aboutsummaryrefslogtreecommitdiffstats
path: root/dist/svg.js
diff options
context:
space:
mode:
Diffstat (limited to 'dist/svg.js')
-rw-r--r--dist/svg.js644
1 files changed, 34 insertions, 610 deletions
diff --git a/dist/svg.js b/dist/svg.js
index c693656..a9fbb9f 100644
--- a/dist/svg.js
+++ b/dist/svg.js
@@ -6,7 +6,7 @@
* @copyright Wout Fierens <wout@mick-wout.com>
* @license MIT
*
-* BUILT: Sat Jan 14 2017 07:22:23 GMT+0100 (CET)
+* BUILT: Sat Jan 14 2017 07:23:05 GMT+0100 (CET)
*/;
(function(root, factory) {
if (typeof define === 'function' && define.amd) {
@@ -720,55 +720,47 @@ SVG.extend(SVG.PathArray, {
}
// Make path array morphable
, morph: function(pathArray) {
- var pathsMorphable
-
- this.destination = new SVG.PathArray(pathArray)
+ pathArray = new SVG.PathArray(pathArray)
- if(this.haveSameCommands(this.destination)) {
- this.sourceMorphable = this
- this.destinationMorphable = this.destination
+ if(this.haveSameCommands(pathArray)) {
+ this.destination = pathArray
} else {
- pathsMorphable = SVG.utils.makePathsMorphable(this.value, this.destination)
- this.sourceMorphable = pathsMorphable[0]
- this.destinationMorphable = pathsMorphable[1]
+ this.destination = undefined
}
return this
}
// Get morphed path array at given position
, at: function(pos) {
- if(pos === 1) {
- return this.destination
- } else if(pos === 0) {
- return this
- } else {
- var sourceArray = this.sourceMorphable.value
- , destinationArray = this.destinationMorphable.value
- , array = [], pathArray = new SVG.PathArray()
- , i, il, j, jl
-
- // Animate has specified in the SVG spec
- // See: https://www.w3.org/TR/SVG11/paths.html#PathElement
- for (i = 0, il = sourceArray.length; i < il; i++) {
- array[i] = [sourceArray[i][0]]
- for(j=1, jl = sourceArray[i].length; j < jl; j++) {
- array[i][j] = sourceArray[i][j] + (destinationArray[i][j] - sourceArray[i][j]) * pos
- }
- // For the two flags of the elliptical arc command, the SVG spec say:
- // Flags and booleans are interpolated as fractions between zero and one, with any non-zero value considered to be a value of one/true
- // Elliptical arc command as an array followed by corresponding indexes:
- // ['A', rx, ry, x-axis-rotation, large-arc-flag, sweep-flag, x, y]
- // 0 1 2 3 4 5 6 7
- if(array[i][0] === 'A') {
- array[i][4] = +(array[i][4] != 0)
- array[i][5] = +(array[i][5] != 0)
- }
- }
+ // make sure a destination is defined
+ if (!this.destination) return this
- // Directly modify the value of a path array, this is done this way for performance
- pathArray.value = array
- return pathArray
+ var sourceArray = this.value
+ , destinationArray = this.destination.value
+ , array = [], pathArray = new SVG.PathArray()
+ , i, il, j, jl
+
+ // Animate has specified in the SVG spec
+ // See: https://www.w3.org/TR/SVG11/paths.html#PathElement
+ for (i = 0, il = sourceArray.length; i < il; i++) {
+ array[i] = [sourceArray[i][0]]
+ for(j = 1, jl = sourceArray[i].length; j < jl; j++) {
+ array[i][j] = sourceArray[i][j] + (destinationArray[i][j] - sourceArray[i][j]) * pos
+ }
+ // For the two flags of the elliptical arc command, the SVG spec say:
+ // Flags and booleans are interpolated as fractions between zero and one, with any non-zero value considered to be a value of one/true
+ // Elliptical arc command as an array followed by corresponding indexes:
+ // ['A', rx, ry, x-axis-rotation, large-arc-flag, sweep-flag, x, y]
+ // 0 1 2 3 4 5 6 7
+ if(array[i][0] === 'A') {
+ array[i][4] = +(array[i][4] != 0)
+ array[i][5] = +(array[i][5] != 0)
+ }
}
+
+ // Directly modify the value of a path array, this is done this way for performance
+ pathArray.value = array
+ return pathArray
}
// Absolutize and parse path to array
, parse: function(array) {
@@ -2552,7 +2544,7 @@ SVG.Point = SVG.invent({
{x:x.x, y:x.y} :
x != null ?
{x:x, y:(y != null ? y : x)} : base // If y has no value, then x is used has its value
- // This allow element-wise operations to be passed a single number
+
// merge source
this.x = source.x
this.y = source.y
@@ -2599,38 +2591,7 @@ SVG.Point = SVG.invent({
, transform: function(matrix) {
return new SVG.Point(this.native().matrixTransform(matrix.native()))
}
- // return an array of the x and y coordinates
- , toArray: function() {
- return [this.x, this.y]
- }
- // perform an element-wise addition with the passed point or number
- , plus: function(x, y) {
- var point = new SVG.Point(x, y)
- return new SVG.Point(this.x + point.x, this.y + point.y)
- }
- // perform an element-wise subtraction with the passed point or number
- , minus: function(x, y) {
- var point = new SVG.Point(x, y)
- return new SVG.Point(this.x - point.x, this.y - point.y)
- }
- // perform an element-wise multiplication with the passed point or number
- , times: function(x, y) {
- var point = new SVG.Point(x, y)
- return new SVG.Point(this.x * point.x, this.y * point.y)
- }
- // perform an element-wise division with the passed point or number
- , divide: function(x, y) {
- var point = new SVG.Point(x, y)
- return new SVG.Point(this.x / point.x, this.y / point.y)
- }
- // calculate the Euclidean norm
- , norm: function() {
- return Math.sqrt(this.x*this.x + this.y*this.y)
- }
- // calculate the distance to the passed point
- , distance: function(x, y) {
- return this.minus(x, y).norm()
- }
+
}
})
@@ -5463,543 +5424,6 @@ function idFromReference(url) {
// Create matrix array for looping
var abcdef = 'abcdef'.split('')
-// Take two path array that don't have the same commands (which mean that they
-// cannot be morphed in one another) and return 2 equivalent path array (meaning
-// that they produce the same shape as the passed path array) that have the
-// same commands (moveto and curveto)
-//
-// Algorithm used:
-// First, convert every path segment of the two passed paths into equivalent cubic Bezier curves.
-// Then, calculate the positions relative to the total length of the path of the endpoint of all those cubic Bezier curves.
-// After that, split the Bezier curves of the source at the positions that the destination have that are not common to the source and vice versa.
-// Finally, make the source and destination have the same number of subpaths.
-SVG.utils.makePathsMorphable = function (sourcePathArray, destinationPathArray) {
- var source, sourcePositions, sourcePositionsToSplitAt
- , destination, destinationPositions, destinationPositionsToSplitAt
- , i, il, j, jl
- , s, d
- , sourceSubpath, destinationSubpath, lastSegPt
-
- // Convert every path segments into equivalent cubic Bezier curves
- source = cubicSuperPath(sourcePathArray)
- destination = cubicSuperPath(destinationPathArray)
-
- // The positions relative to the total length of the path is calculated for the endpoint of all those cubic bezier curves
- sourcePositions = cspPositions(source)
- destinationPositions = cspPositions(destination)
-
- // Find the positions that the destination have that are not in the source and vice versa
- sourcePositionsToSplitAt = []
- destinationPositionsToSplitAt = []
- i = 0, il = sourcePositions.length
- j = 0, jl = destinationPositions.length
- while(i < il && j < jl) {
- // Test if the two values are equal taking into account the imprecision of floating point number
- if (Math.abs(sourcePositions[i] - destinationPositions[j]) < 0.000001) {
- i++
- j++
- } else if(sourcePositions[i] > destinationPositions[j]){
- sourcePositionsToSplitAt.push(destinationPositions[j++])
- } else {
- destinationPositionsToSplitAt.push(sourcePositions[i++])
- }
- }
- // If there are still some destination positions left, they all are not in the source and vice versa
- sourcePositionsToSplitAt = sourcePositionsToSplitAt.concat(destinationPositions.slice(j))
- destinationPositionsToSplitAt = destinationPositionsToSplitAt.concat(sourcePositions.slice(i))
-
- // Split the source and the destination at the positions they don't have in common
- cspSplitAtPositions(source, sourcePositions, sourcePositionsToSplitAt)
- cspSplitAtPositions(destination, destinationPositions, destinationPositionsToSplitAt)
-
-
- // Break paths so that corresponding subpaths have an equal number of segments
- s = source, source = [], sourceSubpath = s[i = 0]
- d = destination, destination = [], destinationSubpath = d[j = 0]
- while (sourceSubpath && destinationSubpath) {
- // Push REFERENCES to the current subpath arrays in their respective array
- source.push(sourceSubpath)
- destination.push(destinationSubpath)
-
- il = sourceSubpath.length
- jl = destinationSubpath.length
-
- // If the current subpath of the source and the current subpath of the destination don't
- // have the same length, that mean that the biggest of the two must be split in two
- if(il > jl) {
- lastSegPt = sourceSubpath[jl-1]
- // Perform the split using splice that change the content of the array by removing elements and returning them in an array
- sourceSubpath = sourceSubpath.splice(jl)
- sourceSubpath.unshift(lastSegPt) // The last segment point is duplicated since these two segments must be joined together
- destinationSubpath = d[++j] // This subpath has been accounted for, past to the next
- } else if(il < jl) {
- lastSegPt = destinationSubpath[il-1]
- destinationSubpath = destinationSubpath.splice(il)
- destinationSubpath.unshift(lastSegPt)
- sourceSubpath = s[++i]
- } else {
- sourceSubpath = s[++i]
- destinationSubpath = d[++j]
- }
- }
-
- // Convert in path array and return
- return [uncubicSuperPath(source), uncubicSuperPath(destination)]
-}
-
-
-
-
-
-
-// This function converts every segment of a path array into equivalent cubic Bezier curves
-// and return the results in a 3 dimensional array that have the following hierarchy:
-// Cubic super path: [ ]
-// Segments: [ ] ...
-// Segment points: [SVG.Point, SVG.Point, SVG.Point] ...
-//
-// A segment point is a point with the two control points that are attached to it:
-// [First control point, Point, Second control point]
-//
-// If the passed path array cannot be converted in a cubic super path, this function return an empty array.
-function cubicSuperPath(pathArray) {
- pathArray = new SVG.PathArray(pathArray)
-
- var cubicSP = []
- , subpath = null
- , subpathStartPt = null
- , lastPt = null
- , lastCtrlPt = null
- , i, il, cmd = null, params, lastCmd
- , start, control, end
- , arcSegPoints, segPt
-
- for (i = 0, il = pathArray.value.length; i < il; i++) {
- lastCmd = cmd
- cmd = pathArray.value[i][0]
- params = pathArray.value[i].slice(1)
-
- switch (cmd) {
- case 'M': // moveto
- // Parameters: x y
- if (lastPt) {
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- }
- subpath = []
- cubicSP.push(subpath) // Push a reference to the current subpath array in the cubic super path array
- subpathStartPt = new SVG.Point(params)
- lastPt = subpathStartPt.clone()
- lastCtrlPt = subpathStartPt.clone()
- break
-
- case 'L': // lineto
- // Parameters: x y
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- lastPt = new SVG.Point(params)
- lastCtrlPt = lastPt.clone()
- break
-
- case 'H': // horizontal lineto
- // Parameters: x
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- lastPt = new SVG.Point(params[0], lastPt.y)
- lastCtrlPt = lastPt.clone()
- break
-
- case 'V': // vertical lineto
- // Parameters: y
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- lastPt = new SVG.Point(lastPt.x, params[0])
- lastCtrlPt = lastPt.clone()
- break
-
- case 'C': // curveto
- // Parameters: x1 y1 x2 y2 x y
- subpath.push([lastCtrlPt, lastPt, new SVG.Point(params.slice(0,2))])
- lastPt = new SVG.Point(params.slice(4,6))
- lastCtrlPt = new SVG.Point(params.slice(2,4))
- break
-
- case 'S': // shorthand/smooth curveto
- // Parameters: x2 y2 x y
- // For this version of curveto, the first control point is the reflection of the second control point on the previous command relative to the current point
- // If the previous command is not a curveto command, then the first control point is the same as the current point
- if(lastCmd === 'C' || lastCmd === 'S') {
- subpath.push([lastCtrlPt, lastPt, lastPt.times(2).minus(lastCtrlPt)])
- } else {
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- }
- lastPt = new SVG.Point(params.slice(2,4))
- lastCtrlPt = new SVG.Point(params.slice(0,2))
- break
-
- case 'Q': // quadratic Bezier curveto
- // Parameters: x1 y1 x y
- // For an explanation of the method used, see: https://pomax.github.io/bezierinfo/#reordering
- start = lastPt
- control = new SVG.Point(params.slice(0,2))
- end = new SVG.Point(params.slice(2,4))
-
- subpath.push([lastCtrlPt, start, start.times(1/3).plus(control.times(2/3))])
- lastPt = end
- lastCtrlPt = control.times(2/3).plus(end.times(1/3))
- break
-
- case 'T': // shorthand/smooth quadratic Bézier curveto
- // Parameters: x y
- // For this version of quadratic Bézier curveto, the control point is the reflection of the control point on the previous command relative to the current point
- // If the previous command is not a quadratic Bézier curveto command, then the control point is the same as the current point
- start = lastPt
- if(lastCmd === 'Q' || lastCmd === 'T') {
- control = start.times(2).minus(control)
- } else {
- control = start
- }
- end = new SVG.Point(params.slice(0,2))
-
- subpath.push([lastCtrlPt, start, start.times(1/3).plus(control.times(2/3))])
- lastPt = end
- lastCtrlPt = control.times(2/3).plus(end.times(1/3))
- break
-
- case 'A': // elliptical arc
- // Parameters: rx ry x-axis-rotation large-arc-flag sweep-flag x y
- arcSegPoints = arcToPath(lastPt, params)
- arcSegPoints[0][0] = lastCtrlPt
- segPt = arcSegPoints.pop()
- lastPt = segPt[1]
- lastCtrlPt = segPt[0]
- Array.prototype.push.apply(subpath, arcSegPoints)
- break
-
- case 'Z': // closepath
- // Parameters: none
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- // Close the path only if it is not already closed
- if(lastPt.x != subpathStartPt.x && lastPt.y != subpathStartPt.y) {
- lastPt = subpathStartPt
- lastCtrlPt = subpathStartPt.clone()
- } else {
- lastPt = null
- lastCtrlPt = null
- }
- break
- }
- }
-
- // Push final segment point if any
- if(lastPt) {
- subpath.push([lastCtrlPt, lastPt, lastPt.clone()])
- }
-
- return cubicSP
-}
-
-
-// This function convert a cubic super path into a path array
-function uncubicSuperPath (cubicSP) {
- var i, il, j, jl, array = [], pathArray = new SVG.PathArray, subpath
-
- for (i = 0, il = cubicSP.length; i < il; i++) {
- subpath = cubicSP[i]
-
- if (subpath.length) {
- array.push(['M'].concat(subpath[0][1].toArray()))
-
- for (j = 1, jl = subpath.length; j < jl; j++) {
- array.push(['C'].concat(subpath[j-1][2].toArray(), subpath[j][0].toArray(), subpath[j][1].toArray()))
- }
- }
- }
-
- // Directly modify the value of a path array, this is done this way for performance
- pathArray.value = array
- return pathArray
-}
-
-// Convert an arc segment into equivalent cubic Bezier curves
-// Depending on the arc, up to 4 curves might be used to represent it since a
-// curve gives a good approximation for only a quarter of an ellipse
-// The curves are returned as an array of segment points:
-// [ [SVG.Point, SVG.Point, SVG.Point] ... ]
-function arcToPath(lastPt, params) {
- // Parameters extraction, handle out-of-range parameters as specified in the SVG spec
- // See: https://www.w3.org/TR/SVG11/implnote.html#ArcOutOfRangeParameters
- var rx = Math.abs(params[0]), ry = Math.abs(params[1]), xAxisRotation = params[2] % 360
- , largeArcFlag = params[3], sweepFlag = params[4], x2 = params[5], y2 = params[6]
- , A = lastPt, B = new SVG.Point(x2, y2)
- , primedCoord, lambda, mat, k, c, cSquare, t, O, OA, OB, tetaStart, tetaEnd
- , deltaTeta, nbSectors, f, arcSegPoints, angle, sinAngle, cosAngle, pt, i, il
-
- // Ensure radii are non-zero
- if(rx === 0 || ry === 0 || (A.x === B.x && A.y === B.y)) {
- // treat this arc as a straight line segment
- return [[A, A.clone(), A.clone()], [B, B.clone(), B.clone()]]
- }
-
- // Ensure radii are large enough using the algorithm provided in the SVG spec
- // See: https://www.w3.org/TR/SVG11/implnote.html#ArcCorrectionOutOfRangeRadii
- primedCoord = A.minus(B).divide(2).transform(new SVG.Matrix().rotate(xAxisRotation))
- lambda = (primedCoord.x * primedCoord.x) / (rx * rx) + (primedCoord.y * primedCoord.y) / (ry * ry)
- if(lambda > 1) {
- lambda = Math.sqrt(lambda)
- rx = lambda*rx
- ry = lambda*ry
- }
-
- // To simplify calculations, we make the arc part of a unit circle (rayon is 1) instead of an ellipse
- mat = new SVG.Matrix().rotate(xAxisRotation).scale(1/rx, 1/ry).rotate(-xAxisRotation)
- A = A.transform(mat)
- B = B.transform(mat)
-
- // Calculate the horizontal and vertical distance between the initial and final point of the arc
- k = [B.x-A.x, B.y-A.y]
-
- // Find the length of the chord formed by A and B
- cSquare = k[0]*k[0] + k[1]*k[1]
- c = Math.sqrt(cSquare)
-
- // Calculate the ratios of the horizontal and vertical distance on the length of the chord
- k[0] /= c
- k[1] /= c
-
- // Calculate the distance between the circle center and the chord midpoint
- // using this formula: t = sqrt(r^2 - c^2 / 4)
- // where t is the distance between the cirle center and the chord midpoint,
- // r is the rayon of the circle and c is the chord length
- // From: http://www.ajdesigner.com/phpcircle/circle_segment_chord_t.php
- // Because of the imprecision of floating point numbers, cSquare might end
- // up being slightly above 4 which would result in a negative radicand
- // To prevent that, a test is made before computing the square root
- t = (cSquare < 4) ? Math.sqrt(1 - cSquare/4) : 0
-
- // For most situations, there are actually two different ellipses that
- // satisfy the constraints imposed by the points A and B, the radii rx and ry,
- // and the xAxisRotation
- // When the flags largeArcFlag and sweepFlag are equal, it means that the
- // second ellipse is used as a solution
- // See: https://www.w3.org/TR/SVG/paths.html#PathDataEllipticalArcCommands
- if(largeArcFlag === sweepFlag) {
- t *= -1
- }
-
- // Calculate the coordinates of the center of the circle from the midpoint of the chord
- // This is done by multiplying the ratios calculated previously by the distance between
- // the circle center and the chord midpoint and using these values to go from the midpoint
- // to the center of the circle
- // The negative of the vertical distance ratio is used to modify the x coordinate while
- // the horizontal distance ratio is used to modify the y coordinate
- // That is because the center of the circle is perpendicular to the chord and perpendicular
- // lines are negative reciprocals
- O = new SVG.Point((B.x+A.x)/2 + t*-k[1], (B.y+A.y)/2 + t*k[0])
- // Move the center of the circle at the origin
- OA = A.minus(O)
- OB = B.minus(O)
-
- // Calculate the start and end angle
- tetaStart = Math.acos(OA.x/OA.norm())
- if (OA.y < 0) {
- tetaStart *= -1
- }
- tetaEnd = Math.acos(OB.x/OB.norm())
- if (OB.y < 0) {
- tetaEnd *= -1
- }
-
- // If sweep-flag is '1', then the arc will be drawn in a "positive-angle" direction,
- // make sure that the end angle is above the start angle
- if (sweepFlag && tetaStart > tetaEnd) {
- tetaEnd += 2*Math.PI
- }
- // If sweep-flag is '0', then the arc will be drawn in a "negative-angle" direction,
- // make sure that the end angle is below the start angle
- if (!sweepFlag && tetaStart < tetaEnd) {
- tetaEnd -= 2*Math.PI
- }
-
- // Find the number of Bezier curves that are required to represent the arc
- // A cubic Bezier curve gives a good enough approximation when representing at most a quarter of a circle
- nbSectors = Math.ceil(Math.abs(tetaStart-tetaEnd) * 2/Math.PI)
-
- // Calculate the coordinates of the points of all the Bezier curves required to represent the arc
- // For an in-depth explanation of this part see: http://pomax.github.io/bezierinfo/#circles_cubic
- arcSegPoints = []
- angle = tetaStart
- deltaTeta = (tetaEnd-tetaStart)/nbSectors
- f = 4*Math.tan(deltaTeta/4)/3
- for (i = 0; i <= nbSectors; i++) { // The <= is because a Bezier curve have a start and a endpoint
- cosAngle = Math.cos(angle)
- sinAngle = Math.sin(angle)
-
- pt = O.plus(cosAngle, sinAngle)
- arcSegPoints[i] = [pt.plus(+f*sinAngle, -f*cosAngle), pt, pt.plus(-f*sinAngle, +f*cosAngle)]
-
- angle += deltaTeta
- }
-
- // Remove the first control point of the first segment point and remove the second control point of the last segment point
- // These two control points are not used in the approximation of the arc, that is why they are removed
- arcSegPoints[0][0] = arcSegPoints[0][1].clone()
- arcSegPoints[arcSegPoints.length-1][2] = arcSegPoints[arcSegPoints.length-1][1].clone()
-
- // Revert the transformation that was applied to make the arc part of a unit circle instead of an ellipse
- mat = new SVG.Matrix().rotate(xAxisRotation).scale(rx, ry).rotate(-xAxisRotation)
- for (i = 0, il = arcSegPoints.length; i < il; i++) {
- arcSegPoints[i][0] = arcSegPoints[i][0].transform(mat)
- arcSegPoints[i][1] = arcSegPoints[i][1].transform(mat)
- arcSegPoints[i][2] = arcSegPoints[i][2].transform(mat)
- }
-
- return arcSegPoints
-}
-
-
-// Use de Casteljau's algorithm to split a cubic Bezier curve
-// For a description of the algorithm, see: https://pomax.github.io/bezierinfo/#decasteljau
-// Return an array of 3 segment points
-function cspSegSplit(segPt1, segPt2, t) {
- segPt1 = [segPt1[0].clone(), segPt1[1].clone(), segPt1[2].clone()]
- segPt2 = [segPt2[0].clone(), segPt2[1].clone(), segPt2[2].clone()]
-
- var m1 = segPt1[1].morph(segPt1[2]).at(t)
- , m2 = segPt1[2].morph(segPt2[0]).at(t)
- , m3 = segPt2[0].morph(segPt2[1]).at(t)
- , m4 = m1.morph(m2).at(t)
- , m5 = m2.morph(m3).at(t)
- , m = m4.morph(m5).at(t)
-
- return [[segPt1[0], segPt1[1], m1], [m4, m, m5], [m3, segPt2[1], segPt2[2]]]
-}
-
-
-// Find the length of a cubic Bezier curve using the built-in method getTotalLength of SVGPathElement
-// For more info, see: https://www.w3.org/TR/SVG11/paths.html#InterfaceSVGPathElement
-function cspSegLength(segPt1, segPt2) {
- var path = document.createElementNS(SVG.ns, "path")
- , d = ['M', segPt1[1].toArray(), 'C', segPt1[2].toArray(), segPt2[0].toArray(), segPt2[1].toArray()].join(' ')
-
- path.setAttribute('d', d)
-
- return path.getTotalLength()
-}
-
-
-// Find the length of all the cubic Bezier curves of a cubic super path and return
-// the results in a 2 dimensional array that have the following hierarchy:
-// Cubic super path lengths: [ ]
-// Segments lengths: [ ] ...
-// Cubic Bezier curves length: Number ...
-//
-// On the returned array, the property total is set to the sum of all the lengths
-function cspLengths(cubicSP) {
- var total = 0
- , subpath, lengths = [], lengthsSubpath, length
- , i, il, j, jl
-
- for (i = 0, il = cubicSP.length; i < il; i++) {
- subpath = cubicSP[i]
- lengthsSubpath = []
- lengths[i] = lengthsSubpath // Save a reference to the current subpath lengths array in the cubic super path lengths array
-
- for (j = 1, jl = subpath.length; j < jl; j++) {
- length = cspSegLength(subpath[j-1], subpath[j])
- lengthsSubpath[j-1] = length
- total += length
- }
- }
-
- lengths.total = total
- return lengths
-}
-
-
-// Split a cubic Bezier curve at the given length ratio
-// Return an array of 3 segment points
-function cspSegSplitAtLengthRatio(segPt1, segPt2, lengthRatio) {
- var t = 1.0
- , tdiv = t
- , currentLength = cspSegLength(segPt1, segPt2)
- , targetLength = lengthRatio * currentLength
- , diff = currentLength - targetLength
- , split = cspSegSplit(segPt1, segPt2, t)
- , maxNbLoops = 4096 // For not getting stuck in an infinite loop
-
- while (Math.abs(diff) > 0.001 && maxNbLoops--) {
- tdiv /= 2
- t += (diff < 0) ? tdiv : -tdiv
- split = cspSegSplit(segPt1, segPt2, t)
- currentLength = cspSegLength(split[0], split[1])
- diff = currentLength - targetLength
- }
-
- return split
-}
-
-
-
-// Find the position relative to the total length of the endpoint of all the cubic Bezier curves
-// of a cubic super path and return the results in a 1 dimensional array
-function cspPositions(cubicSP) {
- var lengths = cspLengths(cubicSP), total = lengths.total
- , pos = 0, positions = []
- , i, il, j, jl
-
- for (i = 0, il = lengths.length; i < il; i++) {
- for (j = 0, jl = lengths[i].length; j < jl; j++) {
- pos += lengths[i][j] / total
- positions.push(pos)
- }
- }
-
- return positions
-}
-
-// Split the passed cubic super path at the specified positions and return the results as a new cubic super path
-// For performance reasons, the positions of the passed cubic super path must also be provided
-function cspSplitAtPositions(cubicSP, positions, positionsToSplitAt){
- var subpath, newSubpath
- , accumNbPositions = 0, segPt, lengthRatio, split, pos, prevPos
- , i, il, j, jl // indexes on the cubicSP array
- , k = 0 // index on the positions array
- , l = 0, ll = positionsToSplitAt.length
-
- for (i = 0, il = cubicSP.length; i < il && l < ll; i++) {
- subpath = cubicSP[i]
- // The positions are only for the endpoints of the cubic Bezier curves, so
- // a subpath need at least 2 segment points for a position to be on it
- if(subpath.length < 2) {continue}
- // Test if there are splits to be performed on the current subpath
- if(positionsToSplitAt[l] < positions[accumNbPositions + subpath.length-2]) {
- k = accumNbPositions
- newSubpath = []
- cubicSP[i] = newSubpath // Save a reference to the new current subpath array in the cubic super path array
- pos = positions[k-1] || 0
-
- // Recopy the content of the current subpath, performing splits where necessary
- newSubpath.push(subpath[0])
- for (j = 1, jl = subpath.length; j < jl; j++) {
- prevPos = pos
- pos = positions[k++]
- segPt = subpath[j]
-
- while(l < ll && positionsToSplitAt[l] < pos) {
- lengthRatio = (positionsToSplitAt[l] - prevPos) / (pos - prevPos)
- split = cspSegSplitAtLengthRatio(newSubpath[newSubpath.length-1], segPt, lengthRatio)
- newSubpath[newSubpath.length-1] = split[0]
- newSubpath.push(split[1])
- segPt = split[2]
- prevPos = positionsToSplitAt[l++]
- }
-
- newSubpath.push(segPt)
- }
- }
-
- // -1 because positions are only for endpoints of Bezier curves
- accumNbPositions += subpath.length - 1
- }
-}
-
// Add CustomEvent to IE9 and IE10
if (typeof CustomEvent !== 'function') {
// Code from: https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent