1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
import {abcdef, arrayToMatrix, closeEnough, formatTransforms, isMatrixLike, matrixMultiply} from './helpers.js'
import Point from './Point.js'
import {delimiter} from './regex.js'
import {radians} from './utils.js'
import parser from './parser.js'
import Base from './Base.js'
export default class Matrix {
constructor (...args) {
this.init(...args)
}
// Initialize
init (source) {
var base = arrayToMatrix([1, 0, 0, 1, 0, 0])
// ensure source as object
source = source instanceof Base && source.is('Element') ? source.matrixify()
: typeof source === 'string' ? arrayToMatrix(source.split(delimiter).map(parseFloat))
: Array.isArray(source) ? arrayToMatrix(source)
: (typeof source === 'object' && isMatrixLike(source)) ? source
: (typeof source === 'object') ? new Matrix().transform(source)
: arguments.length === 6 ? arrayToMatrix([].slice.call(arguments))
: base
// Merge the source matrix with the base matrix
this.a = source.a != null ? source.a : base.a
this.b = source.b != null ? source.b : base.b
this.c = source.c != null ? source.c : base.c
this.d = source.d != null ? source.d : base.d
this.e = source.e != null ? source.e : base.e
this.f = source.f != null ? source.f : base.f
}
// Clones this matrix
clone () {
return new Matrix(this)
}
// Transform a matrix into another matrix by manipulating the space
transform (o) {
// Check if o is a matrix and then left multiply it directly
if (isMatrixLike(o)) {
var matrix = new Matrix(o)
return matrix.multiplyO(this)
}
// Get the proposed transformations and the current transformations
var t = formatTransforms(o)
var current = this
let { x: ox, y: oy } = new Point(t.ox, t.oy).transform(current)
// Construct the resulting matrix
var transformer = new Matrix()
.translateO(t.rx, t.ry)
.lmultiplyO(current)
.translateO(-ox, -oy)
.scaleO(t.scaleX, t.scaleY)
.skewO(t.skewX, t.skewY)
.shearO(t.shear)
.rotateO(t.theta)
.translateO(ox, oy)
// If we want the origin at a particular place, we force it there
if (isFinite(t.px) || isFinite(t.py)) {
const origin = new Point(ox, oy).transform(transformer)
// TODO: Replace t.px with isFinite(t.px)
const dx = t.px ? t.px - origin.x : 0
const dy = t.py ? t.py - origin.y : 0
transformer.translateO(dx, dy)
}
// Translate now after positioning
transformer.translateO(t.tx, t.ty)
return transformer
}
// Applies a matrix defined by its affine parameters
compose (o) {
if (o.origin) {
o.originX = o.origin[0]
o.originY = o.origin[1]
}
// Get the parameters
var ox = o.originX || 0
var oy = o.originY || 0
var sx = o.scaleX || 1
var sy = o.scaleY || 1
var lam = o.shear || 0
var theta = o.rotate || 0
var tx = o.translateX || 0
var ty = o.translateY || 0
// Apply the standard matrix
var result = new Matrix()
.translateO(-ox, -oy)
.scaleO(sx, sy)
.shearO(lam)
.rotateO(theta)
.translateO(tx, ty)
.lmultiplyO(this)
.translateO(ox, oy)
return result
}
// Decomposes this matrix into its affine parameters
decompose (cx = 0, cy = 0) {
// Get the parameters from the matrix
var a = this.a
var b = this.b
var c = this.c
var d = this.d
var e = this.e
var f = this.f
// Figure out if the winding direction is clockwise or counterclockwise
var determinant = a * d - b * c
var ccw = determinant > 0 ? 1 : -1
// Since we only shear in x, we can use the x basis to get the x scale
// and the rotation of the resulting matrix
var sx = ccw * Math.sqrt(a * a + b * b)
var thetaRad = Math.atan2(ccw * b, ccw * a)
var theta = 180 / Math.PI * thetaRad
var ct = Math.cos(thetaRad)
var st = Math.sin(thetaRad)
// We can then solve the y basis vector simultaneously to get the other
// two affine parameters directly from these parameters
var lam = (a * c + b * d) / determinant
var sy = ((c * sx) / (lam * a - b)) || ((d * sx) / (lam * b + a))
// Use the translations
let tx = e - cx + cx * ct * sx + cy * (lam * ct * sx - st * sy)
let ty = f - cy + cx * st * sx + cy * (lam * st * sx + ct * sy)
// Construct the decomposition and return it
return {
// Return the affine parameters
scaleX: sx,
scaleY: sy,
shear: lam,
rotate: theta,
translateX: tx,
translateY: ty,
originX: cx,
originY: cy,
// Return the matrix parameters
a: this.a,
b: this.b,
c: this.c,
d: this.d,
e: this.e,
f: this.f
}
}
// Left multiplies by the given matrix
multiply (matrix) {
return this.clone().multiplyO(matrix)
}
multiplyO (matrix) {
// Get the matrices
var l = this
var r = matrix instanceof Matrix
? matrix
: new Matrix(matrix)
return matrixMultiply(l, r, this)
}
lmultiply (matrix) {
return this.clone().lmultiplyO(matrix)
}
lmultiplyO (matrix) {
var r = this
var l = matrix instanceof Matrix
? matrix
: new Matrix(matrix)
return matrixMultiply(l, r, this)
}
// Inverses matrix
inverseO () {
// Get the current parameters out of the matrix
var a = this.a
var b = this.b
var c = this.c
var d = this.d
var e = this.e
var f = this.f
// Invert the 2x2 matrix in the top left
var det = a * d - b * c
if (!det) throw new Error('Cannot invert ' + this)
// Calculate the top 2x2 matrix
var na = d / det
var nb = -b / det
var nc = -c / det
var nd = a / det
// Apply the inverted matrix to the top right
var ne = -(na * e + nc * f)
var nf = -(nb * e + nd * f)
// Construct the inverted matrix
this.a = na
this.b = nb
this.c = nc
this.d = nd
this.e = ne
this.f = nf
return this
}
inverse () {
return this.clone().inverseO()
}
// Translate matrix
translate (x, y) {
return this.clone().translateO(x, y)
}
translateO (x, y) {
this.e += x || 0
this.f += y || 0
return this
}
// Scale matrix
scale (x, y, cx, cy) {
return this.clone().scaleO(...arguments)
}
scaleO (x, y = x, cx = 0, cy = 0) {
// Support uniform scaling
if (arguments.length === 3) {
cy = cx
cx = y
y = x
}
let {a, b, c, d, e, f} = this
this.a = a * x
this.b = b * y
this.c = c * x
this.d = d * y
this.e = e * x - cx * x + cx
this.f = f * y - cy * y + cy
return this
}
// Rotate matrix
rotate (r, cx, cy) {
return this.clone().rotateO(r, cx, cy)
}
rotateO (r, cx = 0, cy = 0) {
// Convert degrees to radians
r = radians(r)
let cos = Math.cos(r)
let sin = Math.sin(r)
let {a, b, c, d, e, f} = this
this.a = a * cos - b * sin
this.b = b * cos + a * sin
this.c = c * cos - d * sin
this.d = d * cos + c * sin
this.e = e * cos - f * sin + cy * sin - cx * cos + cx
this.f = f * cos + e * sin - cx * sin - cy * cos + cy
return this
}
// Flip matrix on x or y, at a given offset
flip (axis, around) {
return this.clone().flipO(axis, around)
}
flipO (axis, around) {
return axis === 'x' ? this.scaleO(-1, 1, around, 0)
: axis === 'y' ? this.scaleO(1, -1, 0, around)
: this.scaleO(-1, -1, axis, around || axis) // Define an x, y flip point
}
// Shear matrix
shear (a, cx, cy) {
return this.clone().shearO(a, cx, cy)
}
shearO (lx, cx = 0, cy = 0) {
let {a, b, c, d, e, f} = this
this.a = a + b * lx
this.c = c + d * lx
this.e = e + f * lx - cy * lx
return this
}
// Skew Matrix
skew (x, y, cx, cy) {
return this.clone().skewO(...arguments)
}
skewO (x, y = x, cx = 0, cy = 0) {
// support uniformal skew
if (arguments.length === 3) {
cy = cx
cx = y
y = x
}
// Convert degrees to radians
x = radians(x)
y = radians(y)
let lx = Math.tan(x)
let ly = Math.tan(y)
let {a, b, c, d, e, f} = this
this.a = a + b * lx
this.b = b + a * ly
this.c = c + d * lx
this.d = d + c * ly
this.e = e + f * lx - cy * lx
this.f = f + e * ly - cx * ly
return this
}
// SkewX
skewX (x, cx, cy) {
return this.skew(x, 0, cx, cy)
}
skewXO (x, cx, cy) {
return this.skewO(x, 0, cx, cy)
}
// SkewY
skewY (y, cx, cy) {
return this.skew(0, y, cx, cy)
}
skewYO (y, cx, cy) {
return this.skewO(0, y, cx, cy)
}
// Transform around a center point
aroundO (cx, cy, matrix) {
var dx = cx || 0
var dy = cy || 0
return this.translateO(-dx, -dy).lmultiplyO(matrix).translateO(dx, dy)
}
around (cx, cy, matrix) {
return this.clone().aroundO(cx, cy, matrix)
}
// Convert to native SVGMatrix
native () {
// create new matrix
var matrix = parser().node.createSVGMatrix()
// update with current values
for (var i = abcdef.length - 1; i >= 0; i--) {
matrix[abcdef[i]] = this[abcdef[i]]
}
return matrix
}
// Check if two matrices are equal
equals (other) {
var comp = new Matrix(other)
return closeEnough(this.a, comp.a) && closeEnough(this.b, comp.b) &&
closeEnough(this.c, comp.c) && closeEnough(this.d, comp.d) &&
closeEnough(this.e, comp.e) && closeEnough(this.f, comp.f)
}
// Convert matrix to string
toString () {
return 'matrix(' + this.a + ',' + this.b + ',' + this.c + ',' + this.d + ',' + this.e + ',' + this.f + ')'
}
toArray () {
return [this.a, this.b, this.c, this.d, this.e, this.f]
}
valueOf () {
return {
a: this.a,
b: this.b,
c: this.c,
d: this.d,
e: this.e,
f: this.f
}
}
}
Matrix.constructors = {
Element: {
// Get current matrix
ctm () {
return new Matrix(this.node.getCTM())
},
// Get current screen matrix
screenCTM () {
/* https://bugzilla.mozilla.org/show_bug.cgi?id=1344537
This is needed because FF does not return the transformation matrix
for the inner coordinate system when getScreenCTM() is called on nested svgs.
However all other Browsers do that */
if (this instanceof Doc && !this.isRoot()) {
var rect = this.rect(1, 1)
var m = rect.node.getScreenCTM()
rect.remove()
return new Matrix(m)
}
return new Matrix(this.node.getScreenCTM())
}
}
}
// let extensions = {}
// ['rotate'].forEach((method) => {
// let methodO = method + 'O'
// extensions[method] = function (...args) {
// return new Matrix(this)[methodO](...args)
// }
// })
//
// extend(Matrix, extensions)
// function matrixMultiplyParams (matrix, a, b, c, d, e, f) {
// return matrixMultiply({a, b, c, d, e, f} matrix, matrix)
// }
|