summaryrefslogtreecommitdiffstats
path: root/src/Matrix.js
blob: 00e4448ab0e64c76f0fc69e368c6ffbe6fd6f146 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
import { abcdef, arrayToMatrix, closeEnough, isMatrixLike } from './helpers.js'
import Point from './Point.js'
import { delimiter } from './regex.js'
import { radians } from './utils.js'
import parser from './parser.js'
import Element from './Element.js'
import { registerMethods } from './methods.js'

export default class Matrix {
  constructor (...args) {
    this.init(...args)
  }

  // Initialize
  init (source) {
    var base = arrayToMatrix([1, 0, 0, 1, 0, 0])

    // ensure source as object
    source = source instanceof Element ? source.matrixify()
      : typeof source === 'string' ? arrayToMatrix(source.split(delimiter).map(parseFloat))
        : Array.isArray(source) ? arrayToMatrix(source)
          : (typeof source === 'object' && isMatrixLike(source)) ? source
            : (typeof source === 'object') ? new Matrix().transform(source)
              : arguments.length === 6 ? arrayToMatrix([].slice.call(arguments))
                : base

    // Merge the source matrix with the base matrix
    this.a = source.a != null ? source.a : base.a
    this.b = source.b != null ? source.b : base.b
    this.c = source.c != null ? source.c : base.c
    this.d = source.d != null ? source.d : base.d
    this.e = source.e != null ? source.e : base.e
    this.f = source.f != null ? source.f : base.f
  }

  // Clones this matrix
  clone () {
    return new Matrix(this)
  }

  // Transform a matrix into another matrix by manipulating the space
  transform (o) {
    // Check if o is a matrix and then left multiply it directly
    if (isMatrixLike(o)) {
      var matrix = new Matrix(o)
      return matrix.multiplyO(this)
    }

    // Get the proposed transformations and the current transformations
    var t = Matrix.formatTransforms(o)
    var current = this
    let { x: ox, y: oy } = new Point(t.ox, t.oy).transform(current)

    // Construct the resulting matrix
    var transformer = new Matrix()
      .translateO(t.rx, t.ry)
      .lmultiplyO(current)
      .translateO(-ox, -oy)
      .scaleO(t.scaleX, t.scaleY)
      .skewO(t.skewX, t.skewY)
      .shearO(t.shear)
      .rotateO(t.theta)
      .translateO(ox, oy)

    // If we want the origin at a particular place, we force it there
    if (isFinite(t.px) || isFinite(t.py)) {
      const origin = new Point(ox, oy).transform(transformer)
      // TODO: Replace t.px with isFinite(t.px)
      const dx = t.px ? t.px - origin.x : 0
      const dy = t.py ? t.py - origin.y : 0
      transformer.translateO(dx, dy)
    }

    // Translate now after positioning
    transformer.translateO(t.tx, t.ty)
    return transformer
  }

  // Applies a matrix defined by its affine parameters
  compose (o) {
    if (o.origin) {
      o.originX = o.origin[0]
      o.originY = o.origin[1]
    }
    // Get the parameters
    var ox = o.originX || 0
    var oy = o.originY || 0
    var sx = o.scaleX || 1
    var sy = o.scaleY || 1
    var lam = o.shear || 0
    var theta = o.rotate || 0
    var tx = o.translateX || 0
    var ty = o.translateY || 0

    // Apply the standard matrix
    var result = new Matrix()
      .translateO(-ox, -oy)
      .scaleO(sx, sy)
      .shearO(lam)
      .rotateO(theta)
      .translateO(tx, ty)
      .lmultiplyO(this)
      .translateO(ox, oy)
    return result
  }

  // Decomposes this matrix into its affine parameters
  decompose (cx = 0, cy = 0) {
    // Get the parameters from the matrix
    var a = this.a
    var b = this.b
    var c = this.c
    var d = this.d
    var e = this.e
    var f = this.f

    // Figure out if the winding direction is clockwise or counterclockwise
    var determinant = a * d - b * c
    var ccw = determinant > 0 ? 1 : -1

    // Since we only shear in x, we can use the x basis to get the x scale
    // and the rotation of the resulting matrix
    var sx = ccw * Math.sqrt(a * a + b * b)
    var thetaRad = Math.atan2(ccw * b, ccw * a)
    var theta = 180 / Math.PI * thetaRad
    var ct = Math.cos(thetaRad)
    var st = Math.sin(thetaRad)

    // We can then solve the y basis vector simultaneously to get the other
    // two affine parameters directly from these parameters
    var lam = (a * c + b * d) / determinant
    var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a))

    // Use the translations
    let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy)
    let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy)

    // Construct the decomposition and return it
    return {
      // Return the affine parameters
      scaleX: sx,
      scaleY: sy,
      shear: lam,
      rotate: theta,
      translateX: tx,
      translateY: ty,
      originX: cx,
      originY: cy,

      // Return the matrix parameters
      a: this.a,
      b: this.b,
      c: this.c,
      d: this.d,
      e: this.e,
      f: this.f
    }
  }

  // Left multiplies by the given matrix
  multiply (matrix) {
    return this.clone().multiplyO(matrix)
  }

  multiplyO (matrix) {
    // Get the matrices
    var l = this
    var r = matrix instanceof Matrix
      ? matrix
      : new Matrix(matrix)

    return Matrix.matrixMultiply(l, r, this)
  }

  lmultiply (matrix) {
    return this.clone().lmultiplyO(matrix)
  }

  lmultiplyO (matrix) {
    var r = this
    var l = matrix instanceof Matrix
      ? matrix
      : new Matrix(matrix)

    return Matrix.matrixMultiply(l, r, this)
  }

  // Inverses matrix
  inverseO () {
    // Get the current parameters out of the matrix
    var a = this.a
    var b = this.b
    var c = this.c
    var d = this.d
    var e = this.e
    var f = this.f

    // Invert the 2x2 matrix in the top left
    var det = a * d - b * c
    if (!det) throw new Error('Cannot invert ' + this)

    // Calculate the top 2x2 matrix
    var na = d / det
    var nb = -b / det
    var nc = -c / det
    var nd = a / det

    // Apply the inverted matrix to the top right
    var ne = -(na * e + nc * f)
    var nf = -(nb * e + nd * f)

    // Construct the inverted matrix
    this.a = na
    this.b = nb
    this.c = nc
    this.d = nd
    this.e = ne
    this.f = nf

    return this
  }

  inverse () {
    return this.clone().inverseO()
  }

  // Translate matrix
  translate (x, y) {
    return this.clone().translateO(x, y)
  }

  translateO (x, y) {
    this.e += x || 0
    this.f += y || 0
    return this
  }

  // Scale matrix
  scale (x, y, cx, cy) {
    return this.clone().scaleO(...arguments)
  }

  scaleO (x, y = x, cx = 0, cy = 0) {
    // Support uniform scaling
    if (arguments.length === 3) {
      cy = cx
      cx = y
      y = x
    }

    let { a, b, c, d, e, f } = this

    this.a = a * x
    this.b = b * y
    this.c = c * x
    this.d = d * y
    this.e = e * x - cx * x + cx
    this.f = f * y - cy * y + cy

    return this
  }

  // Rotate matrix
  rotate (r, cx, cy) {
    return this.clone().rotateO(r, cx, cy)
  }

  rotateO (r, cx = 0, cy = 0) {
    // Convert degrees to radians
    r = radians(r)

    let cos = Math.cos(r)
    let sin = Math.sin(r)

    let { a, b, c, d, e, f } = this

    this.a = a * cos - b * sin
    this.b = b * cos + a * sin
    this.c = c * cos - d * sin
    this.d = d * cos + c * sin
    this.e = e * cos - f * sin + cy * sin - cx * cos + cx
    this.f = f * cos + e * sin - cx * sin - cy * cos + cy

    return this
  }

  // Flip matrix on x or y, at a given offset
  flip (axis, around) {
    return this.clone().flipO(axis, around)
  }

  flipO (axis, around) {
    return axis === 'x' ? this.scaleO(-1, 1, around, 0)
      : axis === 'y' ? this.scaleO(1, -1, 0, around)
        : this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point
  }

  // Shear matrix
  shear (a, cx, cy) {
    return this.clone().shearO(a, cx, cy)
  }

  shearO (lx, cx = 0, cy = 0) {
    let { a, b, c, d, e, f } = this

    this.a = a + b * lx
    this.c = c + d * lx
    this.e = e + f * lx - cy * lx

    return this
  }

  // Skew Matrix
  skew (x, y, cx, cy) {
    return this.clone().skewO(...arguments)
  }

  skewO (x, y = x, cx = 0, cy = 0) {
    // support uniformal skew
    if (arguments.length === 3) {
      cy = cx
      cx = y
      y = x
    }

    // Convert degrees to radians
    x = radians(x)
    y = radians(y)

    let lx = Math.tan(x)
    let ly = Math.tan(y)

    let { a, b, c, d, e, f } = this

    this.a = a + b * lx
    this.b = b + a * ly
    this.c = c + d * lx
    this.d = d + c * ly
    this.e = e + f * lx - cy * lx
    this.f = f + e * ly - cx * ly

    return this
  }

  // SkewX
  skewX (x, cx, cy) {
    return this.skew(x, 0, cx, cy)
  }

  skewXO (x, cx, cy) {
    return this.skewO(x, 0, cx, cy)
  }

  // SkewY
  skewY (y, cx, cy) {
    return this.skew(0, y, cx, cy)
  }

  skewYO (y, cx, cy) {
    return this.skewO(0, y, cx, cy)
  }

  // Transform around a center point
  aroundO (cx, cy, matrix) {
    var dx = cx || 0
    var dy = cy || 0
    return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy)
  }

  around (cx, cy, matrix) {
    return this.clone().aroundO(cx, cy, matrix)
  }

  // Convert to native SVGMatrix
  native () {
    // create new matrix
    var matrix = parser().svg.node.createSVGMatrix()

    // update with current values
    for (var i = abcdef.length - 1; i >= 0; i--) {
      matrix[abcdef[i]] = this[abcdef[i]]
    }

    return matrix
  }

  // Check if two matrices are equal
  equals (other) {
    var comp = new Matrix(other)
    return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) &&
      closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) &&
      closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f)
  }

  // Convert matrix to string
  toString () {
    return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')'
  }

  toArray () {
    return [this.a, this.b, this.c, this.d, this.e, this.f]
  }

  valueOf () {
    return {
      a: this.a,
      b: this.b,
      c: this.c,
      d: this.d,
      e: this.e,
      f: this.f
    }
  }

  // TODO: Refactor this to a static function of matrix.js
  static formatTransforms (o) {
    // Get all of the parameters required to form the matrix
    var flipBoth = o.flip === 'both' || o.flip === true
    var flipX = o.flip && (flipBoth || o.flip === 'x') ? -1 : 1
    var flipY = o.flip && (flipBoth || o.flip === 'y') ? -1 : 1
    var skewX = o.skew && o.skew.length ? o.skew[0]
      : isFinite(o.skew) ? o.skew
        : isFinite(o.skewX) ? o.skewX
          : 0
    var skewY = o.skew && o.skew.length ? o.skew[1]
      : isFinite(o.skew) ? o.skew
        : isFinite(o.skewY) ? o.skewY
          : 0
    var scaleX = o.scale && o.scale.length ? o.scale[0] * flipX
      : isFinite(o.scale) ? o.scale * flipX
        : isFinite(o.scaleX) ? o.scaleX * flipX
          : flipX
    var scaleY = o.scale && o.scale.length ? o.scale[1] * flipY
      : isFinite(o.scale) ? o.scale * flipY
        : isFinite(o.scaleY) ? o.scaleY * flipY
          : flipY
    var shear = o.shear || 0
    var theta = o.rotate || o.theta || 0
    var origin = new Point(o.origin || o.around || o.ox || o.originX, o.oy || o.originY)
    var ox = origin.x
    var oy = origin.y
    var position = new Point(o.position || o.px || o.positionX, o.py || o.positionY)
    var px = position.x
    var py = position.y
    var translate = new Point(o.translate || o.tx || o.translateX, o.ty || o.translateY)
    var tx = translate.x
    var ty = translate.y
    var relative = new Point(o.relative || o.rx || o.relativeX, o.ry || o.relativeY)
    var rx = relative.x
    var ry = relative.y

    // Populate all of the values
    return {
      scaleX, scaleY, skewX, skewY, shear, theta, rx, ry, tx, ty, ox, oy, px, py
    }
  }

  // left matrix, right matrix, target matrix which is overwritten
  static matrixMultiply (l, r, o) {
    // Work out the product directly
    var a = l.a * r.a + l.c * r.b
    var b = l.b * r.a + l.d * r.b
    var c = l.a * r.c + l.c * r.d
    var d = l.b * r.c + l.d * r.d
    var e = l.e + l.a * r.e + l.c * r.f
    var f = l.f + l.b * r.e + l.d * r.f

    // make sure to use local variables because l/r and o could be the same
    o.a = a
    o.b = b
    o.c = c
    o.d = d
    o.e = e
    o.f = f

    return o
  }
}

registerMethods({
  Element: {
    // Get current matrix
    ctm () {
      return new Matrix(this.node.getCTM())
    },

    // Get current screen matrix
    screenCTM () {
      /* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537
         This is needed because FF does not return the transformation matrix
         for the inner coordinate system when getScreenCTM() is called on nested svgs.
         However all other Browsers do that */
      if (typeof this.isRoot === 'function' && !this.isRoot()) {
        var rect = this.rect(1, 1)
        var m = rect.node.getScreenCTM()
        rect.remove()
        return new Matrix(m)
      }
      return new Matrix(this.node.getScreenCTM())
    }
  }
})