From 03322672782a6318b019eff33fe44ec800d6f12c Mon Sep 17 00:00:00 2001 From: Ulrich-Matthias Schäfer Date: Tue, 13 Jun 2023 01:43:37 +0200 Subject: dependency updates, easier formatting --- src/types/Matrix.js | 239 +++++++++++++++++++++++++++++++--------------------- 1 file changed, 142 insertions(+), 97 deletions(-) (limited to 'src/types/Matrix.js') diff --git a/src/types/Matrix.js b/src/types/Matrix.js index c329df4..760f002 100644 --- a/src/types/Matrix.js +++ b/src/types/Matrix.js @@ -4,87 +4,116 @@ import { register } from '../utils/adopter.js' import Element from '../elements/Element.js' import Point from './Point.js' -function closeEnough (a, b, threshold) { +function closeEnough(a, b, threshold) { return Math.abs(b - a) < (threshold || 1e-6) } export default class Matrix { - constructor (...args) { + constructor(...args) { this.init(...args) } - static formatTransforms (o) { + static formatTransforms(o) { // Get all of the parameters required to form the matrix const flipBoth = o.flip === 'both' || o.flip === true const flipX = o.flip && (flipBoth || o.flip === 'x') ? -1 : 1 const flipY = o.flip && (flipBoth || o.flip === 'y') ? -1 : 1 - const skewX = o.skew && o.skew.length - ? o.skew[0] - : isFinite(o.skew) + const skewX = + o.skew && o.skew.length + ? o.skew[0] + : isFinite(o.skew) ? o.skew : isFinite(o.skewX) - ? o.skewX - : 0 - const skewY = o.skew && o.skew.length - ? o.skew[1] - : isFinite(o.skew) + ? o.skewX + : 0 + const skewY = + o.skew && o.skew.length + ? o.skew[1] + : isFinite(o.skew) ? o.skew : isFinite(o.skewY) - ? o.skewY - : 0 - const scaleX = o.scale && o.scale.length - ? o.scale[0] * flipX - : isFinite(o.scale) + ? o.skewY + : 0 + const scaleX = + o.scale && o.scale.length + ? o.scale[0] * flipX + : isFinite(o.scale) ? o.scale * flipX : isFinite(o.scaleX) - ? o.scaleX * flipX - : flipX - const scaleY = o.scale && o.scale.length - ? o.scale[1] * flipY - : isFinite(o.scale) + ? o.scaleX * flipX + : flipX + const scaleY = + o.scale && o.scale.length + ? o.scale[1] * flipY + : isFinite(o.scale) ? o.scale * flipY : isFinite(o.scaleY) - ? o.scaleY * flipY - : flipY + ? o.scaleY * flipY + : flipY const shear = o.shear || 0 const theta = o.rotate || o.theta || 0 - const origin = new Point(o.origin || o.around || o.ox || o.originX, o.oy || o.originY) + const origin = new Point( + o.origin || o.around || o.ox || o.originX, + o.oy || o.originY + ) const ox = origin.x const oy = origin.y // We need Point to be invalid if nothing was passed because we cannot default to 0 here. That is why NaN - const position = new Point(o.position || o.px || o.positionX || NaN, o.py || o.positionY || NaN) + const position = new Point( + o.position || o.px || o.positionX || NaN, + o.py || o.positionY || NaN + ) const px = position.x const py = position.y - const translate = new Point(o.translate || o.tx || o.translateX, o.ty || o.translateY) + const translate = new Point( + o.translate || o.tx || o.translateX, + o.ty || o.translateY + ) const tx = translate.x const ty = translate.y - const relative = new Point(o.relative || o.rx || o.relativeX, o.ry || o.relativeY) + const relative = new Point( + o.relative || o.rx || o.relativeX, + o.ry || o.relativeY + ) const rx = relative.x const ry = relative.y // Populate all of the values return { - scaleX, scaleY, skewX, skewY, shear, theta, rx, ry, tx, ty, ox, oy, px, py + scaleX, + scaleY, + skewX, + skewY, + shear, + theta, + rx, + ry, + tx, + ty, + ox, + oy, + px, + py } } - static fromArray (a) { + static fromArray(a) { return { a: a[0], b: a[1], c: a[2], d: a[3], e: a[4], f: a[5] } } - static isMatrixLike (o) { + static isMatrixLike(o) { return ( - o.a != null - || o.b != null - || o.c != null - || o.d != null - || o.e != null - || o.f != null + o.a != null || + o.b != null || + o.c != null || + o.d != null || + o.e != null || + o.f != null ) } // left matrix, right matrix, target matrix which is overwritten - static matrixMultiply (l, r, o) { + static matrixMultiply(l, r, o) { // Work out the product directly const a = l.a * r.a + l.c * r.b const b = l.b * r.a + l.d * r.b @@ -104,24 +133,24 @@ export default class Matrix { return o } - around (cx, cy, matrix) { + around(cx, cy, matrix) { return this.clone().aroundO(cx, cy, matrix) } // Transform around a center point - aroundO (cx, cy, matrix) { + aroundO(cx, cy, matrix) { const dx = cx || 0 const dy = cy || 0 return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy) } // Clones this matrix - clone () { + clone() { return new Matrix(this) } // Decomposes this matrix into its affine parameters - decompose (cx = 0, cy = 0) { + decompose(cx = 0, cy = 0) { // Get the parameters from the matrix const a = this.a const b = this.b @@ -138,14 +167,14 @@ export default class Matrix { // and the rotation of the resulting matrix const sx = ccw * Math.sqrt(a * a + b * b) const thetaRad = Math.atan2(ccw * b, ccw * a) - const theta = 180 / Math.PI * thetaRad + const theta = (180 / Math.PI) * thetaRad const ct = Math.cos(thetaRad) const st = Math.sin(thetaRad) // We can then solve the y basis vector simultaneously to get the other // two affine parameters directly from these parameters const lam = (a * c + b * d) / determinant - const sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a)) + const sy = (c * sx) / (lam * a - b) || (d * sx) / (lam * b + a) // Use the translations const tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy) @@ -174,45 +203,51 @@ export default class Matrix { } // Check if two matrices are equal - equals (other) { + equals(other) { if (other === this) return true const comp = new Matrix(other) - return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) - && closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) - && closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f) + return ( + closeEnough(this.a, comp.a) && + closeEnough(this.b, comp.b) && + closeEnough(this.c, comp.c) && + closeEnough(this.d, comp.d) && + closeEnough(this.e, comp.e) && + closeEnough(this.f, comp.f) + ) } // Flip matrix on x or y, at a given offset - flip (axis, around) { + flip(axis, around) { return this.clone().flipO(axis, around) } - flipO (axis, around) { + flipO(axis, around) { return axis === 'x' ? this.scaleO(-1, 1, around, 0) : axis === 'y' - ? this.scaleO(1, -1, 0, around) - : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point + ? this.scaleO(1, -1, 0, around) + : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point } // Initialize - init (source) { - const base = Matrix.fromArray([ 1, 0, 0, 1, 0, 0 ]) + init(source) { + const base = Matrix.fromArray([1, 0, 0, 1, 0, 0]) // ensure source as object - source = source instanceof Element - ? source.matrixify() - : typeof source === 'string' + source = + source instanceof Element + ? source.matrixify() + : typeof source === 'string' ? Matrix.fromArray(source.split(delimiter).map(parseFloat)) : Array.isArray(source) - ? Matrix.fromArray(source) - : (typeof source === 'object' && Matrix.isMatrixLike(source)) - ? source - : (typeof source === 'object') - ? new Matrix().transform(source) - : arguments.length === 6 - ? Matrix.fromArray([].slice.call(arguments)) - : base + ? Matrix.fromArray(source) + : typeof source === 'object' && Matrix.isMatrixLike(source) + ? source + : typeof source === 'object' + ? new Matrix().transform(source) + : arguments.length === 6 + ? Matrix.fromArray([].slice.call(arguments)) + : base // Merge the source matrix with the base matrix this.a = source.a != null ? source.a : base.a @@ -225,12 +260,12 @@ export default class Matrix { return this } - inverse () { + inverse() { return this.clone().inverseO() } // Inverses matrix - inverseO () { + inverseO() { // Get the current parameters out of the matrix const a = this.a const b = this.b @@ -264,40 +299,36 @@ export default class Matrix { return this } - lmultiply (matrix) { + lmultiply(matrix) { return this.clone().lmultiplyO(matrix) } - lmultiplyO (matrix) { + lmultiplyO(matrix) { const r = this - const l = matrix instanceof Matrix - ? matrix - : new Matrix(matrix) + const l = matrix instanceof Matrix ? matrix : new Matrix(matrix) return Matrix.matrixMultiply(l, r, this) } // Left multiplies by the given matrix - multiply (matrix) { + multiply(matrix) { return this.clone().multiplyO(matrix) } - multiplyO (matrix) { + multiplyO(matrix) { // Get the matrices const l = this - const r = matrix instanceof Matrix - ? matrix - : new Matrix(matrix) + const r = matrix instanceof Matrix ? matrix : new Matrix(matrix) return Matrix.matrixMultiply(l, r, this) } // Rotate matrix - rotate (r, cx, cy) { + rotate(r, cx, cy) { return this.clone().rotateO(r, cx, cy) } - rotateO (r, cx = 0, cy = 0) { + rotateO(r, cx = 0, cy = 0) { // Convert degrees to radians r = radians(r) @@ -317,11 +348,11 @@ export default class Matrix { } // Scale matrix - scale (x, y, cx, cy) { + scale() { return this.clone().scaleO(...arguments) } - scaleO (x, y = x, cx = 0, cy = 0) { + scaleO(x, y = x, cx = 0, cy = 0) { // Support uniform scaling if (arguments.length === 3) { cy = cx @@ -342,11 +373,12 @@ export default class Matrix { } // Shear matrix - shear (a, cx, cy) { + shear(a, cx, cy) { return this.clone().shearO(a, cx, cy) } - shearO (lx, cx = 0, cy = 0) { + // eslint-disable-next-line no-unused-vars + shearO(lx, cx = 0, cy = 0) { const { a, b, c, d, e, f } = this this.a = a + b * lx @@ -357,11 +389,11 @@ export default class Matrix { } // Skew Matrix - skew (x, y, cx, cy) { + skew() { return this.clone().skewO(...arguments) } - skewO (x, y = x, cx = 0, cy = 0) { + skewO(x, y = x, cx = 0, cy = 0) { // support uniformal skew if (arguments.length === 3) { cy = cx @@ -389,26 +421,40 @@ export default class Matrix { } // SkewX - skewX (x, cx, cy) { + skewX(x, cx, cy) { return this.skew(x, 0, cx, cy) } // SkewY - skewY (y, cx, cy) { + skewY(y, cx, cy) { return this.skew(0, y, cx, cy) } - toArray () { - return [ this.a, this.b, this.c, this.d, this.e, this.f ] + toArray() { + return [this.a, this.b, this.c, this.d, this.e, this.f] } // Convert matrix to string - toString () { - return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')' + toString() { + return ( + 'matrix(' + + this.a + + ',' + + this.b + + ',' + + this.c + + ',' + + this.d + + ',' + + this.e + + ',' + + this.f + + ')' + ) } // Transform a matrix into another matrix by manipulating the space - transform (o) { + transform(o) { // Check if o is a matrix and then left multiply it directly if (Matrix.isMatrixLike(o)) { const matrix = new Matrix(o) @@ -447,17 +493,17 @@ export default class Matrix { } // Translate matrix - translate (x, y) { + translate(x, y) { return this.clone().translateO(x, y) } - translateO (x, y) { + translateO(x, y) { this.e += x || 0 this.f += y || 0 return this } - valueOf () { + valueOf() { return { a: this.a, b: this.b, @@ -467,14 +513,13 @@ export default class Matrix { f: this.f } } - } -export function ctm () { +export function ctm() { return new Matrix(this.node.getCTM()) } -export function screenCTM () { +export function screenCTM() { /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537 This is needed because FF does not return the transformation matrix for the inner coordinate system when getScreenCTM() is called on nested svgs. -- cgit v1.2.3