SVG.Matrix = SVG.invent({ // Initialize create: function(source) { var i, base = arrayToMatrix([1, 0, 0, 1, 0, 0]) // ensure source as object source = source instanceof SVG.Element ? source.matrixify() : typeof source === 'string' ? stringToMatrix(source) : arguments.length == 6 ? arrayToMatrix([].slice.call(arguments)) : typeof source === 'object' ? source : base // merge source for (i = abcdef.length - 1; i >= 0; i--) this[abcdef[i]] = source && typeof source[abcdef[i]] === 'number' ? source[abcdef[i]] : base[abcdef[i]] } // Add methods , extend: { // Extract individual transformations extract: function() { // find delta transform points var px = deltaTransformPoint(this, 0, 1) , py = deltaTransformPoint(this, 1, 0) , skewX = 180 / Math.PI * Math.atan2(px.y, px.x) - 90 return { // translation x: this.e , y: this.f // skew , skewX: -skewX , skewY: 180 / Math.PI * Math.atan2(py.y, py.x) // scale , scaleX: Math.sqrt(this.a * this.a + this.b * this.b) , scaleY: Math.sqrt(this.c * this.c + this.d * this.d) // rotation , rotation: skewX } } // Clone matrix , clone: function() { return new SVG.Matrix(this) } // Morph one matrix into another , morph: function(matrix) { // store new destination this.destination = new SVG.Matrix(matrix) return this } // Get morphed matrix at a given position , at: function(pos) { // make sure a destination is defined if (!this.destination) return this // calculate morphed matrix at a given position var matrix = new SVG.Matrix({ a: this.a + (this.destination.a - this.a) * pos , b: this.b + (this.destination.b - this.b) * pos , c: this.c + (this.destination.c - this.c) * pos , d: this.d + (this.destination.d - this.d) * pos , e: this.e + (this.destination.e - this.e) * pos , f: this.f + (this.destination.f - this.f) * pos }) // process parametric rotation if present if (this.param && this.param.to) { // calculate current parametric position var param = { rotation: this.param.from.rotation + (this.param.to.rotation - this.param.from.rotation) * pos , cx: this.param.from.cx , cy: this.param.from.cy } // rotate matrix matrix = matrix.rotate( (this.param.to.rotation - this.param.from.rotation * 2) * pos , param.cx , param.cy ) // store current parametric values matrix.param = param } return matrix } // Multiplies by given matrix , multiply: function(matrix) { return new SVG.Matrix(this.native().multiply(parseMatrix(matrix).native())) } // Inverses matrix , inverse: function() { return new SVG.Matrix(this.native().inverse()) } // Translate matrix , translate: function(x, y) { return new SVG.Matrix(this.native().translate(x || 0, y || 0)) } // Scale matrix , scale: function(x, y, cx, cy) { // support universal scale if (arguments.length == 1 || arguments.length == 3) y = x if (arguments.length == 3) { cy = cx cx = y } return this.around(cx, cy, new SVG.Matrix(x, 0, 0, y, 0, 0)) } // Rotate matrix , rotate: function(r, cx, cy) { // convert degrees to radians r = SVG.utils.radians(r) return this.around(cx, cy, new SVG.Matrix(Math.cos(r), Math.sin(r), -Math.sin(r), Math.cos(r), 0, 0)) } // Flip matrix on x or y, at a given offset , flip: function(a, o) { return a == 'x' ? this.scale(-1, 1, o, 0) : this.scale(1, -1, 0, o) } // Skew , skew: function(x, y, cx, cy) { return this.around(cx, cy, this.native().skewX(x || 0).skewY(y || 0)) } // Transform around a center point , around: function(cx, cy, matrix) { return this .multiply(new SVG.Matrix(1, 0, 0, 1, cx || 0, cy || 0)) .multiply(matrix) .multiply(new SVG.Matrix(1, 0, 0, 1, -cx || 0, -cy || 0)) } // Convert to native SVGMatrix , native: function() { // create new matrix var matrix = SVG.parser.draw.node.createSVGMatrix() // update with current values for (var i = abcdef.length - 1; i >= 0; i--) matrix[abcdef[i]] = this[abcdef[i]] return matrix } // Convert matrix to string , toString: function() { return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')' } } // Define parent , parent: SVG.Element // Add parent method , construct: { // Get current matrix ctm: function() { return new SVG.Matrix(this.node.getCTM()) } } })