summaryrefslogtreecommitdiffstats
path: root/src/Matrix.js
diff options
context:
space:
mode:
Diffstat (limited to 'src/Matrix.js')
-rw-r--r--src/Matrix.js847
1 files changed, 410 insertions, 437 deletions
diff --git a/src/Matrix.js b/src/Matrix.js
index 666b898..5edbc5c 100644
--- a/src/Matrix.js
+++ b/src/Matrix.js
@@ -1,16 +1,20 @@
-/* global abcdef arrayToMatrix closeEnough formatTransforms isMatrixLike matrixMultiply */
+import {abcdef, arrayToMatrix, closeEnough, formatTransforms, isMatrixLike, matrixMultiply} from './helpers.js'
+import {Element, Point, Doc} from './classes.js'
+import {delimiter} from './regex.js'
+import {radians} from './utils.js'
+import parser from './parser.js'
-SVG.Matrix = SVG.invent({
+export default class Matrix {
// Initialize
- create: function (source) {
+ constructor (source) {
var base = arrayToMatrix([1, 0, 0, 1, 0, 0])
// ensure source as object
- source = source instanceof SVG.Element ? source.matrixify()
- : typeof source === 'string' ? arrayToMatrix(source.split(SVG.regex.delimiter).map(parseFloat))
+ source = source instanceof Element ? source.matrixify()
+ : typeof source === 'string' ? arrayToMatrix(source.split(delimiter).map(parseFloat))
: Array.isArray(source) ? arrayToMatrix(source)
: (typeof source === 'object' && isMatrixLike(source)) ? source
- : (typeof source === 'object') ? new SVG.Matrix().transform(source)
+ : (typeof source === 'object') ? new Matrix().transform(source)
: arguments.length === 6 ? arrayToMatrix([].slice.call(arguments))
: base
@@ -21,439 +25,408 @@ SVG.Matrix = SVG.invent({
this.d = source.d != null ? source.d : base.d
this.e = source.e != null ? source.e : base.e
this.f = source.f != null ? source.f : base.f
- },
+ }
+
+
+ // Clones this matrix
+ clone () {
+ return new Matrix(this)
+ }
+
+ // Transform a matrix into another matrix by manipulating the space
+ transform (o) {
+ // Check if o is a matrix and then left multiply it directly
+ if (isMatrixLike(o)) {
+ var matrix = new Matrix(o)
+ return matrix.multiplyO(this)
+ }
+
+ // Get the proposed transformations and the current transformations
+ var t = formatTransforms(o)
+ var current = this
+ let { x: ox, y: oy } = new Point(t.ox, t.oy).transform(current)
+
+ // Construct the resulting matrix
+ var transformer = new Matrix()
+ .translateO(t.rx, t.ry)
+ .lmultiplyO(current)
+ .translateO(-ox, -oy)
+ .scaleO(t.scaleX, t.scaleY)
+ .skewO(t.skewX, t.skewY)
+ .shearO(t.shear)
+ .rotateO(t.theta)
+ .translateO(ox, oy)
+
+ // If we want the origin at a particular place, we force it there
+ if (isFinite(t.px) || isFinite(t.py)) {
+ const origin = new Point(ox, oy).transform(transformer)
+ // TODO: Replace t.px with isFinite(t.px)
+ const dx = t.px ? t.px - origin.x : 0
+ const dy = t.py ? t.py - origin.y : 0
+ transformer.translateO(dx, dy)
+ }
+
+ // Translate now after positioning
+ transformer.translateO(t.tx, t.ty)
+ return transformer
+ }
+
+ // Applies a matrix defined by its affine parameters
+ compose (o) {
+ if (o.origin) {
+ o.originX = o.origin[0]
+ o.originY = o.origin[1]
+ }
+ // Get the parameters
+ var ox = o.originX || 0
+ var oy = o.originY || 0
+ var sx = o.scaleX || 1
+ var sy = o.scaleY || 1
+ var lam = o.shear || 0
+ var theta = o.rotate || 0
+ var tx = o.translateX || 0
+ var ty = o.translateY || 0
+
+ // Apply the standard matrix
+ var result = new Matrix()
+ .translateO(-ox, -oy)
+ .scaleO(sx, sy)
+ .shearO(lam)
+ .rotateO(theta)
+ .translateO(tx, ty)
+ .lmultiplyO(this)
+ .translateO(ox, oy)
+ return result
+ }
+
+ // Decomposes this matrix into its affine parameters
+ decompose (cx = 0, cy = 0) {
+ // Get the parameters from the matrix
+ var a = this.a
+ var b = this.b
+ var c = this.c
+ var d = this.d
+ var e = this.e
+ var f = this.f
+
+ // Figure out if the winding direction is clockwise or counterclockwise
+ var determinant = a * d - b * c
+ var ccw = determinant > 0 ? 1 : -1
+
+ // Since we only shear in x, we can use the x basis to get the x scale
+ // and the rotation of the resulting matrix
+ var sx = ccw * Math.sqrt(a * a + b * b)
+ var thetaRad = Math.atan2(ccw * b, ccw * a)
+ var theta = 180 / Math.PI * thetaRad
+ var ct = Math.cos(thetaRad)
+ var st = Math.sin(thetaRad)
+
+ // We can then solve the y basis vector simultaneously to get the other
+ // two affine parameters directly from these parameters
+ var lam = (a * c + b * d) / determinant
+ var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a))
+
+ // Use the translations
+ let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy)
+ let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy)
+
+ // Construct the decomposition and return it
+ return {
+ // Return the affine parameters
+ scaleX: sx,
+ scaleY: sy,
+ shear: lam,
+ rotate: theta,
+ translateX: tx,
+ translateY: ty,
+ originX: cx,
+ originY: cy,
+
+ // Return the matrix parameters
+ a: this.a,
+ b: this.b,
+ c: this.c,
+ d: this.d,
+ e: this.e,
+ f: this.f
+ }
+ }
+
+ // Left multiplies by the given matrix
+ multiply (matrix) {
+ return this.clone().multiplyO(matrix)
+ }
+
+ multiplyO (matrix) {
+ // Get the matrices
+ var l = this
+ var r = matrix instanceof Matrix
+ ? matrix
+ : new Matrix(matrix)
+
+ return matrixMultiply(l, r, this)
+ }
+
+ lmultiply (matrix) {
+ return this.clone().lmultiplyO(matrix)
+ }
+
+ lmultiplyO (matrix) {
+ var r = this
+ var l = matrix instanceof Matrix
+ ? matrix
+ : new Matrix(matrix)
+
+ return matrixMultiply(l, r, this)
+ }
+
+ // Inverses matrix
+ inverseO () {
+ // Get the current parameters out of the matrix
+ var a = this.a
+ var b = this.b
+ var c = this.c
+ var d = this.d
+ var e = this.e
+ var f = this.f
+
+ // Invert the 2x2 matrix in the top left
+ var det = a * d - b * c
+ if (!det) throw new Error('Cannot invert ' + this)
+
+ // Calculate the top 2x2 matrix
+ var na = d / det
+ var nb = -b / det
+ var nc = -c / det
+ var nd = a / det
+
+ // Apply the inverted matrix to the top right
+ var ne = -(na * e + nc * f)
+ var nf = -(nb * e + nd * f)
+
+ // Construct the inverted matrix
+ this.a = na
+ this.b = nb
+ this.c = nc
+ this.d = nd
+ this.e = ne
+ this.f = nf
+
+ return this
+ }
+
+ inverse () {
+ return this.clone().inverseO()
+ }
+
+ // Translate matrix
+ translate (x, y) {
+ return this.clone().translateO(x, y)
+ }
+
+ translateO (x, y) {
+ this.e += x || 0
+ this.f += y || 0
+ return this
+ }
+
+ // Scale matrix
+ scale (x, y, cx, cy) {
+ return this.clone().scaleO(...arguments)
+ }
+
+ scaleO (x, y = x, cx = 0, cy = 0) {
+ // Support uniform scaling
+ if (arguments.length === 3) {
+ cy = cx
+ cx = y
+ y = x
+ }
+
+ let {a, b, c, d, e, f} = this
+
+ this.a = a * x
+ this.b = b * y
+ this.c = c * x
+ this.d = d * y
+ this.e = e * x - cx * x + cx
+ this.f = f * y - cy * y + cy
+
+ return this
+ }
+
+ // Rotate matrix
+ rotate (r, cx, cy) {
+ return this.clone().rotateO(r, cx, cy)
+ }
+
+ rotateO (r, cx = 0, cy = 0) {
+ // Convert degrees to radians
+ r = radians(r)
+
+ let cos = Math.cos(r)
+ let sin = Math.sin(r)
+
+ let {a, b, c, d, e, f} = this
- // Add methods
- extend: {
-
- // Clones this matrix
- clone: function () {
- return new SVG.Matrix(this)
- },
-
- // Transform a matrix into another matrix by manipulating the space
- transform: function (o) {
- // Check if o is a matrix and then left multiply it directly
- if (isMatrixLike(o)) {
- var matrix = new SVG.Matrix(o)
- return matrix.multiplyO(this)
- }
-
- // Get the proposed transformations and the current transformations
- var t = formatTransforms(o)
- var current = this
- let { x: ox, y: oy } = new SVG.Point(t.ox, t.oy).transform(current)
-
- // Construct the resulting matrix
- var transformer = new SVG.Matrix()
- .translateO(t.rx, t.ry)
- .lmultiplyO(current)
- .translateO(-ox, -oy)
- .scaleO(t.scaleX, t.scaleY)
- .skewO(t.skewX, t.skewY)
- .shearO(t.shear)
- .rotateO(t.theta)
- .translateO(ox, oy)
-
- // If we want the origin at a particular place, we force it there
- if (isFinite(t.px) || isFinite(t.py)) {
- const origin = new SVG.Point(ox, oy).transform(transformer)
- // TODO: Replace t.px with isFinite(t.px)
- const dx = t.px ? t.px - origin.x : 0
- const dy = t.py ? t.py - origin.y : 0
- transformer.translateO(dx, dy)
- }
-
- // Translate now after positioning
- transformer.translateO(t.tx, t.ty)
- return transformer
- },
-
- // Applies a matrix defined by its affine parameters
- compose: function (o) {
- if (o.origin) {
- o.originX = o.origin[0]
- o.originY = o.origin[1]
- }
- // Get the parameters
- var ox = o.originX || 0
- var oy = o.originY || 0
- var sx = o.scaleX || 1
- var sy = o.scaleY || 1
- var lam = o.shear || 0
- var theta = o.rotate || 0
- var tx = o.translateX || 0
- var ty = o.translateY || 0
-
- // Apply the standard matrix
- var result = new SVG.Matrix()
- .translateO(-ox, -oy)
- .scaleO(sx, sy)
- .shearO(lam)
- .rotateO(theta)
- .translateO(tx, ty)
- .lmultiplyO(this)
- .translateO(ox, oy)
- return result
- },
-
- // Decomposes this matrix into its affine parameters
- decompose: function (cx = 0, cy = 0) {
- // Get the parameters from the matrix
- var a = this.a
- var b = this.b
- var c = this.c
- var d = this.d
- var e = this.e
- var f = this.f
-
- // Figure out if the winding direction is clockwise or counterclockwise
- var determinant = a * d - b * c
- var ccw = determinant > 0 ? 1 : -1
-
- // Since we only shear in x, we can use the x basis to get the x scale
- // and the rotation of the resulting matrix
- var sx = ccw * Math.sqrt(a * a + b * b)
- var thetaRad = Math.atan2(ccw * b, ccw * a)
- var theta = 180 / Math.PI * thetaRad
- var ct = Math.cos(thetaRad)
- var st = Math.sin(thetaRad)
-
- // We can then solve the y basis vector simultaneously to get the other
- // two affine parameters directly from these parameters
- var lam = (a * c + b * d) / determinant
- var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a))
-
- // Use the translations
- let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy)
- let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy)
-
- // Construct the decomposition and return it
- return {
- // Return the affine parameters
- scaleX: sx,
- scaleY: sy,
- shear: lam,
- rotate: theta,
- translateX: tx,
- translateY: ty,
- originX: cx,
- originY: cy,
-
- // Return the matrix parameters
- a: this.a,
- b: this.b,
- c: this.c,
- d: this.d,
- e: this.e,
- f: this.f
- }
- },
-
- // Morph one matrix into another
- morph: function (matrix) {
- // Store new destination
- this.destination = new SVG.Matrix(matrix)
- return this
- },
-
- // Get morphed matrix at a given position
- at: function (pos) {
- // Make sure a destination is defined
- if (!this.destination) return this
-
- // Calculate morphed matrix at a given position
- var matrix = new SVG.Matrix({
- a: this.a + (this.destination.a - this.a) * pos,
- b: this.b + (this.destination.b - this.b) * pos,
- c: this.c + (this.destination.c - this.c) * pos,
- d: this.d + (this.destination.d - this.d) * pos,
- e: this.e + (this.destination.e - this.e) * pos,
- f: this.f + (this.destination.f - this.f) * pos
- })
-
- return matrix
- },
-
- // Left multiplies by the given matrix
- multiply: function (matrix) {
- return this.clone().multiplyO(matrix)
- },
-
- multiplyO: function (matrix) {
- // Get the matrices
- var l = this
- var r = matrix instanceof SVG.Matrix
- ? matrix
- : new SVG.Matrix(matrix)
-
- return matrixMultiply(l, r, this)
- },
-
- lmultiply: function (matrix) {
- return this.clone().lmultiplyO(matrix)
- },
-
- lmultiplyO: function (matrix) {
- var r = this
- var l = matrix instanceof SVG.Matrix
- ? matrix
- : new SVG.Matrix(matrix)
-
- return matrixMultiply(l, r, this)
- },
-
- // Inverses matrix
- inverseO: function () {
- // Get the current parameters out of the matrix
- var a = this.a
- var b = this.b
- var c = this.c
- var d = this.d
- var e = this.e
- var f = this.f
-
- // Invert the 2x2 matrix in the top left
- var det = a * d - b * c
- if (!det) throw new Error('Cannot invert ' + this)
-
- // Calculate the top 2x2 matrix
- var na = d / det
- var nb = -b / det
- var nc = -c / det
- var nd = a / det
-
- // Apply the inverted matrix to the top right
- var ne = -(na * e + nc * f)
- var nf = -(nb * e + nd * f)
-
- // Construct the inverted matrix
- this.a = na
- this.b = nb
- this.c = nc
- this.d = nd
- this.e = ne
- this.f = nf
-
- return this
- },
-
- inverse: function () {
- return this.clone().inverseO()
- },
-
- // Translate matrix
- translate: function (x, y) {
- return this.clone().translateO(x, y)
- },
-
- translateO: function (x, y) {
- this.e += x || 0
- this.f += y || 0
- return this
- },
-
- // Scale matrix
- scale: function (x, y, cx, cy) {
- return this.clone().scaleO(...arguments)
- },
-
- scaleO: function (x, y = x, cx = 0, cy = 0) {
- // Support uniform scaling
- if (arguments.length === 3) {
- cy = cx
- cx = y
- y = x
- }
-
- let {a, b, c, d, e, f} = this
-
- this.a = a * x
- this.b = b * y
- this.c = c * x
- this.d = d * y
- this.e = e * x - cx * x + cx
- this.f = f * y - cy * y + cy
-
- return this
- },
-
- // Rotate matrix
- rotate: function (r, cx, cy) {
- return this.clone().rotateO(r, cx, cy)
- },
-
- rotateO: function (r, cx = 0, cy = 0) {
- // Convert degrees to radians
- r = SVG.utils.radians(r)
-
- let cos = Math.cos(r)
- let sin = Math.sin(r)
-
- let {a, b, c, d, e, f} = this
-
- this.a = a * cos - b * sin
- this.b = b * cos + a * sin
- this.c = c * cos - d * sin
- this.d = d * cos + c * sin
- this.e = e * cos - f * sin + cy * sin - cx * cos + cx
- this.f = f * cos + e * sin - cx * sin - cy * cos + cy
-
- return this
- },
-
- // Flip matrix on x or y, at a given offset
- flip: function (axis, around) {
- return this.clone().flipO(axis, around)
- },
-
- flipO: function (axis, around) {
- return axis === 'x' ? this.scaleO(-1, 1, around, 0)
- : axis === 'y' ? this.scaleO(1, -1, 0, around)
- : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point
- },
-
- // Shear matrix
- shear: function (a, cx, cy) {
- return this.clone().shearO(a, cx, cy)
- },
-
- shearO: function (lx, cx = 0, cy = 0) {
- let {a, b, c, d, e, f} = this
-
- this.a = a + b * lx
- this.c = c + d * lx
- this.e = e + f * lx - cy * lx
-
- return this
- },
-
- // Skew Matrix
- skew: function (x, y, cx, cy) {
- return this.clone().skewO(...arguments)
- },
-
- skewO: function (x, y = x, cx = 0, cy = 0) {
- // support uniformal skew
- if (arguments.length === 3) {
- cy = cx
- cx = y
- y = x
- }
-
- // Convert degrees to radians
- x = SVG.utils.radians(x)
- y = SVG.utils.radians(y)
-
- let lx = Math.tan(x)
- let ly = Math.tan(y)
-
- let {a, b, c, d, e, f} = this
-
- this.a = a + b * lx
- this.b = b + a * ly
- this.c = c + d * lx
- this.d = d + c * ly
- this.e = e + f * lx - cy * lx
- this.f = f + e * ly - cx * ly
-
- return this
- },
-
- // SkewX
- skewX: function (x, cx, cy) {
- return this.skew(x, 0, cx, cy)
- },
-
- skewXO: function (x, cx, cy) {
- return this.skewO(x, 0, cx, cy)
- },
-
- // SkewY
- skewY: function (y, cx, cy) {
- return this.skew(0, y, cx, cy)
- },
-
- skewYO: function (y, cx, cy) {
- return this.skewO(0, y, cx, cy)
- },
-
- // Transform around a center point
- aroundO: function (cx, cy, matrix) {
- var dx = cx || 0
- var dy = cy || 0
- return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy)
- },
-
- around: function (cx, cy, matrix) {
- return this.clone().aroundO(cx, cy, matrix)
- },
-
- // Convert to native SVGMatrix
- native: function () {
- // create new matrix
- var matrix = SVG.parser.nodes.svg.node.createSVGMatrix()
-
- // update with current values
- for (var i = abcdef.length - 1; i >= 0; i--) {
- matrix[abcdef[i]] = this[abcdef[i]]
- }
-
- return matrix
- },
-
- // Check if two matrices are equal
- equals: function (other) {
- var comp = new SVG.Matrix(other)
- return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) &&
- closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) &&
- closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f)
- },
-
- // Convert matrix to string
- toString: function () {
- return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')'
- },
-
- toArray: function () {
- return [this.a, this.b, this.c, this.d, this.e, this.f]
- },
-
- valueOf: function () {
- return {
- a: this.a,
- b: this.b,
- c: this.c,
- d: this.d,
- e: this.e,
- f: this.f
- }
+ this.a = a * cos - b * sin
+ this.b = b * cos + a * sin
+ this.c = c * cos - d * sin
+ this.d = d * cos + c * sin
+ this.e = e * cos - f * sin + cy * sin - cx * cos + cx
+ this.f = f * cos + e * sin - cx * sin - cy * cos + cy
+
+ return this
+ }
+
+ // Flip matrix on x or y, at a given offset
+ flip (axis, around) {
+ return this.clone().flipO(axis, around)
+ }
+
+ flipO (axis, around) {
+ return axis === 'x' ? this.scaleO(-1, 1, around, 0)
+ : axis === 'y' ? this.scaleO(1, -1, 0, around)
+ : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point
+ }
+
+ // Shear matrix
+ shear (a, cx, cy) {
+ return this.clone().shearO(a, cx, cy)
+ }
+
+ shearO (lx, cx = 0, cy = 0) {
+ let {a, b, c, d, e, f} = this
+
+ this.a = a + b * lx
+ this.c = c + d * lx
+ this.e = e + f * lx - cy * lx
+
+ return this
+ }
+
+ // Skew Matrix
+ skew (x, y, cx, cy) {
+ return this.clone().skewO(...arguments)
+ }
+
+ skewO (x, y = x, cx = 0, cy = 0) {
+ // support uniformal skew
+ if (arguments.length === 3) {
+ cy = cx
+ cx = y
+ y = x
+ }
+
+ // Convert degrees to radians
+ x = radians(x)
+ y = radians(y)
+
+ let lx = Math.tan(x)
+ let ly = Math.tan(y)
+
+ let {a, b, c, d, e, f} = this
+
+ this.a = a + b * lx
+ this.b = b + a * ly
+ this.c = c + d * lx
+ this.d = d + c * ly
+ this.e = e + f * lx - cy * lx
+ this.f = f + e * ly - cx * ly
+
+ return this
+ }
+
+ // SkewX
+ skewX (x, cx, cy) {
+ return this.skew(x, 0, cx, cy)
+ }
+
+ skewXO (x, cx, cy) {
+ return this.skewO(x, 0, cx, cy)
+ }
+
+ // SkewY
+ skewY (y, cx, cy) {
+ return this.skew(0, y, cx, cy)
+ }
+
+ skewYO (y, cx, cy) {
+ return this.skewO(0, y, cx, cy)
+ }
+
+ // Transform around a center point
+ aroundO (cx, cy, matrix) {
+ var dx = cx || 0
+ var dy = cy || 0
+ return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy)
+ }
+
+ around (cx, cy, matrix) {
+ return this.clone().aroundO(cx, cy, matrix)
+ }
+
+ // Convert to native SVGMatrix
+ native () {
+ // create new matrix
+ var matrix = parser.nodes.node.createSVGMatrix()
+
+ // update with current values
+ for (var i = abcdef.length - 1; i >= 0; i--) {
+ matrix[abcdef[i]] = this[abcdef[i]]
}
+
+ return matrix
+ }
+
+ // Check if two matrices are equal
+ equals (other) {
+ var comp = new Matrix(other)
+ return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) &&
+ closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) &&
+ closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f)
+ }
+
+ // Convert matrix to string
+ toString () {
+ return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')'
+ }
+
+ toArray () {
+ return [this.a, this.b, this.c, this.d, this.e, this.f]
+ }
+
+ valueOf () {
+ return {
+ a: this.a,
+ b: this.b,
+ c: this.c,
+ d: this.d,
+ e: this.e,
+ f: this.f
+ }
+ }
+}
+
+extend(Element, {
+ // Get current matrix
+ ctm () {
+ return new Matrix(this.node.getCTM())
},
- // Define parent
- parent: SVG.Element,
-
- // Add parent method
- construct: {
- // Get current matrix
- ctm: function () {
- return new SVG.Matrix(this.node.getCTM())
- },
- // Get current screen matrix
- screenCTM: function () {
- /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537
- This is needed because FF does not return the transformation matrix
- for the inner coordinate system when getScreenCTM() is called on nested svgs.
- However all other Browsers do that */
- if (this instanceof SVG.Doc && !this.isRoot()) {
- var rect = this.rect(1, 1)
- var m = rect.node.getScreenCTM()
- rect.remove()
- return new SVG.Matrix(m)
- }
- return new SVG.Matrix(this.node.getScreenCTM())
+ // Get current screen matrix
+ screenCTM () {
+ /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537
+ This is needed because FF does not return the transformation matrix
+ for the inner coordinate system when getScreenCTM() is called on nested svgs.
+ However all other Browsers do that */
+ if (this instanceof Doc && !this.isRoot()) {
+ var rect = this.rect(1, 1)
+ var m = rect.node.getScreenCTM()
+ rect.remove()
+ return new Matrix(m)
}
+ return new Matrix(this.node.getScreenCTM())
}
})
@@ -461,12 +434,12 @@ SVG.Matrix = SVG.invent({
// ['rotate'].forEach((method) => {
// let methodO = method + 'O'
// extensions[method] = function (...args) {
-// return new SVG.Matrix(this)[methodO](...args)
+// return new Matrix(this)[methodO](...args)
// }
// })
//
-// SVG.extend(SVG.Matrix, extensions)
+// extend(Matrix, extensions)
// function matrixMultiplyParams (matrix, a, b, c, d, e, f) {
-// return matrixMultiply({a, b, c, d, e, f}, matrix, matrix)
+// return matrixMultiply({a, b, c, d, e, f} matrix, matrix)
// }