/* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved. * Copyright 2014-2023 Pierre Ossman for Cendio AB * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, * USA. */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include using namespace rfb; static LogWriter vlog("Cursor"); Cursor::Cursor(int width, int height, const Point& hotspot, const uint8_t* data) : width_(width), height_(height), hotspot_(hotspot) { this->data = new uint8_t[width_*height_*4]; memcpy(this->data, data, width_*height_*4); } Cursor::Cursor(const Cursor& other) : width_(other.width_), height_(other.height_), hotspot_(other.hotspot_) { data = new uint8_t[width_*height_*4]; memcpy(data, other.data, width_*height_*4); } Cursor::~Cursor() { delete [] data; } static unsigned short pow223[] = { 0, 30, 143, 355, 676, 1113, 1673, 2361, 3181, 4139, 5237, 6479, 7869, 9409, 11103, 12952, 14961, 17130, 19462, 21960, 24626, 27461, 30467, 33647, 37003, 40535, 44245, 48136, 52209, 56466, 60907, 65535 }; static unsigned short ipow(unsigned short val, unsigned short lut[]) { int idx = val >> (16-5); int a, b; if (val < 0x8000) { a = lut[idx]; b = lut[idx+1]; } else { a = lut[idx-1]; b = lut[idx]; } return (val & 0x7ff) * (b-a) / 0x7ff + a; } static unsigned short srgb_to_lin(unsigned char srgb) { return ipow((unsigned)srgb * 65535 / 255, pow223); } // Floyd-Steinberg dithering static void dither(int width, int height, int32_t* data) { for (int y = 0; y < height; y++) { for (int x_ = 0; x_ < width; x_++) { int x = (y & 1) ? (width - x_ - 1) : x_; int error; if (data[x] > 32767) { error = data[x] - 65535; data[x] = 65535; } else { error = data[x] - 0; data[x] = 0; } if (y & 1) { if (x > 0) { data[x - 1] += error * 7 / 16; } if ((y + 1) < height) { if (x > 0) data[x - 1 + width] += error * 3 / 16; data[x + width] += error * 5 / 16; if ((x + 1) < width) data[x + 1] += error * 1 / 16; } } else { if ((x + 1) < width) { data[x + 1] += error * 7 / 16; } if ((y + 1) < height) { if ((x + 1) < width) data[x + 1 + width] += error * 3 / 16; data[x + width] += error * 5 / 16; if (x > 0) data[x - 1] += error * 1 / 16; } } } data += width; } } std::vector Cursor::getBitmap() const { // First step is converting to luminance std::vector luminance(width()*height()); int32_t *lum_ptr = luminance.data(); const uint8_t *data_ptr = data; for (int y = 0; y < height(); y++) { for (int x = 0; x < width(); x++) { int32_t lum; // Use BT.709 coefficients for grayscale lum = 0; lum += (uint32_t)srgb_to_lin(data_ptr[0]) * 6947; // 0.2126 lum += (uint32_t)srgb_to_lin(data_ptr[1]) * 23436; // 0.7152 lum += (uint32_t)srgb_to_lin(data_ptr[2]) * 2366; // 0.0722 lum /= 32768; *lum_ptr++ = lum; data_ptr += 4; } } // Then diterhing dither(width(), height(), luminance.data()); // Then conversion to a bit mask std::vector source((width()+7)/8*height()); memset(source.data(), 0, source.size()); int maskBytesPerRow = (width() + 7) / 8; lum_ptr = luminance.data(); data_ptr = data; for (int y = 0; y < height(); y++) { for (int x = 0; x < width(); x++) { int byte = y * maskBytesPerRow + x / 8; int bit = 7 - x % 8; if (*lum_ptr > 32767) source[byte] |= (1 << bit); lum_ptr++; data_ptr += 4; } } return source; } std::vector Cursor::getMask() const { // First step is converting to integer array std::vector alpha(width()*height()); int32_t *alpha_ptr = alpha.data(); const uint8_t *data_ptr = data; for (int y = 0; y < height(); y++) { for (int x = 0; x < width(); x++) { *alpha_ptr++ = (uint32_t)data_ptr[3] * 65535 / 255; data_ptr += 4; } } // Then diterhing dither(width(), height(), alpha.data()); // Then conversion to a bit mask std::vector mask((width()+7)/8*height()); memset(mask.data(), 0, mask.size()); int maskBytesPerRow = (width() + 7) / 8; alpha_ptr = alpha.data(); data_ptr = data; for (int y = 0; y < height(); y++) { for (int x = 0; x < width(); x++) { int byte = y * maskBytesPerRow + x / 8; int bit = 7 - x % 8; if (*alpha_ptr > 32767) mask[byte] |= (1 << bit); alpha_ptr++; data_ptr += 4; } } return mask; } // crop() determines the "busy" rectangle for the cursor - the minimum bounding // rectangle containing actual pixels. This isn't the most efficient algorithm // but it's short. For sanity, we make sure that the busy rectangle always // includes the hotspot (the hotspot is unsigned on the wire so otherwise it // would cause problems if it was above or left of the actual pixels) void Cursor::crop() { Rect busy = Rect(0, 0, width_, height_); busy = busy.intersect(Rect(hotspot_.x, hotspot_.y, hotspot_.x+1, hotspot_.y+1)); int x, y; uint8_t *data_ptr = data; for (y = 0; y < height(); y++) { for (x = 0; x < width(); x++) { if (data_ptr[3] > 0) { if (x < busy.tl.x) busy.tl.x = x; if (x+1 > busy.br.x) busy.br.x = x+1; if (y < busy.tl.y) busy.tl.y = y; if (y+1 > busy.br.y) busy.br.y = y+1; } data_ptr += 4; } } if (width() == busy.width() && height() == busy.height()) return; // Copy the pixel data int newDataLen = busy.area() * 4; uint8_t* newData = new uint8_t[newDataLen]; data_ptr = newData; for (y = busy.tl.y; y < busy.br.y; y++) { memcpy(data_ptr, data + y*width()*4 + busy.tl.x*4, busy.width()*4); data_ptr += busy.width()*4; } // Set the size and data to the new, cropped cursor. width_ = busy.width(); height_ = busy.height(); hotspot_ = hotspot_.subtract(busy.tl); delete [] data; data = newData; } RenderedCursor::RenderedCursor() { } const uint8_t* RenderedCursor::getBuffer(const Rect& _r, int* stride) const { Rect r; r = _r.translate(offset.negate()); if (!r.enclosed_by(buffer.getRect())) throw Exception("RenderedCursor: Invalid area requested"); return buffer.getBuffer(r, stride); } void RenderedCursor::update(PixelBuffer* framebuffer, Cursor* cursor, const Point& pos) { Point rawOffset, diff; Rect clippedRect; const uint8_t* data; int stride; assert(framebuffer); assert(cursor); format = framebuffer->getPF(); setSize(framebuffer->width(), framebuffer->height()); rawOffset = pos.subtract(cursor->hotspot()); clippedRect = Rect(0, 0, cursor->width(), cursor->height()) .translate(rawOffset) .intersect(framebuffer->getRect()); offset = clippedRect.tl; buffer.setPF(format); buffer.setSize(clippedRect.width(), clippedRect.height()); // Bail out early to avoid pestering the framebuffer with // bogus coordinates if (clippedRect.area() == 0) return; data = framebuffer->getBuffer(buffer.getRect(offset), &stride); buffer.imageRect(buffer.getRect(), data, stride); diff = offset.subtract(rawOffset); for (int y = 0;y < buffer.height();y++) { for (int x = 0;x < buffer.width();x++) { size_t idx; uint8_t bg[4], fg[4]; uint8_t rgb[3]; idx = (y+diff.y)*cursor->width() + (x+diff.x); memcpy(fg, cursor->getBuffer() + idx*4, 4); if (fg[3] == 0x00) continue; else if (fg[3] == 0xff) { memcpy(rgb, fg, 3); } else { buffer.getImage(bg, Rect(x, y, x+1, y+1)); format.rgbFromBuffer(rgb, bg, 1); // FIXME: Gamma aware blending for (int i = 0;i < 3;i++) { rgb[i] = (unsigned)rgb[i]*(255-fg[3])/255 + (unsigned)fg[i]*fg[3]/255; } } format.bufferFromRGB(bg, rgb, 1); buffer.imageRect(Rect(x, y, x+1, y+1), bg); } } }