import {abcdef, arrayToMatrix, closeEnough, formatTransforms, isMatrixLike, matrixMultiply} from './helpers.js' import {Element, Point, Doc} from './classes.js' import {delimiter} from './regex.js' import {radians} from './utils.js' import parser from './parser.js' export default class Matrix { // Initialize constructor (source) { var base = arrayToMatrix([1, 0, 0, 1, 0, 0]) // ensure source as object source = source instanceof Element ? source.matrixify() : typeof source === 'string' ? arrayToMatrix(source.split(delimiter).map(parseFloat)) : Array.isArray(source) ? arrayToMatrix(source) : (typeof source === 'object' && isMatrixLike(source)) ? source : (typeof source === 'object') ? new Matrix().transform(source) : arguments.length === 6 ? arrayToMatrix([].slice.call(arguments)) : base // Merge the source matrix with the base matrix this.a = source.a != null ? source.a : base.a this.b = source.b != null ? source.b : base.b this.c = source.c != null ? source.c : base.c this.d = source.d != null ? source.d : base.d this.e = source.e != null ? source.e : base.e this.f = source.f != null ? source.f : base.f } // Clones this matrix clone () { return new Matrix(this) } // Transform a matrix into another matrix by manipulating the space transform (o) { // Check if o is a matrix and then left multiply it directly if (isMatrixLike(o)) { var matrix = new Matrix(o) return matrix.multiplyO(this) } // Get the proposed transformations and the current transformations var t = formatTransforms(o) var current = this let { x: ox, y: oy } = new Point(t.ox, t.oy).transform(current) // Construct the resulting matrix var transformer = new Matrix() .translateO(t.rx, t.ry) .lmultiplyO(current) .translateO(-ox, -oy) .scaleO(t.scaleX, t.scaleY) .skewO(t.skewX, t.skewY) .shearO(t.shear) .rotateO(t.theta) .translateO(ox, oy) // If we want the origin at a particular place, we force it there if (isFinite(t.px) || isFinite(t.py)) { const origin = new Point(ox, oy).transform(transformer) // TODO: Replace t.px with isFinite(t.px) const dx = t.px ? t.px - origin.x : 0 const dy = t.py ? t.py - origin.y : 0 transformer.translateO(dx, dy) } // Translate now after positioning transformer.translateO(t.tx, t.ty) return transformer } // Applies a matrix defined by its affine parameters compose (o) { if (o.origin) { o.originX = o.origin[0] o.originY = o.origin[1] } // Get the parameters var ox = o.originX || 0 var oy = o.originY || 0 var sx = o.scaleX || 1 var sy = o.scaleY || 1 var lam = o.shear || 0 var theta = o.rotate || 0 var tx = o.translateX || 0 var ty = o.translateY || 0 // Apply the standard matrix var result = new Matrix() .translateO(-ox, -oy) .scaleO(sx, sy) .shearO(lam) .rotateO(theta) .translateO(tx, ty) .lmultiplyO(this) .translateO(ox, oy) return result } // Decomposes this matrix into its affine parameters decompose (cx = 0, cy = 0) { // Get the parameters from the matrix var a = this.a var b = this.b var c = this.c var d = this.d var e = this.e var f = this.f // Figure out if the winding direction is clockwise or counterclockwise var determinant = a * d - b * c var ccw = determinant > 0 ? 1 : -1 // Since we only shear in x, we can use the x basis to get the x scale // and the rotation of the resulting matrix var sx = ccw * Math.sqrt(a * a + b * b) var thetaRad = Math.atan2(ccw * b, ccw * a) var theta = 180 / Math.PI * thetaRad var ct = Math.cos(thetaRad) var st = Math.sin(thetaRad) // We can then solve the y basis vector simultaneously to get the other // two affine parameters directly from these parameters var lam = (a * c + b * d) / determinant var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a)) // Use the translations let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy) let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy) // Construct the decomposition and return it return { // Return the affine parameters scaleX: sx, scaleY: sy, shear: lam, rotate: theta, translateX: tx, translateY: ty, originX: cx, originY: cy, // Return the matrix parameters a: this.a, b: this.b, c: this.c, d: this.d, e: this.e, f: this.f } } // Left multiplies by the given matrix multiply (matrix) { return this.clone().multiplyO(matrix) } multiplyO (matrix) { // Get the matrices var l = this var r = matrix instanceof Matrix ? matrix : new Matrix(matrix) return matrixMultiply(l, r, this) } lmultiply (matrix) { return this.clone().lmultiplyO(matrix) } lmultiplyO (matrix) { var r = this var l = matrix instanceof Matrix ? matrix : new Matrix(matrix) return matrixMultiply(l, r, this) } // Inverses matrix inverseO () { // Get the current parameters out of the matrix var a = this.a var b = this.b var c = this.c var d = this.d var e = this.e var f = this.f // Invert the 2x2 matrix in the top left var det = a * d - b * c if (!det) throw new Error('Cannot invert ' + this) // Calculate the top 2x2 matrix var na = d / det var nb = -b / det var nc = -c / det var nd = a / det // Apply the inverted matrix to the top right var ne = -(na * e + nc * f) var nf = -(nb * e + nd * f) // Construct the inverted matrix this.a = na this.b = nb this.c = nc this.d = nd this.e = ne this.f = nf return this } inverse () { return this.clone().inverseO() } // Translate matrix translate (x, y) { return this.clone().translateO(x, y) } translateO (x, y) { this.e += x || 0 this.f += y || 0 return this } // Scale matrix scale (x, y, cx, cy) { return this.clone().scaleO(...arguments) } scaleO (x, y = x, cx = 0, cy = 0) { // Support uniform scaling if (arguments.length === 3) { cy = cx cx = y y = x } let {a, b, c, d, e, f} = this this.a = a * x this.b = b * y this.c = c * x this.d = d * y this.e = e * x - cx * x + cx this.f = f * y - cy * y + cy return this } // Rotate matrix rotate (r, cx, cy) { return this.clone().rotateO(r, cx, cy) } rotateO (r, cx = 0, cy = 0) { // Convert degrees to radians r = radians(r) let cos = Math.cos(r) let sin = Math.sin(r) let {a, b, c, d, e, f} = this this.a = a * cos - b * sin this.b = b * cos + a * sin this.c = c * cos - d * sin this.d = d * cos + c * sin this.e = e * cos - f * sin + cy * sin - cx * cos + cx this.f = f * cos + e * sin - cx * sin - cy * cos + cy return this } // Flip matrix on x or y, at a given offset flip (axis, around) { return this.clone().flipO(axis, around) } flipO (axis, around) { return axis === 'x' ? this.scaleO(-1, 1, around, 0) : axis === 'y' ? this.scaleO(1, -1, 0, around) : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point } // Shear matrix shear (a, cx, cy) { return this.clone().shearO(a, cx, cy) } shearO (lx, cx = 0, cy = 0) { let {a, b, c, d, e, f} = this this.a = a + b * lx this.c = c + d * lx this.e = e + f * lx - cy * lx return this } // Skew Matrix skew (x, y, cx, cy) { return this.clone().skewO(...arguments) } skewO (x, y = x, cx = 0, cy = 0) { // support uniformal skew if (arguments.length === 3) { cy = cx cx = y y = x } // Convert degrees to radians x = radians(x) y = radians(y) let lx = Math.tan(x) let ly = Math.tan(y) let {a, b, c, d, e, f} = this this.a = a + b * lx this.b = b + a * ly this.c = c + d * lx this.d = d + c * ly this.e = e + f * lx - cy * lx this.f = f + e * ly - cx * ly return this } // SkewX skewX (x, cx, cy) { return this.skew(x, 0, cx, cy) } skewXO (x, cx, cy) { return this.skewO(x, 0, cx, cy) } // SkewY skewY (y, cx, cy) { return this.skew(0, y, cx, cy) } skewYO (y, cx, cy) { return this.skewO(0, y, cx, cy) } // Transform around a center point aroundO (cx, cy, matrix) { var dx = cx || 0 var dy = cy || 0 return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy) } around (cx, cy, matrix) { return this.clone().aroundO(cx, cy, matrix) } // Convert to native SVGMatrix native () { // create new matrix var matrix = parser.nodes.node.createSVGMatrix() // update with current values for (var i = abcdef.length - 1; i >= 0; i--) { matrix[abcdef[i]] = this[abcdef[i]] } return matrix } // Check if two matrices are equal equals (other) { var comp = new Matrix(other) return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) && closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) && closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f) } // Convert matrix to string toString () { return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')' } toArray () { return [this.a, this.b, this.c, this.d, this.e, this.f] } valueOf () { return { a: this.a, b: this.b, c: this.c, d: this.d, e: this.e, f: this.f } } } extend(Element, { // Get current matrix ctm () { return new Matrix(this.node.getCTM()) }, // Get current screen matrix screenCTM () { /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537 This is needed because FF does not return the transformation matrix for the inner coordinate system when getScreenCTM() is called on nested svgs. However all other Browsers do that */ if (this instanceof Doc && !this.isRoot()) { var rect = this.rect(1, 1) var m = rect.node.getScreenCTM() rect.remove() return new Matrix(m) } return new Matrix(this.node.getScreenCTM()) } }) // let extensions = {} // ['rotate'].forEach((method) => { // let methodO = method + 'O' // extensions[method] = function (...args) { // return new Matrix(this)[methodO](...args) // } // }) // // extend(Matrix, extensions) // function matrixMultiplyParams (matrix, a, b, c, d, e, f) { // return matrixMultiply({a, b, c, d, e, f} matrix, matrix) // }