/* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, * USA. */ #ifdef HAVE_COMMON_CONFIG_H #include #endif #include #include #ifdef _WIN32 #include #ifndef _WIN32_WCE #include #endif #define read(s,b,l) recv(s,(char*)b,l,0) #define close closesocket #undef errno #define errno WSAGetLastError() #undef EINTR #define EINTR WSAEINTR #else #include #include #include #include #endif #ifndef vncmin #define vncmin(a,b) (((a) < (b)) ? (a) : (b)) #endif #ifndef vncmax #define vncmax(a,b) (((a) > (b)) ? (a) : (b)) #endif /* Old systems have select() in sys/time.h */ #ifdef HAVE_SYS_SELECT_H #include #endif #include #include using namespace rdr; enum { DEFAULT_BUF_SIZE = 8192, MIN_BULK_SIZE = 1024 }; FdInStream::FdInStream(int fd_, int timeoutms_, int bufSize_, bool closeWhenDone_) : fd(fd_), closeWhenDone(closeWhenDone_), timeoutms(timeoutms_), blockCallback(0), timing(false), timeWaitedIn100us(5), timedKbits(0), bufSize(bufSize_ ? bufSize_ : DEFAULT_BUF_SIZE), offset(0) { ptr = end = start = new U8[bufSize]; } FdInStream::FdInStream(int fd_, FdInStreamBlockCallback* blockCallback_, int bufSize_) : fd(fd_), timeoutms(0), blockCallback(blockCallback_), timing(false), timeWaitedIn100us(5), timedKbits(0), bufSize(bufSize_ ? bufSize_ : DEFAULT_BUF_SIZE), offset(0) { ptr = end = start = new U8[bufSize]; } FdInStream::~FdInStream() { delete [] start; if (closeWhenDone) close(fd); } void FdInStream::setTimeout(int timeoutms_) { timeoutms = timeoutms_; } void FdInStream::setBlockCallback(FdInStreamBlockCallback* blockCallback_) { blockCallback = blockCallback_; timeoutms = 0; } int FdInStream::pos() { return offset + ptr - start; } void FdInStream::readBytes(void* data, int length) { if (length < MIN_BULK_SIZE) { InStream::readBytes(data, length); return; } U8* dataPtr = (U8*)data; int n = end - ptr; if (n > length) n = length; memcpy(dataPtr, ptr, n); dataPtr += n; length -= n; ptr += n; while (length > 0) { n = readWithTimeoutOrCallback(dataPtr, length); dataPtr += n; length -= n; offset += n; } } int FdInStream::overrun(int itemSize, int nItems, bool wait) { if (itemSize > bufSize) throw Exception("FdInStream overrun: max itemSize exceeded"); if (end - ptr != 0) memmove(start, ptr, end - ptr); offset += ptr - start; end -= ptr - start; ptr = start; int bytes_to_read; while (end < start + itemSize) { bytes_to_read = start + bufSize - end; if (!timing) { // When not timing, we must be careful not to read too much // extra data into the buffer. Otherwise, the line speed // estimation might stay at zero for a long time: All reads // during timing=1 can be satisfied without calling // readWithTimeoutOrCallback. However, reading only 1 or 2 bytes // bytes is ineffecient. bytes_to_read = vncmin(bytes_to_read, vncmax(itemSize*nItems, 8)); } int n = readWithTimeoutOrCallback((U8*)end, bytes_to_read, wait); if (n == 0) return 0; end += n; } if (itemSize * nItems > end - ptr) nItems = (end - ptr) / itemSize; return nItems; } #ifdef _WIN32 static void gettimeofday(struct timeval* tv, void*) { LARGE_INTEGER counts, countsPerSec; static double usecPerCount = 0.0; if (QueryPerformanceCounter(&counts)) { if (usecPerCount == 0.0) { QueryPerformanceFrequency(&countsPerSec); usecPerCount = 1000000.0 / countsPerSec.QuadPart; } LONGLONG usecs = (LONGLONG)(counts.QuadPart * usecPerCount); tv->tv_usec = (long)(usecs % 1000000); tv->tv_sec = (long)(usecs / 1000000); } else { #ifndef _WIN32_WCE struct timeb tb; ftime(&tb); tv->tv_sec = tb.time; tv->tv_usec = tb.millitm * 1000; #else throw SystemException("QueryPerformanceCounter", GetLastError()); #endif } } #endif // // readWithTimeoutOrCallback() reads up to the given length in bytes from the // file descriptor into a buffer. If the wait argument is false, then zero is // returned if no bytes can be read without blocking. Otherwise if a // blockCallback is set, it will be called (repeatedly) instead of blocking. // If alternatively there is a timeout set and that timeout expires, it throws // a TimedOut exception. Otherwise it returns the number of bytes read. It // never attempts to read() unless select() indicates that the fd is readable - // this means it can be used on an fd which has been set non-blocking. It also // has to cope with the annoying possibility of both select() and read() // returning EINTR. // int FdInStream::readWithTimeoutOrCallback(void* buf, int len, bool wait) { struct timeval before, after; if (timing) gettimeofday(&before, 0); int n; while (true) { do { fd_set fds; struct timeval tv; struct timeval* tvp = &tv; if (!wait) { tv.tv_sec = tv.tv_usec = 0; } else if (timeoutms != -1) { tv.tv_sec = timeoutms / 1000; tv.tv_usec = (timeoutms % 1000) * 1000; } else { tvp = 0; } FD_ZERO(&fds); FD_SET(fd, &fds); n = select(fd+1, &fds, 0, 0, tvp); } while (n < 0 && errno == EINTR); if (n > 0) break; if (n < 0) throw SystemException("select",errno); if (!wait) return 0; if (!blockCallback) throw TimedOut(); blockCallback->blockCallback(); } do { n = ::read(fd, buf, len); } while (n < 0 && errno == EINTR); if (n < 0) throw SystemException("read",errno); if (n == 0) throw EndOfStream(); if (timing) { gettimeofday(&after, 0); // fprintf(stderr,"%d.%06d\n",(after.tv_sec - before.tv_sec), // (after.tv_usec - before.tv_usec)); int newTimeWaited = ((after.tv_sec - before.tv_sec) * 10000 + (after.tv_usec - before.tv_usec) / 100); int newKbits = n * 8 / 1000; // if (newTimeWaited == 0) { // fprintf(stderr,"new kbps infinite t %d k %d\n", // newTimeWaited, newKbits); // } else { // fprintf(stderr,"new kbps %d t %d k %d\n", // newKbits * 10000 / newTimeWaited, newTimeWaited, newKbits); // } // limit rate to between 10kbit/s and 40Mbit/s if (newTimeWaited > newKbits*1000) newTimeWaited = newKbits*1000; if (newTimeWaited < newKbits/4) newTimeWaited = newKbits/4; timeWaitedIn100us += newTimeWaited; timedKbits += newKbits; } return n; } void FdInStream::startTiming() { timing = true; // Carry over up to 1s worth of previous rate for smoothing. if (timeWaitedIn100us > 10000) { timedKbits = timedKbits * 10000 / timeWaitedIn100us; timeWaitedIn100us = 10000; } } void FdInStream::stopTiming() { timing = false; if (timeWaitedIn100us < timedKbits/2) timeWaitedIn100us = timedKbits/2; // upper limit 20Mbit/s } unsigned int FdInStream::kbitsPerSecond() { // The following calculation will overflow 32-bit arithmetic if we have // received more than about 50Mbytes (400Mbits) since we started timing, so // it should be OK for a single RFB update. return timedKbits * 10000 / timeWaitedIn100us; }