <i>Data Visualization 2000, Proceedings of the Joint Eurographics and IEEE
- * TCVG Sumposium on Visualization</i>, 2000, pp. 33-42.
- *
- * <p>The meaning of the exported mark prototypes changes slightly in the
- * space-filling implementation:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar}. The node
- * data is populated with <tt>dx</tt> and <tt>dy</tt> attributes, in addition to
- * the standard <tt>x</tt> and <tt>y</tt> position attributes.
- *
- * <p><li><tt>leaf</tt> - for rendering leaf nodes only, with no fill or stroke
- * style by default; typically a {@link pv.Panel} or another layout!
- *
- * <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
- * in the arrangement of the space-filling nodes.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}.
- *
- * </ul>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @extends pv.Layout.Hierarchy
- */
-pv.Layout.Treemap = function() {
- pv.Layout.Hierarchy.call(this);
-
- this.node
- .strokeStyle("#fff")
- .fillStyle("rgba(31, 119, 180, .25)")
- .width(function(n) { return n.dx; })
- .height(function(n) { return n.dy; });
-
- this.label
- .visible(function(n) { return !n.firstChild; })
- .left(function(n) { return n.x + (n.dx / 2); })
- .top(function(n) { return n.y + (n.dy / 2); })
- .textAlign("center")
- .textAngle(function(n) { return n.dx > n.dy ? 0 : -Math.PI / 2; });
-
- (this.leaf = new pv.Mark()
- .extend(this.node)
- .fillStyle(null)
- .strokeStyle(null)
- .visible(function(n) { return !n.firstChild; })).parent = this;
-
- /* Hide unsupported link. */
- delete this.link;
-};
-
-pv.Layout.Treemap.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("round", Boolean)
- .property("paddingLeft", Number)
- .property("paddingRight", Number)
- .property("paddingTop", Number)
- .property("paddingBottom", Number)
- .property("mode", String)
- .property("order", String);
-
-/**
- * Default propertiess for treemap layouts. The default mode is "squarify" and
- * the default order is "ascending".
- *
- * @type pv.Layout.Treemap
- */
-pv.Layout.Treemap.prototype.defaults = new pv.Layout.Treemap()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .mode("squarify") // squarify, slice-and-dice, slice, dice
- .order("ascending"); // ascending, descending, reverse, null
-
-/**
- * Whether node sizes should be rounded to integer values. This has a similar
- * effect to setting <tt>antialias(false)</tt> for node values, but allows the
- * treemap algorithm to accumulate error related to pixel rounding.
- *
- * @type boolean
- * @name pv.Layout.Treemap.prototype.round
- */
-
-/**
- * The left inset between parent add child in pixels. Defaults to 0.
- *
- * @type number
- * @name pv.Layout.Treemap.prototype.paddingLeft
- * @see #padding
- */
-
-/**
- * The right inset between parent add child in pixels. Defaults to 0.
- *
- * @type number
- * @name pv.Layout.Treemap.prototype.paddingRight
- * @see #padding
- */
-
-/**
- * The top inset between parent and child in pixels. Defaults to 0.
- *
- * @type number
- * @name pv.Layout.Treemap.prototype.paddingTop
- * @see #padding
- */
-
-/**
- * The bottom inset between parent and child in pixels. Defaults to 0.
- *
- * @type number
- * @name pv.Layout.Treemap.prototype.paddingBottom
- * @see #padding
- */
-
-/**
- * The treemap algorithm. The default value is "squarify". The "slice-and-dice"
- * algorithm may also be used, which alternates between horizontal and vertical
- * slices for different depths. In addition, the "slice" and "dice" algorithms
- * may be specified explicitly to control whether horizontal or vertical slices
- * are used, which may be useful for nested treemap layouts.
- *
- * @type string
- * @name pv.Layout.Treemap.prototype.mode
- * @see <a
- * href="ftp://ftp.cs.umd.edu/pub/hcil/Reports-Abstracts-Bibliography/2001-06html/2001-06.pdf"
- * >"Ordered Treemap Layouts"</a> by B. Shneiderman &amp; M. Wattenberg, IEEE
- * InfoVis 2001.
- */
-
-/**
- * The sibling node order. A <tt>null</tt> value means to use the sibling order
- * specified by the nodes property as-is; "reverse" will reverse the given
- * order. The default value "ascending" will sort siblings in ascending order of
- * size, while "descending" will do the reverse. For sorting based on data
- * attributes other than size, use the default <tt>null</tt> for the order
- * property, and sort the nodes beforehand using the {@link pv.Dom} operator.
- *
- * @type string
- * @name pv.Layout.Treemap.prototype.order
- */
-
-/**
- * Alias for setting the left, right, top and bottom padding properties
- * simultaneously.
- *
- * @see #paddingLeft
- * @see #paddingRight
- * @see #paddingTop
- * @see #paddingBottom
- * @returns {pv.Layout.Treemap} this.
- */
-pv.Layout.Treemap.prototype.padding = function(n) {
- return this.paddingLeft(n).paddingRight(n).paddingTop(n).paddingBottom(n);
-};
-
-/** @private The default size function. */
-pv.Layout.Treemap.prototype.$size = function(d) {
- return Number(d.nodeValue);
-};
-
-/**
- * Specifies the sizing function. By default, the size function uses the
- * <tt>nodeValue</tt> attribute of nodes as a numeric value: <tt>function(d)
- * Number(d.nodeValue)</tt>.
- *
- * <p>The sizing function is invoked for each leaf node in the tree, per the
- * <tt>nodes</tt> property. For example, if the tree data structure represents a
- * file system, with files as leaf nodes, and each file has a <tt>bytes</tt>
- * attribute, you can specify a size function as:
- *
- * <pre> .size(function(d) d.bytes)</pre>
- *
- * @param {function} f the new sizing function.
- * @returns {pv.Layout.Treemap} this.
- */
-pv.Layout.Treemap.prototype.size = function(f) {
- this.$size = pv.functor(f);
- return this;
-};
-
-/** @private */
-pv.Layout.Treemap.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var that = this,
- nodes = s.nodes,
- root = nodes[0],
- stack = pv.Mark.stack,
- left = s.paddingLeft,
- right = s.paddingRight,
- top = s.paddingTop,
- bottom = s.paddingBottom,
- /** @ignore */ size = function(n) { return n.size; },
- round = s.round ? Math.round : Number,
- mode = s.mode;
-
- /** @private */
- function slice(row, sum, horizontal, x, y, w, h) {
- for (var i = 0, d = 0; i < row.length; i++) {
- var n = row[i];
- if (horizontal) {
- n.x = x + d;
- n.y = y;
- d += n.dx = round(w * n.size / sum);
- n.dy = h;
- } else {
- n.x = x;
- n.y = y + d;
- n.dx = w;
- d += n.dy = round(h * n.size / sum);
- }
- }
- if (n) { // correct on-axis rounding error
- if (horizontal) {
- n.dx += w - d;
- } else {
- n.dy += h - d;
- }
- }
- }
-
- /** @private */
- function ratio(row, l) {
- var rmax = -Infinity, rmin = Infinity, s = 0;
- for (var i = 0; i < row.length; i++) {
- var r = row[i].size;
- if (r < rmin) rmin = r;
- if (r > rmax) rmax = r;
- s += r;
- }
- s = s * s;
- l = l * l;
- return Math.max(l * rmax / s, s / (l * rmin));
- }
-
- /** @private */
- function layout(n, i) {
- var x = n.x + left,
- y = n.y + top,
- w = n.dx - left - right,
- h = n.dy - top - bottom;
-
- /* Assume squarify by default. */
- if (mode != "squarify") {
- slice(n.childNodes, n.size,
- mode == "slice" ? true
- : mode == "dice" ? false
- : i & 1, x, y, w, h);
- return;
- }
-
- var row = [],
- mink = Infinity,
- l = Math.min(w, h),
- k = w * h / n.size;
-
- /* Abort if the size is nonpositive. */
- if (n.size <= 0) return;
-
- /* Scale the sizes to fill the current subregion. */
- n.visitBefore(function(n) { n.size *= k; });
-
- /** @private Position the specified nodes along one dimension. */
- function position(row) {
- var horizontal = w == l,
- sum = pv.sum(row, size),
- r = l ? round(sum / l) : 0;
- slice(row, sum, horizontal, x, y, horizontal ? w : r, horizontal ? r : h);
- if (horizontal) {
- y += r;
- h -= r;
- } else {
- x += r;
- w -= r;
- }
- l = Math.min(w, h);
- return horizontal;
- }
-
- var children = n.childNodes.slice(); // copy
- while (children.length) {
- var child = children[children.length - 1];
- if (!child.size) {
- children.pop();
- continue;
- }
- row.push(child);
-
- var k = ratio(row, l);
- if (k <= mink) {
- children.pop();
- mink = k;
- } else {
- row.pop();
- position(row);
- row.length = 0;
- mink = Infinity;
- }
- }
-
- /* correct off-axis rounding error */
- if (position(row)) for (var i = 0; i < row.length; i++) {
- row[i].dy += h;
- } else for (var i = 0; i < row.length; i++) {
- row[i].dx += w;
- }
- }
-
- /* Recursively compute the node depth and size. */
- stack.unshift(null);
- root.visitAfter(function(n, i) {
- n.depth = i;
- n.x = n.y = n.dx = n.dy = 0;
- n.size = n.firstChild
- ? pv.sum(n.childNodes, function(n) { return n.size; })
- : that.$size.apply(that, (stack[0] = n, stack));
- });
- stack.shift();
-
- /* Sort. */
- switch (s.order) {
- case "ascending": {
- root.sort(function(a, b) { return a.size - b.size; });
- break;
- }
- case "descending": {
- root.sort(function(a, b) { return b.size - a.size; });
- break;
- }
- case "reverse": root.reverse(); break;
- }
-
- /* Recursively compute the layout. */
- root.x = 0;
- root.y = 0;
- root.dx = s.width;
- root.dy = s.height;
- root.visitBefore(layout);
-};
-/**
- * Constructs a new, empty tree layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a node-link tree diagram using the Reingold-Tilford "tidy"
- * tree layout algorithm. The specific algorithm used by this layout is based on
- * <a href="http://citeseer.ist.psu.edu/buchheim02improving.html">"Improving
- * Walker's Algorithm to Run in Linear Time"</A> by C. Buchheim, M. J&uuml;nger
- * &amp; S. Leipert, Graph Drawing 2002. This layout supports both cartesian and
- * radial orientations orientations for node-link diagrams.
- *
- * <p>The tree layout supports a "group" property, which if true causes siblings
- * to be positioned closer together than unrelated nodes at the same depth. The
- * layout can be configured using the <tt>depth</tt> and <tt>breadth</tt>
- * properties, which control the increments in pixel space between nodes in both
- * dimensions, similar to the indent layout.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @extends pv.Layout.Hierarchy
- */
-pv.Layout.Tree = function() {
- pv.Layout.Hierarchy.call(this);
-};
-
-pv.Layout.Tree.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("group", Number)
- .property("breadth", Number)
- .property("depth", Number)
- .property("orient", String);
-
-/**
- * Default properties for tree layouts. The default orientation is "top", the
- * default group parameter is 1, and the default breadth and depth offsets are
- * 15 and 60 respectively.
- *
- * @type pv.Layout.Tree
- */
-pv.Layout.Tree.prototype.defaults = new pv.Layout.Tree()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .group(1)
- .breadth(15)
- .depth(60)
- .orient("top");
-
-/** @private */
-pv.Layout.Tree.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var nodes = s.nodes,
- orient = s.orient,
- depth = s.depth,
- breadth = s.breadth,
- group = s.group,
- w = s.width,
- h = s.height;
-
- /** @private */
- function firstWalk(v) {
- var l, r, a;
- if (!v.firstChild) {
- if (l = v.previousSibling) {
- v.prelim = l.prelim + distance(v.depth, true);
- }
- } else {
- l = v.firstChild;
- r = v.lastChild;
- a = l; // default ancestor
- for (var c = l; c; c = c.nextSibling) {
- firstWalk(c);
- a = apportion(c, a);
- }
- executeShifts(v);
- var midpoint = .5 * (l.prelim + r.prelim);
- if (l = v.previousSibling) {
- v.prelim = l.prelim + distance(v.depth, true);
- v.mod = v.prelim - midpoint;
- } else {
- v.prelim = midpoint;
- }
- }
- }
-
- /** @private */
- function secondWalk(v, m, depth) {
- v.breadth = v.prelim + m;
- m += v.mod;
- for (var c = v.firstChild; c; c = c.nextSibling) {
- secondWalk(c, m, depth);
- }
- }
-
- /** @private */
- function apportion(v, a) {
- var w = v.previousSibling;
- if (w) {
- var vip = v,
- vop = v,
- vim = w,
- vom = v.parentNode.firstChild,
- sip = vip.mod,
- sop = vop.mod,
- sim = vim.mod,
- som = vom.mod,
- nr = nextRight(vim),
- nl = nextLeft(vip);
- while (nr && nl) {
- vim = nr;
- vip = nl;
- vom = nextLeft(vom);
- vop = nextRight(vop);
- vop.ancestor = v;
- var shift = (vim.prelim + sim) - (vip.prelim + sip) + distance(vim.depth, false);
- if (shift > 0) {
- moveSubtree(ancestor(vim, v, a), v, shift);
- sip += shift;
- sop += shift;
- }
- sim += vim.mod;
- sip += vip.mod;
- som += vom.mod;
- sop += vop.mod;
- nr = nextRight(vim);
- nl = nextLeft(vip);
- }
- if (nr && !nextRight(vop)) {
- vop.thread = nr;
- vop.mod += sim - sop;
- }
- if (nl && !nextLeft(vom)) {
- vom.thread = nl;
- vom.mod += sip - som;
- a = v;
- }
- }
- return a;
- }
-
- /** @private */
- function nextLeft(v) {
- return v.firstChild || v.thread;
- }
-
- /** @private */
- function nextRight(v) {
- return v.lastChild || v.thread;
- }
-
- /** @private */
- function moveSubtree(wm, wp, shift) {
- var subtrees = wp.number - wm.number;
- wp.change -= shift / subtrees;
- wp.shift += shift;
- wm.change += shift / subtrees;
- wp.prelim += shift;
- wp.mod += shift;
- }
-
- /** @private */
- function executeShifts(v) {
- var shift = 0, change = 0;
- for (var c = v.lastChild; c; c = c.previousSibling) {
- c.prelim += shift;
- c.mod += shift;
- change += c.change;
- shift += c.shift + change;
- }
- }
-
- /** @private */
- function ancestor(vim, v, a) {
- return (vim.ancestor.parentNode == v.parentNode) ? vim.ancestor : a;
- }
-
- /** @private */
- function distance(depth, siblings) {
- return (siblings ? 1 : (group + 1)) / ((orient == "radial") ? depth : 1);
- }
-
- /* Initialize temporary layout variables. TODO: store separately. */
- var root = nodes[0];
- root.visitAfter(function(v, i) {
- v.ancestor = v;
- v.prelim = 0;
- v.mod = 0;
- v.change = 0;
- v.shift = 0;
- v.number = v.previousSibling ? (v.previousSibling.number + 1) : 0;
- v.depth = i;
- });
-
- /* Compute the layout using Buchheim et al.'s algorithm. */
- firstWalk(root);
- secondWalk(root, -root.prelim, 0);
-
- /** @private Returns the angle of the given node. */
- function midAngle(n) {
- return (orient == "radial") ? n.breadth / depth : 0;
- }
-
- /** @private */
- function x(n) {
- switch (orient) {
- case "left": return n.depth;
- case "right": return w - n.depth;
- case "top":
- case "bottom": return n.breadth + w / 2;
- case "radial": return w / 2 + n.depth * Math.cos(midAngle(n));
- }
- }
-
- /** @private */
- function y(n) {
- switch (orient) {
- case "left":
- case "right": return n.breadth + h / 2;
- case "top": return n.depth;
- case "bottom": return h - n.depth;
- case "radial": return h / 2 + n.depth * Math.sin(midAngle(n));
- }
- }
-
- /* Clear temporary layout variables; transform depth and breadth. */
- root.visitAfter(function(v) {
- v.breadth *= breadth;
- v.depth *= depth;
- v.midAngle = midAngle(v);
- v.x = x(v);
- v.y = y(v);
- if (v.firstChild) v.midAngle += Math.PI;
- delete v.breadth;
- delete v.depth;
- delete v.ancestor;
- delete v.prelim;
- delete v.mod;
- delete v.change;
- delete v.shift;
- delete v.number;
- delete v.thread;
- });
-};
-
-/**
- * The offset between siblings nodes; defaults to 15.
- *
- * @type number
- * @name pv.Layout.Tree.prototype.breadth
- */
-
-/**
- * The offset between parent and child nodes; defaults to 60.
- *
- * @type number
- * @name pv.Layout.Tree.prototype.depth
- */
-
-/**
- * The orientation. The default orientation is "top", which means that the root
- * node is placed on the top edge, leaf nodes appear at the bottom, and internal
- * nodes are in-between. The following orientations are supported:<ul>
- *
- * <li>left - left-to-right.
- * <li>right - right-to-left.
- * <li>top - top-to-bottom.
- * <li>bottom - bottom-to-top.
- * <li>radial - radially, with the root at the center.</ul>
- *
- * @type string
- * @name pv.Layout.Tree.prototype.orient
- */
-
-/**
- * The sibling grouping, i.e., whether differentiating space is placed between
- * sibling groups. The default is 1 (or true), causing sibling leaves to be
- * separated by one breadth offset. Setting this to false (or 0) causes
- * non-siblings to be adjacent.
- *
- * @type number
- * @name pv.Layout.Tree.prototype.group
- */
-/**
- * Constructs a new, empty indent layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a hierarchical layout using the indent algorithm. This
- * layout implements a node-link diagram where the nodes are presented in
- * preorder traversal, and nodes are indented based on their depth from the
- * root. This technique is used ubiquitously by operating systems to represent
- * file directories; although it requires much vertical space, indented trees
- * allow efficient <i>interactive</i> exploration of trees to find a specific
- * node. In addition they allow rapid scanning of node labels, and multivariate
- * data such as file sizes can be displayed adjacent to the hierarchy.
- *
- * <p>The indent layout can be configured using the <tt>depth</tt> and
- * <tt>breadth</tt> properties, which control the increments in pixel space for
- * each indent and row in the layout. This layout does not support multiple
- * orientations; the root node is rendered in the top-left, while
- * <tt>breadth</tt> is a vertical offset from the top, and <tt>depth</tt> is a
- * horizontal offset from the left.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @extends pv.Layout.Hierarchy
- */
-pv.Layout.Indent = function() {
- pv.Layout.Hierarchy.call(this);
- this.link.interpolate("step-after");
-};
-
-pv.Layout.Indent.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("depth", Number)
- .property("breadth", Number);
-
-/**
- * The horizontal offset between different levels of the tree; defaults to 15.
- *
- * @type number
- * @name pv.Layout.Indent.prototype.depth
- */
-
-/**
- * The vertical offset between nodes; defaults to 15.
- *
- * @type number
- * @name pv.Layout.Indent.prototype.breadth
- */
-
-/**
- * Default properties for indent layouts. By default the depth and breadth
- * offsets are 15 pixels.
- *
- * @type pv.Layout.Indent
- */
-pv.Layout.Indent.prototype.defaults = new pv.Layout.Indent()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .depth(15)
- .breadth(15);
-
-/** @private */
-pv.Layout.Indent.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var nodes = s.nodes,
- bspace = s.breadth,
- dspace = s.depth,
- ax = 0,
- ay = 0;
-
- /** @private */
- function position(n, breadth, depth) {
- n.x = ax + depth++ * dspace;
- n.y = ay + breadth++ * bspace;
- n.midAngle = 0;
- for (var c = n.firstChild; c; c = c.nextSibling) {
- breadth = position(c, breadth, depth);
- }
- return breadth;
- }
-
- position(nodes[0], 1, 1);
-};
-/**
- * Constructs a new, empty circle-packing layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a hierarchical layout using circle-packing. The meaning of
- * the exported mark prototypes changes slightly in the space-filling
- * implementation:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}.
- *
- * <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
- * in the arrangement of the space-filling nodes.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}.
- *
- * </ul>The pack layout support dynamic sizing for leaf nodes, if a
- * {@link #size} psuedo-property is specified. The default size function returns
- * 1, causing all leaf nodes to be sized equally, and all internal nodes to be
- * sized by the number of leaf nodes they have as descendants.
- *
- * <p>The size function can be used in conjunction with the order property,
- * which allows the nodes to the sorted by the computed size. Note: for sorting
- * based on other data attributes, simply use the default <tt>null</tt> for the
- * order property, and sort the nodes beforehand using the {@link pv.Dom}
- * operator.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @extends pv.Layout.Hierarchy
- * @see <a href="http://portal.acm.org/citation.cfm?id=1124772.1124851"
- * >"Visualization of large hierarchical data by circle packing"</a> by W. Wang,
- * H. Wang, G. Dai, and H. Wang, ACM CHI 2006.
- */
-pv.Layout.Pack = function() {
- pv.Layout.Hierarchy.call(this);
-
- this.node
- .radius(function(n) { return n.radius; })
- .strokeStyle("rgb(31, 119, 180)")
- .fillStyle("rgba(31, 119, 180, .25)");
-
- this.label
- .textAlign("center");
-
- /* Hide unsupported link. */
- delete this.link;
-};
-
-pv.Layout.Pack.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("spacing", Number)
- .property("order", String); // ascending, descending, reverse, null
-
-/**
- * Default properties for circle-packing layouts. The default spacing parameter
- * is 1 and the default order is "ascending".
- *
- * @type pv.Layout.Pack
- */
-pv.Layout.Pack.prototype.defaults = new pv.Layout.Pack()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .spacing(1)
- .order("ascending");
-
-/**
- * The spacing parameter; defaults to 1, which provides a little bit of padding
- * between sibling nodes and the enclosing circle. Larger values increase the
- * spacing, by making the sibling nodes smaller; a value of zero makes the leaf
- * nodes as large as possible, with no padding on enclosing circles.
- *
- * @type number
- * @name pv.Layout.Pack.prototype.spacing
- */
-
-/**
- * The sibling node order. The default order is <tt>null</tt>, which means to
- * use the sibling order specified by the nodes property as-is. A value of
- * "ascending" will sort siblings in ascending order of size, while "descending"
- * will do the reverse. For sorting based on data attributes other than size,
- * use the default <tt>null</tt> for the order property, and sort the nodes
- * beforehand using the {@link pv.Dom} operator.
- *
- * @see pv.Dom.Node#sort
- * @type string
- * @name pv.Layout.Pack.prototype.order
- */
-
-/** @private The default size function. */
-pv.Layout.Pack.prototype.$radius = function() { return 1; };
-
-// TODO is it possible for spacing to operate in pixel space?
-// Right now it appears to be multiples of the smallest radius.
-
-/**
- * Specifies the sizing function. By default, a sizing function is disabled and
- * all nodes are given constant size. The sizing function is invoked for each
- * leaf node in the tree (passed to the constructor).
- *
- * <p>For example, if the tree data structure represents a file system, with
- * files as leaf nodes, and each file has a <tt>bytes</tt> attribute, you can
- * specify a size function as:
- *
- * <pre> .size(function(d) d.bytes)</pre>
- *
- * As with other properties, a size function may specify additional arguments to
- * access the data associated with the layout and any enclosing panels.
- *
- * @param {function} f the new sizing function.
- * @returns {pv.Layout.Pack} this.
- */
-pv.Layout.Pack.prototype.size = function(f) {
- this.$radius = typeof f == "function"
- ? function() { return Math.sqrt(f.apply(this, arguments)); }
- : (f = Math.sqrt(f), function() { return f; });
- return this;
-};
-
-/** @private */
-pv.Layout.Pack.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var that = this,
- nodes = s.nodes,
- root = nodes[0];
-
- /** @private Compute the radii of the leaf nodes. */
- function radii(nodes) {
- var stack = pv.Mark.stack;
- stack.unshift(null);
- for (var i = 0, n = nodes.length; i < n; i++) {
- var c = nodes[i];
- if (!c.firstChild) {
- c.radius = that.$radius.apply(that, (stack[0] = c, stack));
- }
- }
- stack.shift();
- }
-
- /** @private */
- function packTree(n) {
- var nodes = [];
- for (var c = n.firstChild; c; c = c.nextSibling) {
- if (c.firstChild) c.radius = packTree(c);
- c.n = c.p = c;
- nodes.push(c);
- }
-
- /* Sort. */
- switch (s.order) {
- case "ascending": {
- nodes.sort(function(a, b) { return a.radius - b.radius; });
- break;
- }
- case "descending": {
- nodes.sort(function(a, b) { return b.radius - a.radius; });
- break;
- }
- case "reverse": nodes.reverse(); break;
- }
-
- return packCircle(nodes);
- }
-
- /** @private */
- function packCircle(nodes) {
- var xMin = Infinity,
- xMax = -Infinity,
- yMin = Infinity,
- yMax = -Infinity,
- a, b, c, j, k;
-
- /** @private */
- function bound(n) {
- xMin = Math.min(n.x - n.radius, xMin);
- xMax = Math.max(n.x + n.radius, xMax);
- yMin = Math.min(n.y - n.radius, yMin);
- yMax = Math.max(n.y + n.radius, yMax);
- }
-
- /** @private */
- function insert(a, b) {
- var c = a.n;
- a.n = b;
- b.p = a;
- b.n = c;
- c.p = b;
- }
-
- /** @private */
- function splice(a, b) {
- a.n = b;
- b.p = a;
- }
-
- /** @private */
- function intersects(a, b) {
- var dx = b.x - a.x,
- dy = b.y - a.y,
- dr = a.radius + b.radius;
- return (dr * dr - dx * dx - dy * dy) > .001; // within epsilon
- }
-
- /* Create first node. */
- a = nodes[0];
- a.x = -a.radius;
- a.y = 0;
- bound(a);
-
- /* Create second node. */
- if (nodes.length > 1) {
- b = nodes[1];
- b.x = b.radius;
- b.y = 0;
- bound(b);
-
- /* Create third node and build chain. */
- if (nodes.length > 2) {
- c = nodes[2];
- place(a, b, c);
- bound(c);
- insert(a, c);
- a.p = c;
- insert(c, b);
- b = a.n;
-
- /* Now iterate through the rest. */
- for (var i = 3; i < nodes.length; i++) {
- place(a, b, c = nodes[i]);
-
- /* Search for the closest intersection. */
- var isect = 0, s1 = 1, s2 = 1;
- for (j = b.n; j != b; j = j.n, s1++) {
- if (intersects(j, c)) {
- isect = 1;
- break;
- }
- }
- if (isect == 1) {
- for (k = a.p; k != j.p; k = k.p, s2++) {
- if (intersects(k, c)) {
- if (s2 < s1) {
- isect = -1;
- j = k;
- }
- break;
- }
- }
- }
-
- /* Update node chain. */
- if (isect == 0) {
- insert(a, c);
- b = c;
- bound(c);
- } else if (isect > 0) {
- splice(a, j);
- b = j;
- i--;
- } else if (isect < 0) {
- splice(j, b);
- a = j;
- i--;
- }
- }
- }
- }
-
- /* Re-center the circles and return the encompassing radius. */
- var cx = (xMin + xMax) / 2,
- cy = (yMin + yMax) / 2,
- cr = 0;
- for (var i = 0; i < nodes.length; i++) {
- var n = nodes[i];
- n.x -= cx;
- n.y -= cy;
- cr = Math.max(cr, n.radius + Math.sqrt(n.x * n.x + n.y * n.y));
- }
- return cr + s.spacing;
- }
-
- /** @private */
- function place(a, b, c) {
- var da = b.radius + c.radius,
- db = a.radius + c.radius,
- dx = b.x - a.x,
- dy = b.y - a.y,
- dc = Math.sqrt(dx * dx + dy * dy),
- cos = (db * db + dc * dc - da * da) / (2 * db * dc),
- theta = Math.acos(cos),
- x = cos * db,
- h = Math.sin(theta) * db;
- dx /= dc;
- dy /= dc;
- c.x = a.x + x * dx + h * dy;
- c.y = a.y + x * dy - h * dx;
- }
-
- /** @private */
- function transform(n, x, y, k) {
- for (var c = n.firstChild; c; c = c.nextSibling) {
- c.x += n.x;
- c.y += n.y;
- transform(c, x, y, k);
- }
- n.x = x + k * n.x;
- n.y = y + k * n.y;
- n.radius *= k;
- }
-
- radii(nodes);
-
- /* Recursively compute the layout. */
- root.x = 0;
- root.y = 0;
- root.radius = packTree(root);
-
- var w = this.width(),
- h = this.height(),
- k = 1 / Math.max(2 * root.radius / w, 2 * root.radius / h);
- transform(root, w / 2, h / 2, k);
-};
-/**
- * Constructs a new, empty force-directed layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements force-directed network layout as a node-link diagram. This
- * layout uses the Fruchterman-Reingold algorithm, which applies an attractive
- * spring force between neighboring nodes, and a repulsive electrical charge
- * force between all nodes. An additional drag force improves stability of the
- * simulation. See {@link pv.Force.spring}, {@link pv.Force.drag} and {@link
- * pv.Force.charge} for more details; note that the n-body charge force is
- * approximated using the Barnes-Hut algorithm.
- *
- * <p>This layout is implemented on top of {@link pv.Simulation}, which can be
- * used directly for more control over simulation parameters. The simulation
- * uses Position Verlet integration, which does not compute velocities
- * explicitly, but allows for easy geometric constraints, such as bounding the
- * nodes within the layout panel. Many of the configuration properties supported
- * by this layout are simply passed through to the underlying forces and
- * constraints of the simulation.
- *
- * <p>Force layouts are typically interactive. The gradual movement of the nodes
- * as they stabilize to a local stress minimum can help reveal the structure of
- * the network, as can {@link pv.Behavior.drag}, which allows the user to pick
- * up nodes and reposition them while the physics simulation continues. This
- * layout can also be used with pan &amp; zoom behaviors for interaction.
- *
- * <p>To facilitate interaction, this layout by default automatically re-renders
- * using a <tt>setInterval</tt> every 42 milliseconds. This can be disabled via
- * the <tt>iterations</tt> property, which if non-null specifies the number of
- * simulation iterations to run before the force-directed layout is finalized.
- * Be careful not to use too high an iteration count, as this can lead to an
- * annoying delay on page load.
- *
- * <p>As with other network layouts, the network data can be updated
- * dynamically, provided the property cache is reset. See
- * {@link pv.Layout.Network} for details. New nodes are initialized with random
- * positions near the center. Alternatively, positions can be specified manually
- * by setting the <tt>x</tt> and <tt>y</tt> attributes on nodes.
- *
- * @extends pv.Layout.Network
- * @see <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.8444&rep=rep1&type=pdf"
- * >"Graph Drawing by Force-directed Placement"</a> by T. Fruchterman &amp;
- * E. Reingold, Software--Practice &amp; Experience, November 1991.
- */
-pv.Layout.Force = function() {
- pv.Layout.Network.call(this);
-
- /* Force-directed graphs can be messy, so reduce the link width. */
- this.link.lineWidth(function(d, p) { return Math.sqrt(p.linkValue) * 1.5; });
- this.label.textAlign("center");
-};
-
-pv.Layout.Force.prototype = pv.extend(pv.Layout.Network)
- .property("bound", Boolean)
- .property("iterations", Number)
- .property("dragConstant", Number)
- .property("chargeConstant", Number)
- .property("chargeMinDistance", Number)
- .property("chargeMaxDistance", Number)
- .property("chargeTheta", Number)
- .property("springConstant", Number)
- .property("springDamping", Number)
- .property("springLength", Number);
-
-/**
- * The bound parameter; true if nodes should be constrained within the layout
- * panel. Bounding is disabled by default. Currently the layout does not observe
- * the radius of the nodes; strictly speaking, only the center of the node is
- * constrained to be within the panel, with an additional 6-pixel offset for
- * padding. A future enhancement could extend the bound constraint to observe
- * the node's radius, which would also support bounding for variable-size nodes.
- *
- * <p>Note that if this layout is used in conjunction with pan &amp; zoom
- * behaviors, those behaviors should have their bound parameter set to the same
- * value.
- *
- * @type boolean
- * @name pv.Layout.Force.prototype.bound
- */
-
-/**
- * The number of simulation iterations to run, or null if this layout is
- * interactive. Force-directed layouts are interactive by default, using a
- * <tt>setInterval</tt> to advance the physics simulation and re-render
- * automatically.
- *
- * @type number
- * @name pv.Layout.Force.prototype.iterations
- */
-
-/**
- * The drag constant, in the range [0,1]. A value of 0 means no drag (a
- * perfectly frictionless environment), while a value of 1 means friction
- * immediately cancels all momentum. The default value is 0.1, which provides a
- * minimum amount of drag that helps stabilize bouncy springs; lower values may
- * result in excessive bounciness, while higher values cause the simulation to
- * take longer to converge.
- *
- * @type number
- * @name pv.Layout.Force.prototype.dragConstant
- * @see pv.Force.drag#constant
- */
-
-/**
- * The charge constant, which should be a negative number. The default value is
- * -40; more negative values will result in a stronger repulsive force, which
- * may lead to faster convergence at the risk of instability. Too strong
- * repulsive charge forces can cause comparatively weak springs to be stretched
- * well beyond their rest length, emphasizing global structure over local
- * structure. A nonnegative value will break the Fruchterman-Reingold algorithm,
- * and is for entertainment purposes only.
- *
- * @type number
- * @name pv.Layout.Force.prototype.chargeConstant
- * @see pv.Force.charge#constant
- */
-
-/**
- * The minimum distance at which charge forces are applied. The default minimum
- * distance of 2 avoids applying forces that are two strong; because the physics
- * simulation is run at discrete time intervals, it is possible for two same-
- * charged particles to become very close or even a singularity! Since the
- * charge force is inversely proportional to the square of the distance, very
- * small distances can break the simulation.
- *
- * <p>In rare cases, two particles can become stuck on top of each other, as a
- * minimum distance threshold will prevent the charge force from repelling them.
- * However, this occurs very rarely because other forces and momentum typically
- * cause the particles to become separated again, at which point the repulsive
- * charge force kicks in.
- *
- * @type number
- * @name pv.Layout.Force.prototype.chargeMinDistance
- * @see pv.Force.charge#domain
- */
-
-/**
- * The maximum distance at which charge forces are applied. This improves
- * performance by ignoring weak charge forces at great distances. Note that this
- * parameter is partly redundant, as the Barnes-Hut algorithm for n-body forces
- * already improves performance for far-away particles through approximation.
- *
- * @type number
- * @name pv.Layout.Force.prototype.chargeMaxDistance
- * @see pv.Force.charge#domain
- */
-
-/**
- * The Barnes-Hut approximation factor. The Barnes-Hut approximation criterion
- * is the ratio of the size of the quadtree node to the distance from the point
- * to the node's center of mass is beneath some threshold. The default value is
- * 0.9.
- *
- * @type number
- * @name pv.Layout.Force.prototype.chargeTheta
- * @see pv.Force.charge#theta
- */
-
-/**
- * The spring constant, which should be a positive number. The default value is
- * 0.1; greater values will result in a stronger attractive force, which may
- * lead to faster convergence at the risk of instability. Too strong spring
- * forces can cause comparatively weak charge forces to be ignored, emphasizing
- * local structure over global structure. A nonpositive value will break the
- * Fruchterman-Reingold algorithm, and is for entertainment purposes only.
- *
- * <p>The spring tension is automatically normalized using the inverse square
- * root of the maximum link degree of attached nodes.
- *
- * @type number
- * @name pv.Layout.Force.prototype.springConstant
- * @see pv.Force.spring#constant
- */
-
-/**
- * The spring damping factor, in the range [0,1]. Damping functions identically
- * to drag forces, damping spring bounciness by applying a force in the opposite
- * direction of attached nodes' velocities. The default value is 0.3.
- *
- * <p>The spring damping is automatically normalized using the inverse square
- * root of the maximum link degree of attached nodes.
- *
- * @type number
- * @name pv.Layout.Force.prototype.springDamping
- * @see pv.Force.spring#damping
- */
-
-/**
- * The spring rest length. The default value is 20 pixels. Larger values may be
- * appropriate if the layout panel is larger, or if the nodes are rendered
- * larger than the default dot size of 20.
- *
- * @type number
- * @name pv.Layout.Force.prototype.springLength
- * @see pv.Force.spring#length
- */
-
-/**
- * Default properties for force-directed layouts. The default drag constant is
- * 0.1, the default charge constant is -40 (with a domain of [2, 500] and theta
- * of 0.9), and the default spring constant is 0.1 (with a damping of 0.3 and a
- * rest length of 20).
- *
- * @type pv.Layout.Force
- */
-pv.Layout.Force.prototype.defaults = new pv.Layout.Force()
- .extend(pv.Layout.Network.prototype.defaults)
- .dragConstant(.1)
- .chargeConstant(-40)
- .chargeMinDistance(2)
- .chargeMaxDistance(500)
- .chargeTheta(.9)
- .springConstant(.1)
- .springDamping(.3)
- .springLength(20);
-
-/** @private Initialize the physics simulation. */
-pv.Layout.Force.prototype.buildImplied = function(s) {
-
- /* Any cached interactive layouts need to be rebound for the timer. */
- if (pv.Layout.Network.prototype.buildImplied.call(this, s)) {
- var f = s.$force;
- if (f) {
- f.next = this.binds.$force;
- this.binds.$force = f;
- }
- return;
- }
-
- var that = this,
- nodes = s.nodes,
- links = s.links,
- k = s.iterations,
- w = s.width,
- h = s.height;
-
- /* Initialize positions randomly near the center. */
- for (var i = 0, n; i < nodes.length; i++) {
- n = nodes[i];
- if (isNaN(n.x)) n.x = w / 2 + 40 * Math.random() - 20;
- if (isNaN(n.y)) n.y = h / 2 + 40 * Math.random() - 20;
- }
-
- /* Initialize the simulation. */
- var sim = pv.simulation(nodes);
-
- /* Drag force. */
- sim.force(pv.Force.drag(s.dragConstant));
-
- /* Charge (repelling) force. */
- sim.force(pv.Force.charge(s.chargeConstant)
- .domain(s.chargeMinDistance, s.chargeMaxDistance)
- .theta(s.chargeTheta));
-
- /* Spring (attracting) force. */
- sim.force(pv.Force.spring(s.springConstant)
- .damping(s.springDamping)
- .length(s.springLength)
- .links(links));
-
- /* Position constraint (for interactive dragging). */
- sim.constraint(pv.Constraint.position());
-
- /* Optionally add bound constraint. TODO: better padding. */
- if (s.bound) {
- sim.constraint(pv.Constraint.bound().x(6, w - 6).y(6, h - 6));
- }
-
- /** @private Returns the speed of the given node, to determine cooling. */
- function speed(n) {
- return n.fix ? 1 : n.vx * n.vx + n.vy * n.vy;
- }
-
- /*
- * If the iterations property is null (the default), the layout is
- * interactive. The simulation is run until the fastest particle drops below
- * an arbitrary minimum speed. Although the timer keeps firing, this speed
- * calculation is fast so there is minimal CPU overhead. Note: if a particle
- * is fixed for interactivity, treat this as a high speed and resume
- * simulation.
- */
- if (k == null) {
- sim.step(); // compute initial previous velocities
- sim.step(); // compute initial velocities
-
- /* Add the simulation state to the bound list. */
- var force = s.$force = this.binds.$force = {
- next: this.binds.$force,
- nodes: nodes,
- min: 1e-4 * (links.length + 1),
- sim: sim
- };
-
- /* Start the timer, if not already started. */
- if (!this.$timer) this.$timer = setInterval(function() {
- var render = false;
- for (var f = that.binds.$force; f; f = f.next) {
- if (pv.max(f.nodes, speed) > f.min) {
- f.sim.step();
- render = true;
- }
- }
- if (render) that.render();
- }, 42);
- } else for (var i = 0; i < k; i++) {
- sim.step();
- }
-};
-/**
- * Constructs a new, empty cluster layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a hierarchical layout using the cluster (or dendrogram)
- * algorithm. This layout provides both node-link and space-filling
- * implementations of cluster diagrams. In many ways it is similar to
- * {@link pv.Layout.Partition}, except that leaf nodes are positioned at maximum
- * depth, and the depth of internal nodes is based on their distance from their
- * deepest descendant, rather than their distance from the root.
- *
- * <p>The cluster layout supports a "group" property, which if true causes
- * siblings to be positioned closer together than unrelated nodes at the same
- * depth. Unlike the partition layout, this layout does not support dynamic
- * sizing for leaf nodes; all leaf nodes are the same size.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @see pv.Layout.Cluster.Fill
- * @extends pv.Layout.Hierarchy
- */
-pv.Layout.Cluster = function() {
- pv.Layout.Hierarchy.call(this);
- var interpolate, // cached interpolate
- buildImplied = this.buildImplied;
-
- /** @private Cache layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
- interpolate
- = /^(top|bottom)$/.test(s.orient) ? "step-before"
- : /^(left|right)$/.test(s.orient) ? "step-after"
- : "linear";
- };
-
- this.link.interpolate(function() { return interpolate; });
-};
-
-pv.Layout.Cluster.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("group", Number)
- .property("orient", String)
- .property("innerRadius", Number)
- .property("outerRadius", Number);
-
-/**
- * The group parameter; defaults to 0, disabling grouping of siblings. If this
- * parameter is set to a positive number (or true, which is equivalent to 1),
- * then additional space will be allotted between sibling groups. In other
- * words, siblings (nodes that share the same parent) will be positioned more
- * closely than nodes at the same depth that do not share a parent.
- *
- * @type number
- * @name pv.Layout.Cluster.prototype.group
- */
-
-/**
- * The orientation. The default orientation is "top", which means that the root
- * node is placed on the top edge, leaf nodes appear on the bottom edge, and
- * internal nodes are in-between. The following orientations are supported:<ul>
- *
- * <li>left - left-to-right.
- * <li>right - right-to-left.
- * <li>top - top-to-bottom.
- * <li>bottom - bottom-to-top.
- * <li>radial - radially, with the root at the center.</ul>
- *
- * @type string
- * @name pv.Layout.Cluster.prototype.orient
- */
-
-/**
- * The inner radius; defaults to 0. This property applies only to radial
- * orientations, and can be used to compress the layout radially. Note that for
- * the node-link implementation, the root node is always at the center,
- * regardless of the value of this property; this property only affects internal
- * and leaf nodes. For the space-filling implementation, a non-zero value of
- * this property will result in the root node represented as a ring rather than
- * a circle.
- *
- * @type number
- * @name pv.Layout.Cluster.prototype.innerRadius
- */
-
-/**
- * The outer radius; defaults to fill the containing panel, based on the height
- * and width of the layout. If the layout has no height and width specified, it
- * will extend to fill the enclosing panel.
- *
- * @type number
- * @name pv.Layout.Cluster.prototype.outerRadius
- */
-
-/**
- * Defaults for cluster layouts. The default group parameter is 0 and the
- * default orientation is "top".
- *
- * @type pv.Layout.Cluster
- */
-pv.Layout.Cluster.prototype.defaults = new pv.Layout.Cluster()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .group(0)
- .orient("top");
-
-/** @private */
-pv.Layout.Cluster.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var root = s.nodes[0],
- group = s.group,
- breadth,
- depth,
- leafCount = 0,
- leafIndex = .5 - group / 2;
-
- /* Count the leaf nodes and compute the depth of descendants. */
- var p = undefined;
- root.visitAfter(function(n) {
- if (n.firstChild) {
- n.depth = 1 + pv.max(n.childNodes, function(n) { return n.depth; });
- } else {
- if (group && (p != n.parentNode)) {
- p = n.parentNode;
- leafCount += group;
- }
- leafCount++;
- n.depth = 0;
- }
- });
- breadth = 1 / leafCount;
- depth = 1 / root.depth;
-
- /* Compute the unit breadth and depth of each node. */
- var p = undefined;
- root.visitAfter(function(n) {
- if (n.firstChild) {
- n.breadth = pv.mean(n.childNodes, function(n) { return n.breadth; });
- } else {
- if (group && (p != n.parentNode)) {
- p = n.parentNode;
- leafIndex += group;
- }
- n.breadth = breadth * leafIndex++;
- }
- n.depth = 1 - n.depth * depth;
- });
-
- /* Compute breadth and depth ranges for space-filling layouts. */
- root.visitAfter(function(n) {
- n.minBreadth = n.firstChild
- ? n.firstChild.minBreadth
- : (n.breadth - breadth / 2);
- n.maxBreadth = n.firstChild
- ? n.lastChild.maxBreadth
- : (n.breadth + breadth / 2);
- });
- root.visitBefore(function(n) {
- n.minDepth = n.parentNode
- ? n.parentNode.maxDepth
- : 0;
- n.maxDepth = n.parentNode
- ? (n.depth + root.depth)
- : (n.minDepth + 2 * root.depth);
- });
- root.minDepth = -depth;
-
- pv.Layout.Hierarchy.NodeLink.buildImplied.call(this, s);
-};
-
-/**
- * Constructs a new, empty space-filling cluster layout. Layouts are not
- * typically constructed directly; instead, they are added to an existing panel
- * via {@link pv.Mark#add}.
- *
- * @class A variant of cluster layout that is space-filling. The meaning of the
- * exported mark prototypes changes slightly in the space-filling
- * implementation:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar} for
- * non-radial orientations, and a {@link pv.Wedge} for radial orientations.
- *
- * <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
- * in the arrangement of the space-filling nodes.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}.
- *
- * </ul>For more details on how to use this layout, see
- * {@link pv.Layout.Cluster}.
- *
- * @extends pv.Layout.Cluster
- */
-pv.Layout.Cluster.Fill = function() {
- pv.Layout.Cluster.call(this);
- pv.Layout.Hierarchy.Fill.constructor.call(this);
-};
-
-pv.Layout.Cluster.Fill.prototype = pv.extend(pv.Layout.Cluster);
-
-/** @private */
-pv.Layout.Cluster.Fill.prototype.buildImplied = function(s) {
- if (pv.Layout.Cluster.prototype.buildImplied.call(this, s)) return;
- pv.Layout.Hierarchy.Fill.buildImplied.call(this, s);
-};
-/**
- * Constructs a new, empty partition layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implemeents a hierarchical layout using the partition (or sunburst,
- * icicle) algorithm. This layout provides both node-link and space-filling
- * implementations of partition diagrams. In many ways it is similar to
- * {@link pv.Layout.Cluster}, except that leaf nodes are positioned based on
- * their distance from the root.
- *
- * <p>The partition layout support dynamic sizing for leaf nodes, if a
- * {@link #size} psuedo-property is specified. The default size function returns
- * 1, causing all leaf nodes to be sized equally, and all internal nodes to be
- * sized by the number of leaf nodes they have as descendants.
- *
- * <p>The size function can be used in conjunction with the order property,
- * which allows the nodes to the sorted by the computed size. Note: for sorting
- * based on other data attributes, simply use the default <tt>null</tt> for the
- * order property, and sort the nodes beforehand using the {@link pv.Dom}
- * operator.
- *
- * <p>For more details on how to use this layout, see
- * {@link pv.Layout.Hierarchy}.
- *
- * @see pv.Layout.Partition.Fill
- * @extends pv.Layout.Hierarchy
- */
-pv.Layout.Partition = function() {
- pv.Layout.Hierarchy.call(this);
-};
-
-pv.Layout.Partition.prototype = pv.extend(pv.Layout.Hierarchy)
- .property("order", String) // null, ascending, descending?
- .property("orient", String) // top, left, right, bottom, radial
- .property("innerRadius", Number)
- .property("outerRadius", Number);
-
-/**
- * The sibling node order. The default order is <tt>null</tt>, which means to
- * use the sibling order specified by the nodes property as-is. A value of
- * "ascending" will sort siblings in ascending order of size, while "descending"
- * will do the reverse. For sorting based on data attributes other than size,
- * use the default <tt>null</tt> for the order property, and sort the nodes
- * beforehand using the {@link pv.Dom} operator.
- *
- * @see pv.Dom.Node#sort
- * @type string
- * @name pv.Layout.Partition.prototype.order
- */
-
-/**
- * The orientation. The default orientation is "top", which means that the root
- * node is placed on the top edge, leaf nodes appear at the bottom, and internal
- * nodes are in-between. The following orientations are supported:<ul>
- *
- * <li>left - left-to-right.
- * <li>right - right-to-left.
- * <li>top - top-to-bottom.
- * <li>bottom - bottom-to-top.
- * <li>radial - radially, with the root at the center.</ul>
- *
- * @type string
- * @name pv.Layout.Partition.prototype.orient
- */
-
-/**
- * The inner radius; defaults to 0. This property applies only to radial
- * orientations, and can be used to compress the layout radially. Note that for
- * the node-link implementation, the root node is always at the center,
- * regardless of the value of this property; this property only affects internal
- * and leaf nodes. For the space-filling implementation, a non-zero value of
- * this property will result in the root node represented as a ring rather than
- * a circle.
- *
- * @type number
- * @name pv.Layout.Partition.prototype.innerRadius
- */
-
-/**
- * The outer radius; defaults to fill the containing panel, based on the height
- * and width of the layout. If the layout has no height and width specified, it
- * will extend to fill the enclosing panel.
- *
- * @type number
- * @name pv.Layout.Partition.prototype.outerRadius
- */
-
-/**
- * Default properties for partition layouts. The default orientation is "top".
- *
- * @type pv.Layout.Partition
- */
-pv.Layout.Partition.prototype.defaults = new pv.Layout.Partition()
- .extend(pv.Layout.Hierarchy.prototype.defaults)
- .orient("top");
-
-/** @private */
-pv.Layout.Partition.prototype.$size = function() { return 1; };
-
-/**
- * Specifies the sizing function. By default, a sizing function is disabled and
- * all nodes are given constant size. The sizing function is invoked for each
- * leaf node in the tree (passed to the constructor).
- *
- * <p>For example, if the tree data structure represents a file system, with
- * files as leaf nodes, and each file has a <tt>bytes</tt> attribute, you can
- * specify a size function as:
- *
- * <pre> .size(function(d) d.bytes)</pre>
- *
- * As with other properties, a size function may specify additional arguments to
- * access the data associated with the layout and any enclosing panels.
- *
- * @param {function} f the new sizing function.
- * @returns {pv.Layout.Partition} this.
- */
-pv.Layout.Partition.prototype.size = function(f) {
- this.$size = f;
- return this;
-};
-
-/** @private */
-pv.Layout.Partition.prototype.buildImplied = function(s) {
- if (pv.Layout.Hierarchy.prototype.buildImplied.call(this, s)) return;
-
- var that = this,
- root = s.nodes[0],
- stack = pv.Mark.stack,
- maxDepth = 0;
-
- /* Recursively compute the tree depth and node size. */
- stack.unshift(null);
- root.visitAfter(function(n, i) {
- if (i > maxDepth) maxDepth = i;
- n.size = n.firstChild
- ? pv.sum(n.childNodes, function(n) { return n.size; })
- : that.$size.apply(that, (stack[0] = n, stack));
- });
- stack.shift();
-
- /* Order */
- switch (s.order) {
- case "ascending": root.sort(function(a, b) { return a.size - b.size; }); break;
- case "descending": root.sort(function(b, a) { return a.size - b.size; }); break;
- }
-
- /* Compute the unit breadth and depth of each node. */
- var ds = 1 / maxDepth;
- root.minBreadth = 0;
- root.breadth = .5;
- root.maxBreadth = 1;
- root.visitBefore(function(n) {
- var b = n.minBreadth, s = n.maxBreadth - b;
- for (var c = n.firstChild; c; c = c.nextSibling) {
- c.minBreadth = b;
- c.maxBreadth = b += (c.size / n.size) * s;
- c.breadth = (b + c.minBreadth) / 2;
- }
- });
- root.visitAfter(function(n, i) {
- n.minDepth = (i - 1) * ds;
- n.maxDepth = n.depth = i * ds;
- });
-
- pv.Layout.Hierarchy.NodeLink.buildImplied.call(this, s);
-};
-
-/**
- * Constructs a new, empty space-filling partition layout. Layouts are not
- * typically constructed directly; instead, they are added to an existing panel
- * via {@link pv.Mark#add}.
- *
- * @class A variant of partition layout that is space-filling. The meaning of
- * the exported mark prototypes changes slightly in the space-filling
- * implementation:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Bar} for
- * non-radial orientations, and a {@link pv.Wedge} for radial orientations.
- *
- * <p><li><tt>link</tt> - unsupported; undefined. Links are encoded implicitly
- * in the arrangement of the space-filling nodes.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}.
- *
- * </ul>For more details on how to use this layout, see
- * {@link pv.Layout.Partition}.
- *
- * @extends pv.Layout.Partition
- */
-pv.Layout.Partition.Fill = function() {
- pv.Layout.Partition.call(this);
- pv.Layout.Hierarchy.Fill.constructor.call(this);
-};
-
-pv.Layout.Partition.Fill.prototype = pv.extend(pv.Layout.Partition);
-
-/** @private */
-pv.Layout.Partition.Fill.prototype.buildImplied = function(s) {
- if (pv.Layout.Partition.prototype.buildImplied.call(this, s)) return;
- pv.Layout.Hierarchy.Fill.buildImplied.call(this, s);
-};
-/**
- * Constructs a new, empty arc layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a layout for arc diagrams. An arc diagram is a network
- * visualization with a one-dimensional layout of nodes, using circular arcs to
- * render links between nodes. For undirected networks, arcs are rendering on a
- * single side; this makes arc diagrams useful as annotations to other
- * two-dimensional network layouts, such as rollup, matrix or table layouts. For
- * directed networks, links in opposite directions can be rendered on opposite
- * sides using <tt>directed(true)</tt>.
- *
- * <p>Arc layouts are particularly sensitive to node ordering; for best results,
- * order the nodes such that related nodes are close to each other. A poor
- * (e.g., random) order may result in large arcs with crossovers that impede
- * visual processing. A future improvement to this layout may include automatic
- * reordering using, e.g., spectral graph layout or simulated annealing.
- *
- * <p>This visualization technique is related to that developed by
- * M. Wattenberg, <a
- * href="http://www.research.ibm.com/visual/papers/arc-diagrams.pdf">"Arc
- * Diagrams: Visualizing Structure in Strings"</a> in <i>IEEE InfoVis</i>, 2002.
- * However, this implementation is limited to simple node-link networks, as
- * opposed to structures with hierarchical self-similarity (such as strings).
- *
- * <p>As with other network layouts, three mark prototypes are provided:<ul>
- *
- * <li><tt>node</tt> - for rendering nodes; typically a {@link pv.Dot}.
- * <li><tt>link</tt> - for rendering links; typically a {@link pv.Line}.
- * <li><tt>label</tt> - for rendering node labels; typically a {@link pv.Label}.
- *
- * </ul>For more details on how this layout is structured and can be customized,
- * see {@link pv.Layout.Network}.
- *
- * @extends pv.Layout.Network
- **/
-pv.Layout.Arc = function() {
- pv.Layout.Network.call(this);
- var interpolate, // cached interpolate
- directed, // cached directed
- reverse, // cached reverse
- buildImplied = this.buildImplied;
-
- /** @private Cache layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
- directed = s.directed;
- interpolate = s.orient == "radial" ? "linear" : "polar";
- reverse = s.orient == "right" || s.orient == "top";
- };
-
- /* Override link properties to handle directedness and orientation. */
- this.link
- .data(function(p) {
- var s = p.sourceNode, t = p.targetNode;
- return reverse != (directed || (s.breadth < t.breadth)) ? [s, t] : [t, s];
- })
- .interpolate(function() { return interpolate; });
-};
-
-pv.Layout.Arc.prototype = pv.extend(pv.Layout.Network)
- .property("orient", String)
- .property("directed", Boolean);
-
-/**
- * Default properties for arc layouts. By default, the orientation is "bottom".
- *
- * @type pv.Layout.Arc
- */
-pv.Layout.Arc.prototype.defaults = new pv.Layout.Arc()
- .extend(pv.Layout.Network.prototype.defaults)
- .orient("bottom");
-
-/**
- * Specifies an optional sort function. The sort function follows the same
- * comparator contract required by {@link pv.Dom.Node#sort}. Specifying a sort
- * function provides an alternative to sort the nodes as they are specified by
- * the <tt>nodes</tt> property; the main advantage of doing this is that the
- * comparator function can access implicit fields populated by the network
- * layout, such as the <tt>linkDegree</tt>.
- *
- * <p>Note that arc diagrams are particularly sensitive to order. This is
- * referred to as the seriation problem, and many different techniques exist to
- * find good node orders that emphasize clusters, such as spectral layout and
- * simulated annealing.
- *
- * @param {function} f comparator function for nodes.
- * @returns {pv.Layout.Arc} this.
- */
-pv.Layout.Arc.prototype.sort = function(f) {
- this.$sort = f;
- return this;
-};
-
-/** @private Populates the x, y and angle attributes on the nodes. */
-pv.Layout.Arc.prototype.buildImplied = function(s) {
- if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
-
- var nodes = s.nodes,
- orient = s.orient,
- sort = this.$sort,
- index = pv.range(nodes.length),
- w = s.width,
- h = s.height,
- r = Math.min(w, h) / 2;
-
- /* Sort the nodes. */
- if (sort) index.sort(function(a, b) { return sort(nodes[a], nodes[b]); });
-
- /** @private Returns the mid-angle, given the breadth. */
- function midAngle(b) {
- switch (orient) {
- case "top": return -Math.PI / 2;
- case "bottom": return Math.PI / 2;
- case "left": return Math.PI;
- case "right": return 0;
- case "radial": return (b - .25) * 2 * Math.PI;
- }
- }
-
- /** @private Returns the x-position, given the breadth. */
- function x(b) {
- switch (orient) {
- case "top":
- case "bottom": return b * w;
- case "left": return 0;
- case "right": return w;
- case "radial": return w / 2 + r * Math.cos(midAngle(b));
- }
- }
-
- /** @private Returns the y-position, given the breadth. */
- function y(b) {
- switch (orient) {
- case "top": return 0;
- case "bottom": return h;
- case "left":
- case "right": return b * h;
- case "radial": return h / 2 + r * Math.sin(midAngle(b));
- }
- }
-
- /* Populate the x, y and mid-angle attributes. */
- for (var i = 0; i < nodes.length; i++) {
- var n = nodes[index[i]], b = n.breadth = (i + .5) / nodes.length;
- n.x = x(b);
- n.y = y(b);
- n.midAngle = midAngle(b);
- }
-};
-
-/**
- * The orientation. The default orientation is "left", which means that nodes
- * will be positioned from left-to-right in the order they are specified in the
- * <tt>nodes</tt> property. The following orientations are supported:<ul>
- *
- * <li>left - left-to-right.
- * <li>right - right-to-left.
- * <li>top - top-to-bottom.
- * <li>bottom - bottom-to-top.
- * <li>radial - radially, starting at 12 o'clock and proceeding clockwise.</ul>
- *
- * @type string
- * @name pv.Layout.Arc.prototype.orient
- */
-
-/**
- * Whether this arc digram is directed (bidirectional); only applies to
- * non-radial orientations. By default, arc digrams are undirected, such that
- * all arcs appear on one side. If the arc digram is directed, then forward
- * links are drawn on the conventional side (the same as as undirected
- * links--right, left, bottom and top for left, right, top and bottom,
- * respectively), while reverse links are drawn on the opposite side.
- *
- * @type boolean
- * @name pv.Layout.Arc.prototype.directed
- */
-/**
- * Constructs a new, empty horizon layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a horizon layout, which is a variation of a single-series
- * area chart where the area is folded into multiple bands. Color is used to
- * encode band, allowing the size of the chart to be reduced significantly
- * without impeding readability. This layout algorithm is based on the work of
- * J. Heer, N. Kong and M. Agrawala in <a
- * href="http://hci.stanford.edu/publications/2009/heer-horizon-chi09.pdf">"Sizing
- * the Horizon: The Effects of Chart Size and Layering on the Graphical
- * Perception of Time Series Visualizations"</a>, CHI 2009.
- *
- * <p>This layout exports a single <tt>band</tt> mark prototype, which is
- * intended to be used with an area mark. The band mark is contained in a panel
- * which is replicated per band (and for negative/positive bands). For example,
- * to create a simple horizon graph given an array of numbers:
- *
- * <pre>vis.add(pv.Layout.Horizon)
- * .bands(n)
- * .band.add(pv.Area)
- * .data(data)
- * .left(function() this.index * 35)
- * .height(function(d) d * 40);</pre>
- *
- * The layout can be further customized by changing the number of bands, and
- * toggling whether the negative bands are mirrored or offset. (See the
- * above-referenced paper for guidance.)
- *
- * <p>The <tt>fillStyle</tt> of the area can be overridden, though typically it
- * is easier to customize the layout's behavior through the custom
- * <tt>backgroundStyle</tt>, <tt>positiveStyle</tt> and <tt>negativeStyle</tt>
- * properties. By default, the background is white, positive bands are blue, and
- * negative bands are red. For the most accurate presentation, use fully-opaque
- * colors of equal intensity for the negative and positive bands.
- *
- * @extends pv.Layout
- */
-pv.Layout.Horizon = function() {
- pv.Layout.call(this);
- var that = this,
- bands, // cached bands
- mode, // cached mode
- size, // cached height
- fill, // cached background style
- red, // cached negative color (ramp)
- blue, // cached positive color (ramp)
- buildImplied = this.buildImplied;
-
- /** @private Cache the layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
- bands = s.bands;
- mode = s.mode;
- size = Math.round((mode == "color" ? .5 : 1) * s.height);
- fill = s.backgroundStyle;
- red = pv.ramp(fill, s.negativeStyle).domain(0, bands);
- blue = pv.ramp(fill, s.positiveStyle).domain(0, bands);
- };
-
- var bands = new pv.Panel()
- .data(function() { return pv.range(bands * 2); })
- .overflow("hidden")
- .height(function() { return size; })
- .top(function(i) { return mode == "color" ? (i & 1) * size : 0; })
- .fillStyle(function(i) { return i ? null : fill; });
-
- /**
- * The band prototype. This prototype is intended to be used with an Area
- * mark to render the horizon bands.
- *
- * @type pv.Mark
- * @name pv.Layout.Horizon.prototype.band
- */
- this.band = new pv.Mark()
- .top(function(d, i) {
- return mode == "mirror" && i & 1
- ? (i + 1 >> 1) * size
- : null;
- })
- .bottom(function(d, i) {
- return mode == "mirror"
- ? (i & 1 ? null : (i + 1 >> 1) * -size)
- : ((i & 1 || -1) * (i + 1 >> 1) * size);
- })
- .fillStyle(function(d, i) {
- return (i & 1 ? red : blue)((i >> 1) + 1);
- });
-
- this.band.add = function(type) {
- return that.add(pv.Panel).extend(bands).add(type).extend(this);
- };
-};
-
-pv.Layout.Horizon.prototype = pv.extend(pv.Layout)
- .property("bands", Number)
- .property("mode", String)
- .property("backgroundStyle", pv.color)
- .property("positiveStyle", pv.color)
- .property("negativeStyle", pv.color);
-
-/**
- * Default properties for horizon layouts. By default, there are two bands, the
- * mode is "offset", the background style is "white", the positive style is
- * blue, negative style is red.
- *
- * @type pv.Layout.Horizon
- */
-pv.Layout.Horizon.prototype.defaults = new pv.Layout.Horizon()
- .extend(pv.Layout.prototype.defaults)
- .bands(2)
- .mode("offset")
- .backgroundStyle("white")
- .positiveStyle("#1f77b4")
- .negativeStyle("#d62728");
-
-/**
- * The horizon mode: offset, mirror, or color. The default is "offset".
- *
- * @type string
- * @name pv.Layout.Horizon.prototype.mode
- */
-
-/**
- * The number of bands. Must be at least one. The default value is two.
- *
- * @type number
- * @name pv.Layout.Horizon.prototype.bands
- */
-
-/**
- * The positive band color; if non-null, the interior of positive bands are
- * filled with the specified color. The default value of this property is blue.
- * For accurate blending, this color should be fully opaque.
- *
- * @type pv.Color
- * @name pv.Layout.Horizon.prototype.positiveStyle
- */
-
-/**
- * The negative band color; if non-null, the interior of negative bands are
- * filled with the specified color. The default value of this property is red.
- * For accurate blending, this color should be fully opaque.
- *
- * @type pv.Color
- * @name pv.Layout.Horizon.prototype.negativeStyle
- */
-
-/**
- * The background color. The panel background is filled with the specified
- * color, and the negative and positive bands are filled with an interpolated
- * color between this color and the respective band color. The default value of
- * this property is white. For accurate blending, this color should be fully
- * opaque.
- *
- * @type pv.Color
- * @name pv.Layout.Horizon.prototype.backgroundStyle
- */
-/**
- * Constructs a new, empty rollup network layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a network visualization using a node-link diagram where
- * nodes are rolled up along two dimensions. This implementation is based on the
- * "PivotGraph" designed by Martin Wattenberg:
- *
- * <blockquote>The method is designed for graphs that are "multivariate", i.e.,
- * where each node is associated with several attributes. Unlike visualizations
- * which emphasize global graph topology, PivotGraph uses a simple grid-based
- * approach to focus on the relationship between node attributes &amp;
- * connections.</blockquote>
- *
- * This layout requires two psuedo-properties to be specified, which assign node
- * positions along the two dimensions {@link #x} and {@link #y}, corresponding
- * to the left and top properties, respectively. Typically, these functions are
- * specified using an {@link pv.Scale.ordinal}. Nodes that share the same
- * position in <i>x</i> and <i>y</i> are "rolled up" into a meta-node, and
- * similarly links are aggregated between meta-nodes. For example, to construct
- * a rollup to analyze links by gender and affiliation, first define two ordinal
- * scales:
- *
- * <pre>var x = pv.Scale.ordinal(nodes, function(d) d.gender).split(0, w),
- * y = pv.Scale.ordinal(nodes, function(d) d.aff).split(0, h);</pre>
- *
- * Next, define the position psuedo-properties:
- *
- * <pre> .x(function(d) x(d.gender))
- * .y(function(d) y(d.aff))</pre>
- *
- * Linear and other quantitative scales can alternatively be used to position
- * the nodes along either dimension. Note, however, that the rollup requires
- * that the positions match exactly, and thus ordinal scales are recommended to
- * avoid precision errors.
- *
- * <p>Note that because this layout provides a visualization of the rolled up
- * graph, the data properties for the mark prototypes (<tt>node</tt>,
- * <tt>link</tt> and <tt>label</tt>) are different from most other network
- * layouts: they reference the rolled-up nodes and links, rather than the nodes
- * and links of the full network. The underlying nodes and links for each
- * rolled-up node and link can be accessed via the <tt>nodes</tt> and
- * <tt>links</tt> attributes, respectively. The aggregated link values for
- * rolled-up links can similarly be accessed via the <tt>linkValue</tt>
- * attribute.
- *
- * <p>For undirected networks, links are duplicated in both directions. For
- * directed networks, use <tt>directed(true)</tt>. The graph is assumed to be
- * undirected by default.
- *
- * @extends pv.Layout.Network
- * @see <a href="http://www.research.ibm.com/visual/papers/pivotgraph.pdf"
- * >"Visual Exploration of Multivariate Graphs"</a> by M. Wattenberg, CHI 2006.
- */
-pv.Layout.Rollup = function() {
- pv.Layout.Network.call(this);
- var that = this,
- nodes, // cached rollup nodes
- links, // cached rollup links
- buildImplied = that.buildImplied;
-
- /** @private Cache layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
- nodes = s.$rollup.nodes;
- links = s.$rollup.links;
- };
-
- /* Render rollup nodes. */
- this.node
- .data(function() { return nodes; })
- .size(function(d) { return d.nodes.length * 20; });
-
- /* Render rollup links. */
- this.link
- .interpolate("polar")
- .eccentricity(.8);
-
- this.link.add = function(type) {
- return that.add(pv.Panel)
- .data(function() { return links; })
- .add(type)
- .extend(this);
- };
-};
-
-pv.Layout.Rollup.prototype = pv.extend(pv.Layout.Network)
- .property("directed", Boolean);
-
-/**
- * Whether the underlying network is directed. By default, the graph is assumed
- * to be undirected, and links are rendered in both directions. If the network
- * is directed, then forward links are drawn above the diagonal, while reverse
- * links are drawn below.
- *
- * @type boolean
- * @name pv.Layout.Rollup.prototype.directed
- */
-
-/**
- * Specifies the <i>x</i>-position function used to rollup nodes. The rolled up
- * nodes are positioned horizontally using the return values from the given
- * function. Typically the function is specified as an ordinal scale. For
- * single-dimension rollups, a constant value can be specified.
- *
- * @param {function} f the <i>x</i>-position function.
- * @returns {pv.Layout.Rollup} this.
- * @see pv.Scale.ordinal
- */
-pv.Layout.Rollup.prototype.x = function(f) {
- this.$x = pv.functor(f);
- return this;
-};
-
-/**
- * Specifies the <i>y</i>-position function used to rollup nodes. The rolled up
- * nodes are positioned vertically using the return values from the given
- * function. Typically the function is specified as an ordinal scale. For
- * single-dimension rollups, a constant value can be specified.
- *
- * @param {function} f the <i>y</i>-position function.
- * @returns {pv.Layout.Rollup} this.
- * @see pv.Scale.ordinal
- */
-pv.Layout.Rollup.prototype.y = function(f) {
- this.$y = pv.functor(f);
- return this;
-};
-
-/** @private */
-pv.Layout.Rollup.prototype.buildImplied = function(s) {
- if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
-
- var nodes = s.nodes,
- links = s.links,
- directed = s.directed,
- n = nodes.length,
- x = [],
- y = [],
- rnindex = 0,
- rnodes = {},
- rlinks = {};
-
- /** @private */
- function id(i) {
- return x[i] + "," + y[i];
- }
-
- /* Iterate over the data, evaluating the x and y functions. */
- var stack = pv.Mark.stack, o = {parent: this};
- stack.unshift(null);
- for (var i = 0; i < n; i++) {
- o.index = i;
- stack[0] = nodes[i];
- x[i] = this.$x.apply(o, stack);
- y[i] = this.$y.apply(o, stack);
- }
- stack.shift();
-
- /* Compute rollup nodes. */
- for (var i = 0; i < nodes.length; i++) {
- var nodeId = id(i),
- rn = rnodes[nodeId];
- if (!rn) {
- rn = rnodes[nodeId] = pv.extend(nodes[i]);
- rn.index = rnindex++;
- rn.x = x[i];
- rn.y = y[i];
- rn.nodes = [];
- }
- rn.nodes.push(nodes[i]);
- }
-
- /* Compute rollup links. */
- for (var i = 0; i < links.length; i++) {
- var source = links[i].sourceNode,
- target = links[i].targetNode,
- rsource = rnodes[id(source.index)],
- rtarget = rnodes[id(target.index)],
- reverse = !directed && rsource.index > rtarget.index,
- linkId = reverse
- ? rtarget.index + "," + rsource.index
- : rsource.index + "," + rtarget.index,
- rl = rlinks[linkId];
- if (!rl) {
- rl = rlinks[linkId] = {
- sourceNode: rsource,
- targetNode: rtarget,
- linkValue: 0,
- links: []
- };
- }
- rl.links.push(links[i]);
- rl.linkValue += links[i].linkValue;
- }
-
- /* Export the rolled up nodes and links to the scene. */
- s.$rollup = {
- nodes: pv.values(rnodes),
- links: pv.values(rlinks)
- };
-};
-/**
- * Constructs a new, empty matrix network layout. Layouts are not typically
- * constructed directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class Implements a network visualization using a matrix view. This is, in
- * effect, a visualization of the graph's <i>adjacency matrix</i>: the cell at
- * row <i>i</i>, column <i>j</i>, corresponds to the link from node <i>i</i> to
- * node <i>j</i>. The fill color of each cell is binary by default, and
- * corresponds to whether a link exists between the two nodes. If the underlying
- * graph has links with variable values, the <tt>fillStyle</tt> property can be
- * substited to use an appropriate color function, such as {@link pv.ramp}.
- *
- * <p>For undirected networks, the matrix is symmetric around the diagonal. For
- * directed networks, links in opposite directions can be rendered on opposite
- * sides of the diagonal using <tt>directed(true)</tt>. The graph is assumed to
- * be undirected by default.
- *
- * <p>The mark prototypes for this network layout are slightly different than
- * other implementations:<ul>
- *
- * <li><tt>node</tt> - unsupported; undefined. No mark is needed to visualize
- * nodes directly, as the nodes are implicit in the location (rows and columns)
- * of the links.
- *
- * <p><li><tt>link</tt> - for rendering links; typically a {@link pv.Bar}. The
- * link mark is added directly to the layout, with the data property defined as
- * all possible pairs of nodes. Each pair is represented as a
- * {@link pv.Network.Layout.Link}, though the <tt>linkValue</tt> attribute may
- * be 0 if no link exists in the graph.
- *
- * <p><li><tt>label</tt> - for rendering node labels; typically a
- * {@link pv.Label}. The label mark is added directly to the layout, with the
- * data property defined via the layout's <tt>nodes</tt> property; note,
- * however, that the nodes are duplicated so as to provide a label across the
- * top and down the side. Properties such as <tt>strokeStyle</tt> and
- * <tt>fillStyle</tt> can be overridden to compute properties from node data
- * dynamically.
- *
- * </ul>For more details on how to use this layout, see
- * {@link pv.Layout.Network}.
- *
- * @extends pv.Layout.Network
- */
-pv.Layout.Matrix = function() {
- pv.Layout.Network.call(this);
- var that = this,
- n, // cached matrix size
- dx, // cached cell width
- dy, // cached cell height
- labels, // cached labels (array of strings)
- pairs, // cached pairs (array of links)
- buildImplied = that.buildImplied;
-
- /** @private Cache layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, s);
- n = s.nodes.length;
- dx = s.width / n;
- dy = s.height / n;
- labels = s.$matrix.labels;
- pairs = s.$matrix.pairs;
- };
-
- /* Links are all pairs of nodes. */
- this.link
- .data(function() { return pairs; })
- .left(function() { return dx * (this.index % n); })
- .top(function() { return dy * Math.floor(this.index / n); })
- .width(function() { return dx; })
- .height(function() { return dy; })
- .lineWidth(1.5)
- .strokeStyle("#fff")
- .fillStyle(function(l) { return l.linkValue ? "#555" : "#eee"; })
- .parent = this;
-
- /* No special add for links! */
- delete this.link.add;
-
- /* Labels are duplicated for top & left. */
- this.label
- .data(function() { return labels; })
- .left(function() { return this.index & 1 ? dx * ((this.index >> 1) + .5) : 0; })
- .top(function() { return this.index & 1 ? 0 : dy * ((this.index >> 1) + .5); })
- .textMargin(4)
- .textAlign(function() { return this.index & 1 ? "left" : "right"; })
- .textAngle(function() { return this.index & 1 ? -Math.PI / 2 : 0; });
-
- /* The node mark is unused. */
- delete this.node;
-};
-
-pv.Layout.Matrix.prototype = pv.extend(pv.Layout.Network)
- .property("directed", Boolean);
-
-/**
- * Whether this matrix visualization is directed (bidirectional). By default,
- * the graph is assumed to be undirected, such that the visualization is
- * symmetric across the matrix diagonal. If the network is directed, then
- * forward links are drawn above the diagonal, while reverse links are drawn
- * below.
- *
- * @type boolean
- * @name pv.Layout.Matrix.prototype.directed
- */
-
-/**
- * Specifies an optional sort function. The sort function follows the same
- * comparator contract required by {@link pv.Dom.Node#sort}. Specifying a sort
- * function provides an alternative to sort the nodes as they are specified by
- * the <tt>nodes</tt> property; the main advantage of doing this is that the
- * comparator function can access implicit fields populated by the network
- * layout, such as the <tt>linkDegree</tt>.
- *
- * <p>Note that matrix visualizations are particularly sensitive to order. This
- * is referred to as the seriation problem, and many different techniques exist
- * to find good node orders that emphasize clusters, such as spectral layout and
- * simulated annealing.
- *
- * @param {function} f comparator function for nodes.
- * @returns {pv.Layout.Matrix} this.
- */
-pv.Layout.Matrix.prototype.sort = function(f) {
- this.$sort = f;
- return this;
-};
-
-/** @private */
-pv.Layout.Matrix.prototype.buildImplied = function(s) {
- if (pv.Layout.Network.prototype.buildImplied.call(this, s)) return;
-
- var nodes = s.nodes,
- links = s.links,
- sort = this.$sort,
- n = nodes.length,
- index = pv.range(n),
- labels = [],
- pairs = [],
- map = {};
-
- s.$matrix = {labels: labels, pairs: pairs};
-
- /* Sort the nodes. */
- if (sort) index.sort(function(a, b) { return sort(nodes[a], nodes[b]); });
-
- /* Create pairs. */
- for (var i = 0; i < n; i++) {
- for (var j = 0; j < n; j++) {
- var a = index[i],
- b = index[j],
- p = {
- row: i,
- col: j,
- sourceNode: nodes[a],
- targetNode: nodes[b],
- linkValue: 0
- };
- pairs.push(map[a + "." + b] = p);
- }
- }
-
- /* Create labels. */
- for (var i = 0; i < n; i++) {
- var a = index[i];
- labels.push(nodes[a], nodes[a]);
- }
-
- /* Accumulate link values. */
- for (var i = 0; i < links.length; i++) {
- var l = links[i],
- source = l.sourceNode.index,
- target = l.targetNode.index,
- value = l.linkValue;
- map[source + "." + target].linkValue += value;
- if (!s.directed) map[target + "." + source].linkValue += value;
- }
-};
-// ranges (bad, satisfactory, good)
-// measures (actual, forecast)
-// markers (previous, goal)
-
-/*
- * Chart design based on the recommendations of Stephen Few. Implementation
- * based on the work of Clint Ivy, Jamie Love, and Jason Davies.
- * http://projects.instantcognition.com/protovis/bulletchart/
- */
-
-/**
- * Constructs a new, empty bullet layout. Layouts are not typically constructed
- * directly; instead, they are added to an existing panel via
- * {@link pv.Mark#add}.
- *
- * @class
- * @extends pv.Layout
- */
-pv.Layout.Bullet = function() {
- pv.Layout.call(this);
- var that = this,
- buildImplied = that.buildImplied,
- scale = that.x = pv.Scale.linear(),
- orient,
- horizontal,
- rangeColor,
- measureColor,
- x;
-
- /** @private Cache layout state to optimize properties. */
- this.buildImplied = function(s) {
- buildImplied.call(this, x = s);
- orient = s.orient;
- horizontal = /^left|right$/.test(orient);
- rangeColor = pv.ramp("#bbb", "#eee")
- .domain(0, Math.max(1, x.ranges.length - 1));
- measureColor = pv.ramp("steelblue", "lightsteelblue")
- .domain(0, Math.max(1, x.measures.length - 1));
- };
-
- /**
- * The range prototype.
- *
- * @type pv.Mark
- * @name pv.Layout.Bullet.prototype.range
- */
- (this.range = new pv.Mark())
- .data(function() { return x.ranges; })
- .reverse(true)
- .left(function() { return orient == "left" ? 0 : null; })
- .top(function() { return orient == "top" ? 0 : null; })
- .right(function() { return orient == "right" ? 0 : null; })
- .bottom(function() { return orient == "bottom" ? 0 : null; })
- .width(function(d) { return horizontal ? scale(d) : null; })
- .height(function(d) { return horizontal ? null : scale(d); })
- .fillStyle(function() { return rangeColor(this.index); })
- .antialias(false)
- .parent = that;
-
- /**
- * The measure prototype.
- *
- * @type pv.Mark
- * @name pv.Layout.Bullet.prototype.measure
- */
- (this.measure = new pv.Mark())
- .extend(this.range)
- .data(function() { return x.measures; })
- .left(function() { return orient == "left" ? 0 : horizontal ? null : this.parent.width() / 3.25; })
- .top(function() { return orient == "top" ? 0 : horizontal ? this.parent.height() / 3.25 : null; })
- .right(function() { return orient == "right" ? 0 : horizontal ? null : this.parent.width() / 3.25; })
- .bottom(function() { return orient == "bottom" ? 0 : horizontal ? this.parent.height() / 3.25 : null; })
- .fillStyle(function() { return measureColor(this.index); })
- .parent = that;
-
- /**
- * The marker prototype.
- *
- * @type pv.Mark
- * @name pv.Layout.Bullet.prototype.marker
- */
- (this.marker = new pv.Mark())
- .data(function() { return x.markers; })
- .left(function(d) { return orient == "left" ? scale(d) : horizontal ? null : this.parent.width() / 2; })
- .top(function(d) { return orient == "top" ? scale(d) : horizontal ? this.parent.height() / 2 : null; })
- .right(function(d) { return orient == "right" ? scale(d) : null; })
- .bottom(function(d) { return orient == "bottom" ? scale(d) : null; })
- .strokeStyle("black")
- .shape("bar")
- .angle(function() { return horizontal ? 0 : Math.PI / 2; })
- .parent = that;
-
- (this.tick = new pv.Mark())
- .data(function() { return scale.ticks(7); })
- .left(function(d) { return orient == "left" ? scale(d) : null; })
- .top(function(d) { return orient == "top" ? scale(d) : null; })
- .right(function(d) { return orient == "right" ? scale(d) : horizontal ? null : -6; })
- .bottom(function(d) { return orient == "bottom" ? scale(d) : horizontal ? -8 : null; })
- .height(function() { return horizontal ? 6 : null; })
- .width(function() { return horizontal ? null : 6; })
- .parent = that;
-};
-
-pv.Layout.Bullet.prototype = pv.extend(pv.Layout)
- .property("orient", String) // left, right, top, bottom
- .property("ranges")
- .property("markers")
- .property("measures")
- .property("maximum", Number);
-
-/**
- * Default properties for bullet layouts.
- *
- * @type pv.Layout.Bullet
- */
-pv.Layout.Bullet.prototype.defaults = new pv.Layout.Bullet()
- .extend(pv.Layout.prototype.defaults)
- .orient("left")
- .ranges([])
- .markers([])
- .measures([]);
-
-/**
- * The orientation.
- *
- * @type string
- * @name pv.Layout.Bullet.prototype.orient
- */
-
-/**
- * The array of range values.
- *
- * @type array
- * @name pv.Layout.Bullet.prototype.ranges
- */
-
-/**
- * The array of marker values.
- *
- * @type array
- * @name pv.Layout.Bullet.prototype.markers
- */
-
-/**
- * The array of measure values.
- *
- * @type array
- * @name pv.Layout.Bullet.prototype.measures
- */
-
-/**
- * Optional; the maximum range value.
- *
- * @type number
- * @name pv.Layout.Bullet.prototype.maximum
- */
-
-/** @private */
-pv.Layout.Bullet.prototype.buildImplied = function(s) {
- pv.Layout.prototype.buildImplied.call(this, s);
- var size = this.parent[/^left|right$/.test(s.orient) ? "width" : "height"]();
- s.maximum = s.maximum || pv.max([].concat(s.ranges, s.markers, s.measures));
- this.x.domain(0, s.maximum).range(0, size);
-};
-/**
- * Abstract; see an implementing class for details.
- *
- * @class Represents a reusable interaction; applies an interactive behavior to
- * a given mark. Behaviors are themselves functions designed to be used as event
- * handlers. For example, to add pan and zoom support to any panel, say:
- *
- * <pre> .event("mousedown", pv.Behavior.pan())
- * .event("mousewheel", pv.Behavior.zoom())</pre>
- *
- * The behavior should be registered on the event that triggers the start of the
- * behavior. Typically, the behavior will take care of registering for any
- * additional events that are necessary. For example, dragging starts on
- * mousedown, while the drag behavior automatically listens for mousemove and
- * mouseup events on the window. By listening to the window, the behavior can
- * continue to receive mouse events even if the mouse briefly leaves the mark
- * being dragged, or even the root panel.
- *
- * <p>Each behavior implementation has specific requirements as to which events
- * it supports, and how it should be used. For example, the drag behavior
- * requires that the data associated with the mark be an object with <tt>x</tt>
- * and <tt>y</tt> attributes, such as a {@link pv.Vector}, storing the mark's
- * position. See an implementing class for details.
- *
- * @see pv.Behavior.drag
- * @see pv.Behavior.pan
- * @see pv.Behavior.point
- * @see pv.Behavior.select
- * @see pv.Behavior.zoom
- * @extends function
- */
-pv.Behavior = {};
-/**
- * Returns a new drag behavior to be registered on mousedown events.
- *
- * @class Implements interactive dragging starting with mousedown events.
- * Register this behavior on marks that should be draggable by the user, such as
- * the selected region for brushing and linking. This behavior can be used in
- * tandom with {@link pv.Behavior.select} to allow the selected region to be
- * dragged interactively.
- *
- * <p>After the initial mousedown event is triggered, this behavior listens for
- * mousemove and mouseup events on the window. This allows dragging to continue
- * even if the mouse temporarily leaves the mark that is being dragged, or even
- * the root panel.
- *
- * <p>This behavior requires that the data associated with the mark being
- * dragged have <tt>x</tt> and <tt>y</tt> attributes that correspond to the
- * mark's location in pixels. The mark's positional properties are not set
- * directly by this behavior; instead, the positional properties should be
- * defined as:
- *
- * <pre> .left(function(d) d.x)
- * .top(function(d) d.y)</pre>
- *
- * Thus, the behavior does not move the mark directly, but instead updates the
- * mark position by updating the underlying data. Note that if the positional
- * properties are defined with bottom and right (rather than top and left), the
- * drag behavior will be inverted, which will confuse users!
- *
- * <p>The drag behavior is bounded by the parent panel; the <tt>x</tt> and
- * <tt>y</tt> attributes are clamped such that the mark being dragged does not
- * extend outside the enclosing panel's bounds. To facilitate this, the drag
- * behavior also queries for <tt>dx</tt> and <tt>dy</tt> attributes on the
- * underlying data, to determine the dimensions of the bar being dragged. For
- * non-rectangular marks, the drag behavior simply treats the mark as a point,
- * which means that only the mark's center is bounded.
- *
- * <p>The mark being dragged is automatically re-rendered for each mouse event
- * as part of the drag operation. In addition, a <tt>fix</tt> attribute is
- * populated on the mark, which allows visual feedback for dragging. For
- * example, to change the mark fill color while dragging:
- *
- * <pre> .fillStyle(function(d) d.fix ? "#ff7f0e" : "#aec7e8")</pre>
- *
- * In some cases, such as with network layouts, dragging the mark may cause
- * related marks to change, in which case additional marks may also need to be
- * rendered. This can be accomplished by listening for the drag
- * psuedo-events:<ul>
- *
- * <li>dragstart (on mousedown)
- * <li>drag (on mousemove)
- * <li>dragend (on mouseup)
- *
- * </ul>For example, to render the parent panel while dragging, thus
- * re-rendering all sibling marks:
- *
- * <pre> .event("mousedown", pv.Behavior.drag())
- * .event("drag", function() this.parent)</pre>
- *
- * This behavior may be enhanced in the future to allow more flexible
- * configuration of drag behavior.
- *
- * @extends pv.Behavior
- * @see pv.Behavior
- * @see pv.Behavior.select
- * @see pv.Layout.force
- */
-pv.Behavior.drag = function() {
- var scene, // scene context
- index, // scene context
- p, // particle being dragged
- v1, // initial mouse-particle offset
- max;
-
- /** @private */
- function mousedown(d) {
- index = this.index;
- scene = this.scene;
- var m = this.mouse();
- v1 = ((p = d).fix = pv.vector(d.x, d.y)).minus(m);
- max = {
- x: this.parent.width() - (d.dx || 0),
- y: this.parent.height() - (d.dy || 0)
- };
- scene.mark.context(scene, index, function() { this.render(); });
- pv.Mark.dispatch("dragstart", scene, index);
- }
-
- /** @private */
- function mousemove() {
- if (!scene) return;
- scene.mark.context(scene, index, function() {
- var m = this.mouse();
- p.x = p.fix.x = Math.max(0, Math.min(v1.x + m.x, max.x));
- p.y = p.fix.y = Math.max(0, Math.min(v1.y + m.y, max.y));
- this.render();
- });
- pv.Mark.dispatch("drag", scene, index);
- }
-
- /** @private */
- function mouseup() {
- if (!scene) return;
- p.fix = null;
- scene.mark.context(scene, index, function() { this.render(); });
- pv.Mark.dispatch("dragend", scene, index);
- scene = null;
- }
-
- pv.listen(window, "mousemove", mousemove);
- pv.listen(window, "mouseup", mouseup);
- return mousedown;
-};
-/**
- * Returns a new point behavior to be registered on mousemove events.
- *
- * @class Implements interactive fuzzy pointing, identifying marks that are in
- * close proximity to the mouse cursor. This behavior is an alternative to the
- * native mouseover and mouseout events, improving usability. Rather than
- * requiring the user to mouseover a mark exactly, the mouse simply needs to
- * move near the given mark and a "point" event is triggered. In addition, if
- * multiple marks overlap, the point behavior can be used to identify the mark
- * instance closest to the cursor, as opposed to the one that is rendered on
- * top.
- *
- * <p>The point behavior can also identify the closest mark instance for marks
- * that produce a continuous graphic primitive. The point behavior can thus be
- * used to provide details-on-demand for both discrete marks (such as dots and
- * bars), as well as continuous marks (such as lines and areas).
- *
- * <p>This behavior is implemented by finding the closest mark instance to the
- * mouse cursor on every mousemove event. If this closest mark is within the
- * given radius threshold, which defaults to 30 pixels, a "point" psuedo-event
- * is dispatched to the given mark instance. If any mark were previously
- * pointed, it would receive a corresponding "unpoint" event. These two
- * psuedo-event types correspond to the native "mouseover" and "mouseout"
- * events, respectively. To increase the radius at which the point behavior can
- * be applied, specify an appropriate threshold to the constructor, up to
- * <tt>Infinity</tt>.
- *
- * <p>By default, the standard Cartesian distance is computed. However, with
- * some visualizations it is desirable to consider only a single dimension, such
- * as the <i>x</i>-dimension for an independent variable. In this case, the
- * collapse parameter can be set to collapse the <i>y</i> dimension:
- *
- * <pre> .event("mousemove", pv.Behavior.point(Infinity).collapse("y"))</pre>
- *
- * <p>This behavior only listens to mousemove events on the assigned panel,
- * which is typically the root panel. The behavior will search recursively for
- * descendant marks to point. If the mouse leaves the assigned panel, the
- * behavior no longer receives mousemove events; an unpoint psuedo-event is
- * automatically dispatched to unpoint any pointed mark. Marks may be re-pointed
- * when the mouse reenters the panel.
- *
- * <p>Panels have transparent fill styles by default; this means that panels may
- * not receive the initial mousemove event to start pointing. To fix this
- * problem, either given the panel a visible fill style (such as "white"), or
- * set the <tt>events</tt> property to "all" such that the panel receives events
- * despite its transparent fill.
- *
- * <p>Note: this behavior does not currently wedge marks.
- *
- * @extends pv.Behavior
- *
- * @param {number} [r] the fuzzy radius threshold in pixels
- * @see <a href="http://www.tovigrossman.com/papers/chi2005bubblecursor.pdf"
- * >"The Bubble Cursor: Enhancing Target Acquisition by Dynamic Resizing of the
- * Cursor's Activation Area"</a> by T. Grossman &amp; R. Balakrishnan, CHI 2005.
- */
-pv.Behavior.point = function(r) {
- var unpoint, // the current pointer target
- collapse = null, // dimensions to collapse
- kx = 1, // x-dimension cost scale
- ky = 1, // y-dimension cost scale
- r2 = arguments.length ? r * r : 900; // fuzzy radius
-
- /** @private Search for the mark closest to the mouse. */
- function search(scene, index) {
- var s = scene[index],
- point = {cost: Infinity};
- for (var i = 0, n = s.visible && s.children.length; i < n; i++) {
- var child = s.children[i], mark = child.mark, p;
- if (mark.type == "panel") {
- mark.scene = child;
- for (var j = 0, m = child.length; j < m; j++) {
- mark.index = j;
- p = search(child, j);
- if (p.cost < point.cost) point = p;
- }
- delete mark.scene;
- delete mark.index;
- } else if (mark.$handlers.point) {
- var v = mark.mouse();
- for (var j = 0, m = child.length; j < m; j++) {
- var c = child[j],
- dx = v.x - c.left - (c.width || 0) / 2,
- dy = v.y - c.top - (c.height || 0) / 2,
- dd = kx * dx * dx + ky * dy * dy;
- if (dd < point.cost) {
- point.distance = dx * dx + dy * dy;
- point.cost = dd;
- point.scene = child;
- point.index = j;
- }
- }
- }
- }
- return point;
- }
-
- /** @private */
- function mousemove() {
- /* If the closest mark is far away, clear the current target. */
- var point = search(this.scene, this.index);
- if ((point.cost == Infinity) || (point.distance > r2)) point = null;
-
- /* Unpoint the old target, if it's not the new target. */
- if (unpoint) {
- if (point
- && (unpoint.scene == point.scene)
- && (unpoint.index == point.index)) return;
- pv.Mark.dispatch("unpoint", unpoint.scene, unpoint.index);
- }
-
- /* Point the new target, if there is one. */
- if (unpoint = point) {
- pv.Mark.dispatch("point", point.scene, point.index);
-
- /* Unpoint when the mouse leaves the root panel. */
- pv.listen(this.root.canvas(), "mouseout", mouseout);
- }
- }
-
- /** @private */
- function mouseout(e) {
- if (unpoint && !pv.ancestor(this, e.relatedTarget)) {
- pv.Mark.dispatch("unpoint", unpoint.scene, unpoint.index);
- unpoint = null;
- }
- }
-
- /**
- * Sets or gets the collapse parameter. By default, the standard Cartesian
- * distance is computed. However, with some visualizations it is desirable to
- * consider only a single dimension, such as the <i>x</i>-dimension for an
- * independent variable. In this case, the collapse parameter can be set to
- * collapse the <i>y</i> dimension:
- *
- * <pre> .event("mousemove", pv.Behavior.point(Infinity).collapse("y"))</pre>
- *
- * @function
- * @returns {pv.Behavior.point} this, or the current collapse parameter.
- * @name pv.Behavior.point.prototype.collapse
- * @param {string} [x] the new collapse parameter
- */
- mousemove.collapse = function(x) {
- if (arguments.length) {
- collapse = String(x);
- switch (collapse) {
- case "y": kx = 1; ky = 0; break;
- case "x": kx = 0; ky = 1; break;
- default: kx = 1; ky = 1; break;
- }
- return mousemove;
- }
- return collapse;
- };
-
- return mousemove;
-};
-/**
- * Returns a new select behavior to be registered on mousedown events.
- *
- * @class Implements interactive selecting starting with mousedown events.
- * Register this behavior on panels that should be selectable by the user, such
- * for brushing and linking. This behavior can be used in tandom with
- * {@link pv.Behavior.drag} to allow the selected region to be dragged
- * interactively.
- *
- * <p>After the initial mousedown event is triggered, this behavior listens for
- * mousemove and mouseup events on the window. This allows selecting to continue
- * even if the mouse temporarily leaves the assigned panel, or even the root
- * panel.
- *
- * <p>This behavior requires that the data associated with the mark being
- * dragged have <tt>x</tt>, <tt>y</tt>, <tt>dx</tt> and <tt>dy</tt> attributes
- * that correspond to the mark's location and dimensions in pixels. The mark's
- * positional properties are not set directly by this behavior; instead, the
- * positional properties should be defined as:
- *
- * <pre> .left(function(d) d.x)
- * .top(function(d) d.y)
- * .width(function(d) d.dx)
- * .height(function(d) d.dy)</pre>
- *
- * Thus, the behavior does not resize the mark directly, but instead updates the
- * selection by updating the assigned panel's underlying data. Note that if the
- * positional properties are defined with bottom and right (rather than top and
- * left), the drag behavior will be inverted, which will confuse users!
- *
- * <p>The select behavior is bounded by the assigned panel; the positional
- * attributes are clamped such that the selection does not extend outside the
- * panel's bounds.
- *
- * <p>The panel being selected is automatically re-rendered for each mouse event
- * as part of the drag operation. This behavior may be enhanced in the future to
- * allow more flexible configuration of select behavior. In some cases, such as
- * with parallel coordinates, making a selection may cause related marks to
- * change, in which case additional marks may also need to be rendered. This can
- * be accomplished by listening for the select psuedo-events:<ul>
- *
- * <li>selectstart (on mousedown)
- * <li>select (on mousemove)
- * <li>selectend (on mouseup)
- *
- * </ul>For example, to render the parent panel while selecting, thus
- * re-rendering all sibling marks:
- *
- * <pre> .event("mousedown", pv.Behavior.drag())
- * .event("select", function() this.parent)</pre>
- *
- * This behavior may be enhanced in the future to allow more flexible
- * configuration of the selection behavior.
- *
- * @extends pv.Behavior
- * @see pv.Behavior.drag
- */
-pv.Behavior.select = function() {
- var scene, // scene context
- index, // scene context
- r, // region being selected
- m1; // initial mouse position
-
- /** @private */
- function mousedown(d) {
- index = this.index;
- scene = this.scene;
- m1 = this.mouse();
- r = d;
- r.x = m1.x;
- r.y = m1.y;
- r.dx = r.dy = 0;
- pv.Mark.dispatch("selectstart", scene, index);
- }
-
- /** @private */
- function mousemove() {
- if (!scene) return;
- scene.mark.context(scene, index, function() {
- var m2 = this.mouse();
- r.x = Math.max(0, Math.min(m1.x, m2.x));
- r.y = Math.max(0, Math.min(m1.y, m2.y));
- r.dx = Math.min(this.width(), Math.max(m2.x, m1.x)) - r.x;
- r.dy = Math.min(this.height(), Math.max(m2.y, m1.y)) - r.y;
- this.render();
- });
- pv.Mark.dispatch("select", scene, index);
- }
-
- /** @private */
- function mouseup() {
- if (!scene) return;
- pv.Mark.dispatch("selectend", scene, index);
- scene = null;
- }
-
- pv.listen(window, "mousemove", mousemove);
- pv.listen(window, "mouseup", mouseup);
- return mousedown;
-};
-/**
- * Returns a new resize behavior to be registered on mousedown events.
- *
- * @class Implements interactive resizing of a selection starting with mousedown
- * events. Register this behavior on selection handles that should be resizeable
- * by the user, such for brushing and linking. This behavior can be used in
- * tandom with {@link pv.Behavior.select} and {@link pv.Behavior.drag} to allow
- * the selected region to be selected and dragged interactively.
- *
- * <p>After the initial mousedown event is triggered, this behavior listens for
- * mousemove and mouseup events on the window. This allows resizing to continue
- * even if the mouse temporarily leaves the assigned panel, or even the root
- * panel.
- *
- * <p>This behavior requires that the data associated with the mark being
- * resized have <tt>x</tt>, <tt>y</tt>, <tt>dx</tt> and <tt>dy</tt> attributes
- * that correspond to the mark's location and dimensions in pixels. The mark's
- * positional properties are not set directly by this behavior; instead, the
- * positional properties should be defined as:
- *
- * <pre> .left(function(d) d.x)
- * .top(function(d) d.y)
- * .width(function(d) d.dx)
- * .height(function(d) d.dy)</pre>
- *
- * Thus, the behavior does not resize the mark directly, but instead updates the
- * size by updating the assigned panel's underlying data. Note that if the
- * positional properties are defined with bottom and right (rather than top and
- * left), the resize behavior will be inverted, which will confuse users!
- *
- * <p>The resize behavior is bounded by the assigned mark's enclosing panel; the
- * positional attributes are clamped such that the selection does not extend
- * outside the panel's bounds.
- *
- * <p>The mark being resized is automatically re-rendered for each mouse event
- * as part of the resize operation. This behavior may be enhanced in the future
- * to allow more flexible configuration. In some cases, such as with parallel
- * coordinates, resizing the selection may cause related marks to change, in
- * which case additional marks may also need to be rendered. This can be
- * accomplished by listening for the select psuedo-events:<ul>
- *
- * <li>resizestart (on mousedown)
- * <li>resize (on mousemove)
- * <li>resizeend (on mouseup)
- *
- * </ul>For example, to render the parent panel while resizing, thus
- * re-rendering all sibling marks:
- *
- * <pre> .event("mousedown", pv.Behavior.resize("left"))
- * .event("resize", function() this.parent)</pre>
- *
- * This behavior may be enhanced in the future to allow more flexible
- * configuration of the selection behavior.
- *
- * @extends pv.Behavior
- * @see pv.Behavior.select
- * @see pv.Behavior.drag
- */
-pv.Behavior.resize = function(side) {
- var scene, // scene context
- index, // scene context
- r, // region being selected
- m1; // initial mouse position
-
- /** @private */
- function mousedown(d) {
- index = this.index;
- scene = this.scene;
- m1 = this.mouse();
- r = d;
- switch (side) {
- case "left": m1.x = r.x + r.dx; break;
- case "right": m1.x = r.x; break;
- case "top": m1.y = r.y + r.dy; break;
- case "bottom": m1.y = r.y; break;
- }
- pv.Mark.dispatch("resizestart", scene, index);
- }
-
- /** @private */
- function mousemove() {
- if (!scene) return;
- scene.mark.context(scene, index, function() {
- var m2 = this.mouse();
- r.x = Math.max(0, Math.min(m1.x, m2.x));
- r.y = Math.max(0, Math.min(m1.y, m2.y));
- r.dx = Math.min(this.parent.width(), Math.max(m2.x, m1.x)) - r.x;
- r.dy = Math.min(this.parent.height(), Math.max(m2.y, m1.y)) - r.y;
- this.render();
- });
- pv.Mark.dispatch("resize", scene, index);
- }
-
- /** @private */
- function mouseup() {
- if (!scene) return;
- pv.Mark.dispatch("resizeend", scene, index);
- scene = null;
- }
-
- pv.listen(window, "mousemove", mousemove);
- pv.listen(window, "mouseup", mouseup);
- return mousedown;
-};
-/**
- * Returns a new pan behavior to be registered on mousedown events.
- *
- * @class Implements interactive panning starting with mousedown events.
- * Register this behavior on panels to allow panning. This behavior can be used
- * in tandem with {@link pv.Behavior.zoom} to allow both panning and zooming:
- *
- * <pre> .event("mousedown", pv.Behavior.pan())
- * .event("mousewheel", pv.Behavior.zoom())</pre>
- *
- * The pan behavior currently supports only mouse events; support for keyboard
- * shortcuts to improve accessibility may be added in the future.
- *
- * <p>After the initial mousedown event is triggered, this behavior listens for
- * mousemove and mouseup events on the window. This allows panning to continue
- * even if the mouse temporarily leaves the panel that is being panned, or even
- * the root panel.
- *
- * <p>The implementation of this behavior relies on the panel's
- * <tt>transform</tt> property, which specifies a matrix transformation that is
- * applied to child marks. Note that the transform property only affects the
- * panel's children, but not the panel itself; therefore the panel's fill and
- * stroke will not change when the contents are panned.
- *
- * <p>Panels have transparent fill styles by default; this means that panels may
- * not receive the initial mousedown event to start panning. To fix this
- * problem, either given the panel a visible fill style (such as "white"), or
- * set the <tt>events</tt> property to "all" such that the panel receives events
- * despite its transparent fill.
- *
- * <p>The pan behavior has optional support for bounding. If enabled, the user
- * will not be able to pan the panel outside of the initial bounds. This feature
- * is designed to work in conjunction with the zoom behavior; otherwise,
- * bounding the panel effectively disables all panning.
- *
- * @extends pv.Behavior
- * @see pv.Behavior.zoom
- * @see pv.Panel#transform
- */
-pv.Behavior.pan = function() {
- var scene, // scene context
- index, // scene context
- m1, // transformation matrix at the start of panning
- v1, // mouse location at the start of panning
- k, // inverse scale
- bound; // whether to bound to the panel
-
- /** @private */
- function mousedown() {
- index = this.index;
- scene = this.scene;
- v1 = pv.vector(pv.event.pageX, pv.event.pageY);
- m1 = this.transform();
- k = 1 / (m1.k * this.scale);
- if (bound) {
- bound = {
- x: (1 - m1.k) * this.width(),
- y: (1 - m1.k) * this.height()
- };
- }
- }
-
- /** @private */
- function mousemove() {
- if (!scene) return;
- scene.mark.context(scene, index, function() {
- var x = (pv.event.pageX - v1.x) * k,
- y = (pv.event.pageY - v1.y) * k,
- m = m1.translate(x, y);
- if (bound) {
- m.x = Math.max(bound.x, Math.min(0, m.x));
- m.y = Math.max(bound.y, Math.min(0, m.y));
- }
- this.transform(m).render();
- });
- pv.Mark.dispatch("pan", scene, index);
- }
-
- /** @private */
- function mouseup() {
- scene = null;
- }
-
- /**
- * Sets or gets the bound parameter. If bounding is enabled, the user will not
- * be able to pan outside the initial panel bounds; this typically applies
- * only when the pan behavior is used in tandem with the zoom behavior.
- * Bounding is not enabled by default.
- *
- * <p>Note: enabling bounding after panning has already occurred will not
- * immediately reset the transform. Bounding should be enabled before the
- * panning behavior is applied.
- *
- * @function
- * @returns {pv.Behavior.pan} this, or the current bound parameter.
- * @name pv.Behavior.pan.prototype.bound
- * @param {boolean} [x] the new bound parameter.
- */
- mousedown.bound = function(x) {
- if (arguments.length) {
- bound = Boolean(x);
- return this;
- }
- return Boolean(bound);
- };
-
- pv.listen(window, "mousemove", mousemove);
- pv.listen(window, "mouseup", mouseup);
- return mousedown;
-};
-/**
- * Returns a new zoom behavior to be registered on mousewheel events.
- *
- * @class Implements interactive zooming using mousewheel events. Register this
- * behavior on panels to allow zooming. This behavior can be used in tandem with
- * {@link pv.Behavior.pan} to allow both panning and zooming:
- *
- * <pre> .event("mousedown", pv.Behavior.pan())
- * .event("mousewheel", pv.Behavior.zoom())</pre>
- *
- * The zoom behavior currently supports only mousewheel events; support for
- * keyboard shortcuts and gesture events to improve accessibility may be added
- * in the future.
- *
- * <p>The implementation of this behavior relies on the panel's
- * <tt>transform</tt> property, which specifies a matrix transformation that is
- * applied to child marks. Note that the transform property only affects the
- * panel's children, but not the panel itself; therefore the panel's fill and
- * stroke will not change when the contents are zoomed. The built-in support for
- * transforms only supports uniform scaling and translates, which is sufficient
- * for panning and zooming. Note that this is not a strict geometric
- * transformation, as the <tt>lineWidth</tt> property is scale-aware: strokes
- * are drawn at constant size independent of scale.
- *
- * <p>Panels have transparent fill styles by default; this means that panels may
- * not receive mousewheel events to zoom. To fix this problem, either given the
- * panel a visible fill style (such as "white"), or set the <tt>events</tt>
- * property to "all" such that the panel receives events despite its transparent
- * fill.
- *
- * <p>The zoom behavior has optional support for bounding. If enabled, the user
- * will not be able to zoom out farther than the initial bounds. This feature is
- * designed to work in conjunction with the pan behavior.
- *
- * @extends pv.Behavior
- * @see pv.Panel#transform
- * @see pv.Mark#scale
- * @param {number} speed
- */
-pv.Behavior.zoom = function(speed) {
- var bound; // whether to bound to the panel
-
- if (!arguments.length) speed = 1 / 48;
-
- /** @private */
- function mousewheel() {
- var v = this.mouse(),
- k = pv.event.wheel * speed,
- m = this.transform().translate(v.x, v.y)
- .scale((k < 0) ? (1e3 / (1e3 - k)) : ((1e3 + k) / 1e3))
- .translate(-v.x, -v.y);
- if (bound) {
- m.k = Math.max(1, m.k);
- m.x = Math.max((1 - m.k) * this.width(), Math.min(0, m.x));
- m.y = Math.max((1 - m.k) * this.height(), Math.min(0, m.y));
- }
- this.transform(m).render();
- pv.Mark.dispatch("zoom", this.scene, this.index);
- }
-
- /**
- * Sets or gets the bound parameter. If bounding is enabled, the user will not
- * be able to zoom out farther than the initial panel bounds. Bounding is not
- * enabled by default. If this behavior is used in tandem with the pan
- * behavior, both should use the same bound parameter.
- *
- * <p>Note: enabling bounding after zooming has already occurred will not
- * immediately reset the transform. Bounding should be enabled before the zoom
- * behavior is applied.
- *
- * @function
- * @returns {pv.Behavior.zoom} this, or the current bound parameter.
- * @name pv.Behavior.zoom.prototype.bound
- * @param {boolean} [x] the new bound parameter.
- */
- mousewheel.bound = function(x) {
- if (arguments.length) {
- bound = Boolean(x);
- return this;
- }
- return Boolean(bound);
- };
-
- return mousewheel;
-};
-/**
- * @ignore
- * @namespace
- */
-pv.Geo = function() {};
-/**
- * Abstract; not implemented. There is no explicit constructor; this class
- * merely serves to document the representation used by {@link pv.Geo.scale}.
- *
- * @class Represents a pair of geographic coordinates.
- *
- * @name pv.Geo.LatLng
- * @see pv.Geo.scale
- */
-
-/**
- * The <i>latitude</i> coordinate in degrees; positive is North.
- *
- * @type number
- * @name pv.Geo.LatLng.prototype.lat
- */
-
-/**
- * The <i>longitude</i> coordinate in degrees; positive is East.
- *
- * @type number
- * @name pv.Geo.LatLng.prototype.lng
- */
-/**
- * Abstract; not implemented. There is no explicit constructor; this class
- * merely serves to document the representation used by {@link pv.Geo.scale}.
- *
- * @class Represents a geographic projection. This class provides the core
- * implementation for {@link pv.Geo.scale}s, mapping between geographic
- * coordinates (latitude and longitude) and normalized screen space in the range
- * [-1,1]. The remaining mapping between normalized screen space and actual
- * pixels is performed by <tt>pv.Geo.scale</tt>.
- *
- * <p>Many geographic projections have a point around which the projection is
- * centered. Rather than have each implementation add support for a
- * user-specified center point, the <tt>pv.Geo.scale</tt> translates the
- * geographic coordinates relative to the center point for both the forward and
- * inverse projection.
- *
- * <p>In general, this class should not be used directly, unless the desire is
- * to implement a new geographic projection. Instead, use <tt>pv.Geo.scale</tt>.
- * Implementations are not required to implement inverse projections, but are
- * needed for some forms of interactivity. Also note that some inverse
- * projections are ambiguous, such as the connecting points in Dymaxian maps.
- *
- * @name pv.Geo.Projection
- * @see pv.Geo.scale
- */
-
-/**
- * The <i>forward</i> projection.
- *
- * @function
- * @name pv.Geo.Projection.prototype.project
- * @param {pv.Geo.LatLng} latlng the latitude and longitude to project.
- * @returns {pv.Vector} the xy-coordinates of the given point.
- */
-
-/**
- * The <i>inverse</i> projection; optional.
- *
- * @function
- * @name pv.Geo.Projection.prototype.invert
- * @param {pv.Vector} xy the x- and y-coordinates to invert.
- * @returns {pv.Geo.LatLng} the latitude and longitude of the given point.
- */
-/**
- * The built-in projections.
- *
- * @see pv.Geo.Projection
- * @namespace
- */
-pv.Geo.projections = {
-
- /** @see http://en.wikipedia.org/wiki/Mercator_projection */
- mercator: {
- project: function(latlng) {
- return {
- x: latlng.lng / 180,
- y: latlng.lat > 85 ? 1 : latlng.lat < -85 ? -1
- : Math.log(Math.tan(Math.PI / 4
- + pv.radians(latlng.lat) / 2)) / Math.PI
- };
- },
- invert: function(xy) {
- return {
- lng: xy.x * 180,
- lat: pv.degrees(2 * Math.atan(Math.exp(xy.y * Math.PI)) - Math.PI / 2)
- };
- }
- },
-
- /** @see http://en.wikipedia.org/wiki/Gall-Peters_projection */
- "gall-peters": {
- project: function(latlng) {
- return {
- x: latlng.lng / 180,
- y: Math.sin(pv.radians(latlng.lat))
- };
- },
- invert: function(xy) {
- return {
- lng: xy.x * 180,
- lat: pv.degrees(Math.asin(xy.y))
- };
- }
- },
-
- /** @see http://en.wikipedia.org/wiki/Sinusoidal_projection */
- sinusoidal: {
- project: function(latlng) {
- return {
- x: pv.radians(latlng.lng) * Math.cos(pv.radians(latlng.lat)) / Math.PI,
- y: latlng.lat / 90
- };
- },
- invert: function(xy) {
- return {
- lng: pv.degrees((xy.x * Math.PI) / Math.cos(xy.y * Math.PI / 2)),
- lat: xy.y * 90
- };
- }
- },
-
- /** @see http://en.wikipedia.org/wiki/Aitoff_projection */
- aitoff: {
- project: function(latlng) {
- var l = pv.radians(latlng.lng),
- f = pv.radians(latlng.lat),
- a = Math.acos(Math.cos(f) * Math.cos(l / 2));
- return {
- x: 2 * (a ? (Math.cos(f) * Math.sin(l / 2) * a / Math.sin(a)) : 0) / Math.PI,
- y: 2 * (a ? (Math.sin(f) * a / Math.sin(a)) : 0) / Math.PI
- };
- },
- invert: function(xy) {
- var x = xy.x * Math.PI / 2,
- y = xy.y * Math.PI / 2;
- return {
- lng: pv.degrees(x / Math.cos(y)),
- lat: pv.degrees(y)
- };
- }
- },
-
- /** @see http://en.wikipedia.org/wiki/Hammer_projection */
- hammer: {
- project: function(latlng) {
- var l = pv.radians(latlng.lng),
- f = pv.radians(latlng.lat),
- c = Math.sqrt(1 + Math.cos(f) * Math.cos(l / 2));
- return {
- x: 2 * Math.SQRT2 * Math.cos(f) * Math.sin(l / 2) / c / 3,
- y: Math.SQRT2 * Math.sin(f) / c / 1.5
- };
- },
- invert: function(xy) {
- var x = xy.x * 3,
- y = xy.y * 1.5,
- z = Math.sqrt(1 - x * x / 16 - y * y / 4);
- return {
- lng: pv.degrees(2 * Math.atan2(z * x, 2 * (2 * z * z - 1))),
- lat: pv.degrees(Math.asin(z * y))
- };
- }
- },
-
- /** The identity or "none" projection. */
- identity: {
- project: function(latlng) {
- return {
- x: latlng.lng / 180,
- y: latlng.lat / 90
- };
- },
- invert: function(xy) {
- return {
- lng: xy.x * 180,
- lat: xy.y * 90
- };
- }
- }
-};
-/**
- * Returns a geographic scale. The arguments to this constructor are optional,
- * and equivalent to calling {@link #projection}.
- *
- * @class Represents a geographic scale; a mapping between latitude-longitude
- * coordinates and screen pixel coordinates. By default, the domain is inferred
- * from the geographic coordinates, so that the domain fills the output range.
- *
- * <p>Note that geographic scales are two-dimensional transformations, rather
- * than the one-dimensional bidrectional mapping typical of other scales.
- * Rather than mapping (for example) between a numeric domain and a numeric
- * range, geographic scales map between two coordinate objects: {@link
- * pv.Geo.LatLng} and {@link pv.Vector}.
- *
- * @param {pv.Geo.Projection} [p] optional projection.
- * @see pv.Geo.scale#ticks
- */
-pv.Geo.scale = function(p) {
- var rmin = {x: 0, y: 0}, // default range minimum
- rmax = {x: 1, y: 1}, // default range maximum
- d = [], // default domain
- j = pv.Geo.projections.identity, // domain <-> normalized range
- x = pv.Scale.linear(-1, 1).range(0, 1), // normalized <-> range
- y = pv.Scale.linear(-1, 1).range(1, 0), // normalized <-> range
- c = {lng: 0, lat: 0}, // Center Point
- lastLatLng, // cached latlng
- lastPoint; // cached point
-
- /** @private */
- function scale(latlng) {
- if (!lastLatLng
- || (latlng.lng != lastLatLng.lng)
- || (latlng.lat != lastLatLng.lat)) {
- lastLatLng = latlng;
- var p = project(latlng);
- lastPoint = {x: x(p.x), y: y(p.y)};
- }
- return lastPoint;
- }
-
- /** @private */
- function project(latlng) {
- var offset = {lng: latlng.lng - c.lng, lat: latlng.lat};
- return j.project(offset);
- }
-
- /** @private */
- function invert(xy) {
- var latlng = j.invert(xy);
- latlng.lng += c.lng;
- return latlng;
- }
-
- /** Returns the projected x-coordinate. */
- scale.x = function(latlng) {
- return scale(latlng).x;
- };
-
- /** Returns the projected y-coordinate. */
- scale.y = function(latlng) {
- return scale(latlng).y;
- };
-
- /**
- * Abstract; this is a local namespace on a given geographic scale.
- *
- * @namespace Tick functions for geographic scales. Because geographic scales
- * represent two-dimensional transformations (as opposed to one-dimensional
- * transformations typical of other scales), the tick values are similarly
- * represented as two-dimensional coordinates in the input domain, i.e.,
- * {@link pv.Geo.LatLng} objects.
- *
- * <p>Also, note that non-rectilinear projections, such as sinsuoidal and
- * aitoff, may not produce straight lines for constant longitude or constant
- * latitude. Therefore the returned array of ticks is a two-dimensional array,
- * sampling various latitudes as constant longitude, and vice versa.
- *
- * <p>The tick lines can therefore be approximated as polylines, either with
- * "linear" or "cardinal" interpolation. This is not as accurate as drawing
- * the true curve through the projection space, but is usually sufficient.
- *
- * @name pv.Geo.scale.prototype.ticks
- * @see pv.Geo.scale
- * @see pv.Geo.LatLng
- * @see pv.Line#interpolate
- */
- scale.ticks = {
-
- /**
- * Returns longitude ticks.
- *
- * @function
- * @param {number} [m] the desired number of ticks.
- * @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
- * @name pv.Geo.scale.prototype.ticks.prototype.lng
- */
- lng: function(m) {
- var lat, lng;
- if (d.length > 1) {
- var s = pv.Scale.linear();
- if (m == undefined) m = 10;
- lat = s.domain(d, function(d) { return d.lat; }).ticks(m);
- lng = s.domain(d, function(d) { return d.lng; }).ticks(m);
- } else {
- lat = pv.range(-80, 81, 10);
- lng = pv.range(-180, 181, 10);
- }
- return lng.map(function(lng) {
- return lat.map(function(lat) {
- return {lat: lat, lng: lng};
- });
- });
- },
-
- /**
- * Returns latitude ticks.
- *
- * @function
- * @param {number} [m] the desired number of ticks.
- * @returns {array} a nested array of <tt>pv.Geo.LatLng</tt> ticks.
- * @name pv.Geo.scale.prototype.ticks.prototype.lat
- */
- lat: function(m) {
- return pv.transpose(scale.ticks.lng(m));
- }
- };
-
- /**
- * Inverts the specified value in the output range, returning the
- * corresponding value in the input domain. This is frequently used to convert
- * the mouse location (see {@link pv.Mark#mouse}) to a value in the input
- * domain. Inversion is only supported for numeric ranges, and not colors.
- *
- * <p>Note that this method does not do any rounding or bounds checking. If
- * the input domain is discrete (e.g., an array index), the returned value
- * should be rounded. If the specified <tt>y</tt> value is outside the range,
- * the returned value may be equivalently outside the input domain.
- *
- * @function
- * @name pv.Geo.scale.prototype.invert
- * @param {number} y a value in the output range (a pixel location).
- * @returns {number} a value in the input domain.
- */
- scale.invert = function(p) {
- return invert({x: x.invert(p.x), y: y.invert(p.y)});
- };
-
- /**
- * Sets or gets the input domain. Note that unlike quantitative scales, the
- * domain cannot be reduced to a simple rectangle (i.e., minimum and maximum
- * values for latitude and longitude). Instead, the domain values must be
- * projected to normalized space, effectively finding the domain in normalized
- * space rather than in terms of latitude and longitude. Thus, changing the
- * projection requires recomputing the normalized domain.
- *
- * <p>This method can be invoked several ways:
- *
- * <p>1. <tt>domain(values...)</tt>
- *
- * <p>Specifying the domain as a series of {@link pv.Geo.LatLng}s is the most
- * explicit and recommended approach. However, if the domain values are
- * derived from data, you may find the second method more appropriate.
- *
- * <p>2. <tt>domain(array, f)</tt>
- *
- * <p>Rather than enumerating the domain explicitly, you can specify a single
- * argument of an array. In addition, you can specify an optional accessor
- * function to extract the domain values (as {@link pv.Geo.LatLng}s) from the
- * array. If the specified array has fewer than two elements, this scale will
- * default to the full normalized domain.
- *
- * <p>2. <tt>domain()</tt>
- *
- * <p>Invoking the <tt>domain</tt> method with no arguments returns the
- * current domain as an array.
- *
- * @function
- * @name pv.Geo.scale.prototype.domain
- * @param {...} domain... domain values.
- * @returns {pv.Geo.scale} <tt>this</tt>, or the current domain.
- */
- scale.domain = function(array, f) {
- if (arguments.length) {
- d = (array instanceof Array)
- ? ((arguments.length > 1) ? pv.map(array, f) : array)
- : Array.prototype.slice.call(arguments);
- if (d.length > 1) {
- var lngs = d.map(function(c) { return c.lng; });
- var lats = d.map(function(c) { return c.lat; });
- c = {
- lng: (pv.max(lngs) + pv.min(lngs)) / 2,
- lat: (pv.max(lats) + pv.min(lats)) / 2
- };
- var n = d.map(project); // normalized domain
- x.domain(n, function(p) { return p.x; });
- y.domain(n, function(p) { return p.y; });
- } else {
- c = {lng: 0, lat: 0};
- x.domain(-1, 1);
- y.domain(-1, 1);
- }
- lastLatLng = null; // invalidate the cache
- return this;
- }
- return d;
- };
-
- /**
- * Sets or gets the output range. This method can be invoked several ways:
- *
- * <p>1. <tt>range(min, max)</tt>
- *
- * <p>If two objects are specified, the arguments should be {@link pv.Vector}s
- * which specify the minimum and maximum values of the x- and y-coordinates
- * explicitly.
- *
- * <p>2. <tt>range(width, height)</tt>
- *
- * <p>If two numbers are specified, the arguments specify the maximum values
- * of the x- and y-coordinates explicitly; the minimum values are implicitly
- * zero.
- *
- * <p>3. <tt>range()</tt>
- *
- * <p>Invoking the <tt>range</tt> method with no arguments returns the current
- * range as an array of two {@link pv.Vector}s: the minimum (top-left) and
- * maximum (bottom-right) values.
- *
- * @function
- * @name pv.Geo.scale.prototype.range
- * @param {...} range... range values.
- * @returns {pv.Geo.scale} <tt>this</tt>, or the current range.
- */
- scale.range = function(min, max) {
- if (arguments.length) {
- if (typeof min == "object") {
- rmin = {x: Number(min.x), y: Number(min.y)};
- rmax = {x: Number(max.x), y: Number(max.y)};
- } else {
- rmin = {x: 0, y: 0};
- rmax = {x: Number(min), y: Number(max)};
- }
- x.range(rmin.x, rmax.x);
- y.range(rmax.y, rmin.y); // XXX flipped?
- lastLatLng = null; // invalidate the cache
- return this;
- }
- return [rmin, rmax];
- };
-
- /**
- * Sets or gets the projection. This method can be invoked several ways:
- *
- * <p>1. <tt>projection(string)</tt>
- *
- * <p>Specifying a string sets the projection to the given named projection in
- * {@link pv.Geo.projections}. If no such projection is found, the identity
- * projection is used.
- *
- * <p>2. <tt>projection(object)</tt>
- *
- * <p>Specifying an object sets the projection to the given custom projection,
- * which must implement the <i>forward</i> and <i>inverse</i> methods per the
- * {@link pv.Geo.Projection} interface.
- *
- * <p>3. <tt>projection()</tt>
- *
- * <p>Invoking the <tt>projection</tt> method with no arguments returns the
- * current object that defined the projection.
- *
- * @function
- * @name pv.Scale.geo.prototype.projection
- * @param {...} range... range values.
- * @returns {pv.Scale.geo} <tt>this</tt>, or the current range.
- */
- scale.projection = function(p) {
- if (arguments.length) {
- j = typeof p == "string"
- ? pv.Geo.projections[p] || pv.Geo.projections.identity
- : p;
- return this.domain(d); // recompute normalized domain
- }
- return p;
- };
-
- /**
- * Returns a view of this scale by the specified accessor function <tt>f</tt>.
- * Given a scale <tt>g</tt>, <tt>g.by(function(d) d.foo)</tt> is equivalent to
- * <tt>function(d) g(d.foo)</tt>. This method should be used judiciously; it
- * is typically more clear to invoke the scale directly, passing in the value
- * to be scaled.
- *
- * @function
- * @name pv.Geo.scale.prototype.by
- * @param {function} f an accessor function.
- * @returns {pv.Geo.scale} a view of this scale by the specified accessor
- * function.
- */
- scale.by = function(f) {
- function by() { return scale(f.apply(this, arguments)); }
- for (var method in scale) by[method] = scale[method];
- return by;
- };
-
- if (arguments.length) scale.projection(p);
- return scale;
-};
diff --git a/sonar-server/src/main/webapp/javascripts/widgets/stack-area.js b/sonar-server/src/main/webapp/javascripts/widgets/stack-area.js
new file mode 100644
index 00000000000..96a0da2ada4
--- /dev/null
+++ b/sonar-server/src/main/webapp/javascripts/widgets/stack-area.js
@@ -0,0 +1,363 @@
+/*global d3:false*/
+
+window.SonarWidgets = window.SonarWidgets == null ? {} : window.SonarWidgets;
+
+(function () {
+
+ window.SonarWidgets.StackArea = function (container) {
+
+ // Ensure container is html id
+ if (container.indexOf('#') !== 0) {
+ container = '#' + container;
+ }
+
+ this.container = d3.select(container);
+
+
+ // Set default values
+ this._data = [];
+ this._metrics = [];
+ this._snapshots = [];
+ this._colors = [];
+ this._width = window.SonarWidgets.StackArea.defaults.width;
+ this._height = window.SonarWidgets.StackArea.defaults.height;
+ this._margin = window.SonarWidgets.StackArea.defaults.margin;
+
+ // Export global variables
+ this.data = function (_) {
+ return param.call(this, '_data', _);
+ };
+
+ this.metrics = function (_) {
+ return param.call(this, '_metrics', _);
+ };
+
+ this.snapshots = function (_) {
+ return param.call(this, '_snapshots', _);
+ };
+
+ this.colors = function (_) {
+ return param.call(this, '_colors', _);
+ };
+
+ this.width = function (_) {
+ return param.call(this, '_width', _);
+ };
+
+ this.height = function (_) {
+ return param.call(this, '_height', _);
+ };
+
+ this.margin = function (_) {
+ return param.call(this, '_margin', _);
+ };
+
+ };
+
+ window.SonarWidgets.StackArea.prototype.render = function () {
+ var widget = this;
+
+ this.svg = this.container.append('svg')
+ .attr('class', 'sonar-d3');
+
+ this.gWrap = this.svg.append('g');
+
+ this.gtimeAxis = this.gWrap.append('g')
+ .attr('class', 'axis x');
+
+ this.gyAxis = this.gWrap.append('g')
+ .attr('class', 'axis y');
+
+ this.plotWrap = this.gWrap.append('g')
+ .attr('class', 'plot');
+
+ this.scanner = this.plotWrap.append('line');
+
+ this.infoWrap = this.gWrap.append('g');
+ this.infoDate = this.infoWrap.append('text');
+ this.infoSnapshot = this.infoWrap.append('text');
+ this.infoTotal = this.infoWrap.append('text');
+
+ this.gWrap
+ .attr('transform', trans(this.margin().left, this.margin().top));
+
+
+ // Configure stack
+ this.stack = d3.layout.stack();
+ this.stackData = this.stack(this.data());
+ this.stackDataTop = this.stackData[this.stackData.length - 1];
+
+
+ // Configure scales
+ var timeDomain = this.data()
+ .map(function(_) {
+ return d3.extent(_, function(d) { return d.x; });
+ })
+ .reduce(function(p, c) {
+ return p.concat(c);
+ }, []);
+
+ this.time = d3.time.scale().domain(d3.extent(timeDomain));
+
+ this.y = d3.scale.linear()
+ .domain([0, d3.max(this.stackDataTop, function(d) { return d.y0 + d.y; })])
+ .nice();
+
+ this.color = function(i) { return widget.colors()[i][0]; };
+
+
+ // Configure the axis
+ this.timeAxis = d3.svg.axis()
+ .scale(this.time)
+ .orient('bottom')
+ .ticks(5);
+
+ this.yAxis = d3.svg.axis()
+ .scale(this.y)
+ .orient('left')
+ .ticks(5);
+
+
+ // Configure the area
+ this.area = d3.svg.area()
+ .x(function(d) { return widget.time(d.x); })
+ .y0(function(d) { return widget.y(d.y0); })
+ .y1(function(d) { return widget.y(d.y0 + d.y); });
+
+
+ // Configure scanner
+ this.scanner
+ .attr('class', 'scanner')
+ .attr('y1', 0);
+
+
+ // Configure info
+ this.infoWrap
+ .attr('class', 'info')
+ .attr('transform', trans(0, -30));
+
+ this.infoDate
+ .attr('class', 'info-text info-text-bold')
+ .attr('transform', trans(0, 0));
+
+ this.infoTotal
+ .attr('class', 'info-text info-text-small')
+ .attr('transform', trans(0, 18));
+
+ this.infoSnapshot
+ .attr('class', 'info-text info-text-small')
+ .attr('transform', trans(0, 36));
+
+ this.infoMetrics = [];
+ var prevX = 110;
+ this.metrics().forEach(function(d, i) {
+ var infoMetric = widget.infoWrap.append('g');
+
+ var infoMetricText = infoMetric.append('text')
+ .attr('class', 'info-text-small')
+ .attr('transform', trans(10, 0))
+ .text(widget.metrics()[i]);
+
+ infoMetric.append('circle')
+ .attr('transform', trans(0, -4))
+ .attr('r', 4)
+ .style('fill', function() { return widget.color(i); });
+
+ // Align metric labels
+ infoMetric
+ .attr('transform', function() {
+ return trans(prevX, -1 + (i % 2) * 18);
+ });
+
+ widget.infoMetrics.push(infoMetric);
+
+ prevX += (infoMetricText.node().getComputedTextLength() + 80) * (i % 2);
+ });
+
+
+ // Configure events
+ this.events = widget.snapshots()
+ .filter(function(d) { return d.e.length > 0; });
+
+ this.gevents = this.gWrap.append('g')
+ .attr('class', 'axis events')
+ .selectAll('.event-tick')
+ .data(this.events);
+
+ this.gevents.enter().append('line')
+ .attr('class', 'event-tick')
+ .attr('y2', -8);
+
+
+ this.selectSnapshot = function(cl) {
+ var dataX = widget.data()[0][cl].x,
+ sx = widget.time(dataX),
+ snapshotIndex = null,
+ eventIndex = null;
+
+ // Update scanner position
+ widget.scanner
+ .attr('x1', sx)
+ .attr('x2', sx);
+
+
+ // Update info
+ widget.infoDate
+ .text(d3.time.format('%b %d, %Y')(widget.data()[0][cl].x));
+
+ widget.infoTotal
+ .text('Total: ' + d3.format('.1f')(widget.stackDataTop[cl].y0 + widget.stackDataTop[cl].y));
+
+
+ // Update metric labels
+ var metricsLines = widget.data().map(function(d, i) {
+ return widget.metrics()[i] + ': ' + d[cl].y;
+ });
+
+ metricsLines.forEach(function(d, i) {
+ widget.infoMetrics[i].select('text').text(d);
+ });
+
+
+ // Update snapshot info
+ this.snapshots().forEach(function(d, i) {
+ if (d.d - dataX === 0) {
+ snapshotIndex = i;
+ }
+ });
+
+ if (snapshotIndex != null) {
+ widget.infoSnapshot
+ .text(this.snapshots()[snapshotIndex].e.join(', '));
+ }
+
+
+ // Update event
+ this.events.forEach(function(d, i) {
+ if (d.d - dataX === 0) {
+ eventIndex = i;
+ }
+ });
+
+ widget.gevents.attr('y2', -8);
+ d3.select(widget.gevents[0][eventIndex]).attr('y2', -12);
+ };
+
+
+ // Set event listeners
+ this.svg.on('mousemove', function() {
+ var mx = d3.mouse(widget.plotWrap.node())[0],
+ cl = closest(widget.data()[0], mx, function(d) { return widget.time(d.x); });
+ widget.selectSnapshot(cl);
+ });
+
+
+ this.update();
+
+ return this;
+ };
+
+
+
+ window.SonarWidgets.StackArea.prototype.update = function() {
+ var widget = this,
+ width = this.container.property('offsetWidth');
+
+ this.width(width > 100 ? width : 100);
+
+
+ // Update svg canvas
+ this.svg
+ .attr('width', this.width())
+ .attr('height', this.height());
+
+
+ // Update available size
+ this.availableWidth = this.width() - this.margin().left - this.margin().right;
+ this.availableHeight = this.height() - this.margin().top - this.margin().bottom;
+
+
+ // Update scales
+ this.time.range([0, this.availableWidth]);
+ this.y.range([widget.availableHeight, 0]);
+
+
+ // Update the axis
+ this.gtimeAxis.attr('transform', trans(0, this.availableHeight + this.margin().bottom - 30));
+ this.gtimeAxis.transition().call(this.timeAxis);
+
+ this.gyAxis.attr('transform', trans(-10, 0));
+ this.gyAxis.transition().call(this.yAxis);
+
+
+ // Update area
+ this.garea = this.plotWrap.selectAll('.area')
+ .data(this.stackData)
+ .enter()
+ .insert('path', ':first-child')
+ .attr('class', 'area')
+ .attr('d', function(d) { return widget.area(d); })
+ .style("fill", function(d, i) { return widget.color(i); });
+
+
+ // Update scanner
+ this.scanner.attr('y2', this.availableHeight + 10);
+
+
+ // Update events
+ this.gevents
+ .transition()
+ .attr('transform', function(d) {
+ return trans(widget.time(d.d), widget.availableHeight + 10);
+ });
+
+
+ // Select latest values if this it the first update
+ if (!this.firstUpdate) {
+ this.selectSnapshot(widget.data()[0].length - 1);
+
+ this.firstUpdate = true;
+ }
+
+ };
+
+
+
+ window.SonarWidgets.StackArea.defaults = {
+ width: 350,
+ height: 150,
+ margin: { top: 50, right: 10, bottom: 40, left: 40 }
+ };
+
+
+
+ // Some helper functions
+
+ // Gets or sets parameter
+ function param(name, value) {
+ if (value == null) {
+ return this[name];
+ } else {
+ this[name] = value;
+ return this;
+ }
+ }
+
+ // Helper for create the translate(x, y) string
+ function trans(left, top) {
+ return 'translate(' + left + ', ' + top + ')';
+ }
+
+ // Helper for find the closest number in array
+ function closest(array, number, getter) {
+ var cl = null;
+ array.forEach(function(value, i) {
+ if (cl == null ||
+ Math.abs(getter(value) - number) < Math.abs(getter(array[cl]) - number)) {
+ cl = i;
+ }
+ });
+ return cl;
+ }
+
+})();
diff --git a/sonar-server/wro.xml b/sonar-server/wro.xml
index 7830258752b..f1d1929e746 100644
--- a/sonar-server/wro.xml
+++ b/sonar-server/wro.xml
@@ -15,7 +15,6 @@
<js>/javascripts/third-party/prototype.js</js>
<js>/javascripts/third-party/scriptaculous.js</js>
<js>/javascripts/third-party/tablekit.js</js>
- <js>/javascripts/third-party/protovis.js</js>
<js>/javascripts/third-party/jquery.min.js</js>
<js>/javascripts/third-party/jquery-ui.min.js</js>
<js>/javascripts/third-party/d3.v3.min.js</js>
@@ -24,10 +23,9 @@
<js>/javascripts/third-party/jquery.ba-throttle-debounce.min.js</js>
<js>/javascripts/third-party/select2.min.js</js>
- <js>/javascripts/protovis-sonar.js</js>
-
<js>/javascripts/widgets/bubble-chart.js</js>
<js>/javascripts/widgets/timeline.js</js>
+ <js>/javascripts/widgets/stack-area.js</js>
<js>/javascripts/select-list.js</js>
<js>/javascripts/application.js</js>