/* global abcdef, arrayToMatrix, closeEnough, formatTransforms */ SVG.Matrix = SVG.invent({ // Initialize create: function (source) { var base = arrayToMatrix([1, 0, 0, 1, 0, 0]) // ensure source as object source = source instanceof SVG.Element ? source.matrixify() : typeof source === 'string' ? arrayToMatrix(source.split(SVG.regex.delimiter).map(parseFloat)) : Array.isArray(source) ? arrayToMatrix(source) : (typeof source === 'object' && ( source.a != null || source.b != null || source.c != null || source.d != null || source.e != null || source.f != null )) ? source : (typeof source === 'object') ? new SVG.Matrix().transform(source) : arguments.length === 6 ? arrayToMatrix([].slice.call(arguments)) : base // Merge the source matrix with the base matrix this.a = source.a != null ? source.a : base.a this.b = source.b != null ? source.b : base.b this.c = source.c != null ? source.c : base.c this.d = source.d != null ? source.d : base.d this.e = source.e != null ? source.e : base.e this.f = source.f != null ? source.f : base.f }, // Add methods extend: { // Clones this matrix clone: function () { return new SVG.Matrix(this) }, // Transform a matrix into another matrix by manipulating the space transform: function (o) { // Check if o is a matrix and then left multiply it directly if (o.a != null) { var matrix = new SVG.Matrix(o) var newMatrix = this.lmultiply(matrix) return newMatrix } // Get the proposed transformations and the current transformations var t = formatTransforms(o) var currentTransform = new SVG.Matrix(this) // Construct the resulting matrix var transformer = new SVG.Matrix(currentTransform) .translate(-t.ox, -t.oy) .scale(t.scaleX, t.scaleY) .skew(t.skewX, t.skewY) .shear(t.shear) .rotate(t.theta) .translate(t.ox, t.oy) .translate(t.rx, t.ry) // If we want the origin at a particular place, we force it there if (isFinite(t.px) || isFinite(t.py)) { // Figure out where the origin went and the delta to get there var current = new SVG.Point(t.ox - t.rx, t.oy - t.ry).transform(transformer) var dx = t.px ? t.px - current.x : 0 var dy = t.py ? t.py - current.y : 0 // Apply another translation transformer = transformer.translate(dx, dy) } // We can apply translations after everything else transformer = transformer.translate(t.tx, t.ty) return transformer }, // Applies a matrix defined by its affine parameters compose: function (o) { if (o.origin) { o.originX = o.origin[0] o.originY = o.origin[1] } // Get the parameters var ox = o.originX || 0 var oy = o.originY || 0 var sx = o.scaleX || 1 var sy = o.scaleY || 1 var lam = o.shear || 0 var theta = o.rotate || 0 var tx = o.translateX || 0 var ty = o.translateY || 0 // Apply the standard matrix var result = new SVG.Matrix() .translate(-ox, -oy) .scale(sx, sy) .shear(lam) .rotate(theta) .translate(tx, ty) .lmultiply(this) .translate(ox, oy) return result }, // Decomposes this matrix into its affine parameters decompose: function (cx = 0, cy = 0) { // Get the parameters from the matrix var a = this.a var b = this.b var c = this.c var d = this.d var e = this.e var f = this.f // Figure out if the winding direction is clockwise or counterclockwise var determinant = a * d - b * c var ccw = determinant > 0 ? 1 : -1 // Since we only shear in x, we can use the x basis to get the x scale // and the rotation of the resulting matrix var sx = ccw * Math.sqrt(a * a + b * b) var thetaRad = Math.atan2(ccw * b, ccw * a) var theta = 180 / Math.PI * thetaRad var ct = Math.cos(thetaRad) var st = Math.sin(thetaRad) // We can then solve the y basis vector simultaneously to get the other // two affine parameters directly from these parameters var lam = (a * c + b * d) / determinant var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a)) // Use the translations let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy) let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy) // Construct the decomposition and return it return { // Return the affine parameters scaleX: sx, scaleY: sy, shear: lam, rotate: theta, translateX: tx, translateY: ty, originX: cx, originY: cy, // Return the matrix parameters a: this.a, b: this.b, c: this.c, d: this.d, e: this.e, f: this.f } }, // Morph one matrix into another morph: function (matrix) { // Store new destination this.destination = new SVG.Matrix(matrix) return this }, // Get morphed matrix at a given position at: function (pos) { // Make sure a destination is defined if (!this.destination) return this // Calculate morphed matrix at a given position var matrix = new SVG.Matrix({ a: this.a + (this.destination.a - this.a) * pos, b: this.b + (this.destination.b - this.b) * pos, c: this.c + (this.destination.c - this.c) * pos, d: this.d + (this.destination.d - this.d) * pos, e: this.e + (this.destination.e - this.e) * pos, f: this.f + (this.destination.f - this.f) * pos }) return matrix }, // Left multiplies by the given matrix multiply: function (matrix) { // Get the matrices var l = this var r = new SVG.Matrix(matrix) // Work out the product directly var a = l.a * r.a + l.c * r.b var b = l.b * r.a + l.d * r.b var c = l.a * r.c + l.c * r.d var d = l.b * r.c + l.d * r.d var e = l.e + l.a * r.e + l.c * r.f var f = l.f + l.b * r.e + l.d * r.f // Form the matrix and return it var product = new SVG.Matrix(a, b, c, d, e, f) return product }, lmultiply: function (matrix) { var result = new SVG.Matrix(matrix).multiply(this) return result }, // Inverses matrix inverse: function () { // Get the current parameters out of the matrix var a = this.a var b = this.b var c = this.c var d = this.d var e = this.e var f = this.f // Invert the 2x2 matrix in the top left var det = a * d - b * c if (!det) throw new Error('Cannot invert ' + this) // Calculate the top 2x2 matrix var na = d / det var nb = -b / det var nc = -c / det var nd = a / det // Apply the inverted matrix to the top right var ne = -(na * e + nc * f) var nf = -(nb * e + nd * f) // Construct the inverted matrix return new SVG.Matrix(na, nb, nc, nd, ne, nf) }, // Translate matrix translate: function (x, y) { return new SVG.Matrix(this).translateO(x, y) }, translateO: function (x, y) { this.e += x || 0 this.f += y || 0 return this }, // Scale matrix scale: function (x, y, cx, cy) { // Support uniform scaling if (arguments.length === 1) { y = x } else if (arguments.length === 3) { cy = cx cx = y y = x } // Scale the current matrix var scale = new SVG.Matrix(x, 0, 0, y, 0, 0) var matrix = this.around(cx, cy, scale) return matrix }, // Rotate matrix rotate: function (r, cx, cy) { // Convert degrees to radians r = SVG.utils.radians(r) // Construct the rotation matrix var rotation = new SVG.Matrix(Math.cos(r), Math.sin(r), -Math.sin(r), Math.cos(r), 0, 0) var matrix = this.around(cx, cy, rotation) return matrix }, // Flip matrix on x or y, at a given offset flip: function (axis, around) { return axis === 'x' ? this.scale(-1, 1, around, 0) : axis === 'y' ? this.scale(1, -1, 0, around) : this.scale(-1, -1, axis, around || axis) // Define an x, y flip point }, // Shear matrix shear: function (a, cx, cy) { var shear = new SVG.Matrix(1, 0, a, 1, 0, 0) var matrix = this.around(cx, cy, shear) return matrix }, // Skew Matrix skew: function (x, y, cx, cy) { // support uniformal skew if (arguments.length === 1) { y = x } else if (arguments.length === 3) { cy = cx cx = y y = x } // Convert degrees to radians x = SVG.utils.radians(x) y = SVG.utils.radians(y) // Construct the matrix var skew = new SVG.Matrix(1, Math.tan(y), Math.tan(x), 1, 0, 0) var matrix = this.around(cx, cy, skew) return matrix }, // SkewX skewX: function (x, cx, cy) { return this.skew(x, 0, cx, cy) }, // SkewY skewY: function (y, cx, cy) { return this.skew(0, y, cx, cy) }, // Transform around a center point around: function (cx, cy, matrix) { var dx = cx || 0 var dy = cy || 0 return this.translate(-dx, -dy).lmultiply(matrix).translate(dx, dy) }, // Convert to native SVGMatrix native: function () { // create new matrix var matrix = SVG.parser.nodes.svg.node.createSVGMatrix() // update with current values for (var i = abcdef.length - 1; i >= 0; i--) { matrix[abcdef[i]] = this[abcdef[i]] } return matrix }, // Check if two matrices are equal equals: function (other) { var comp = new SVG.Matrix(other) return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) && closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) && closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f) }, // Convert matrix to string toString: function () { return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')' }, toArray: function () { return [this.a, this.b, this.c, this.d, this.e, this.f] }, valueOf: function () { return { a: this.a, b: this.b, c: this.c, d: this.d, e: this.e, f: this.f } } }, // Define parent parent: SVG.Element, // Add parent method construct: { // Get current matrix ctm: function () { return new SVG.Matrix(this.node.getCTM()) }, // Get current screen matrix screenCTM: function () { /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537 This is needed because FF does not return the transformation matrix for the inner coordinate system when getScreenCTM() is called on nested svgs. However all other Browsers do that */ if (this instanceof SVG.Doc && !this.isRoot()) { var rect = this.rect(1, 1) var m = rect.node.getScreenCTM() rect.remove() return new SVG.Matrix(m) } return new SVG.Matrix(this.node.getScreenCTM()) } } })