/* Copyright (C) 2000-2003 Constantin Kaplinsky. All Rights Reserved. * Copyright (C) 2004-2005 Cendio AB. All rights reserved. * * This is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This software is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, * USA. */ // // Tight decoding functions. // // This file is #included after having set the following macros: // BPP - 8, 16 or 32 // EXTRA_ARGS - optional extra arguments // FILL_RECT - fill a rectangle with a single color // IMAGE_RECT - draw a rectangle of pixel data from a buffer #include #include #include #include namespace rfb { // CONCAT2E concatenates its arguments, expanding them if they are macros #ifndef CONCAT2E #define CONCAT2(a,b) a##b #define CONCAT2E(a,b) CONCAT2(a,b) #endif #define PIXEL_T rdr::CONCAT2E(U,BPP) #define READ_PIXEL CONCAT2E(readOpaque,BPP) #define TIGHT_DECODE CONCAT2E(tightDecode,BPP) #define TIGHT_MIN_TO_COMPRESS 12 static bool DecompressJpegRect(const Rect& r, rdr::InStream* is, PIXEL_T* buf, CMsgHandler* handler); static void FilterGradient(const Rect& r, rdr::InStream* is, int dataSize, PIXEL_T* buf, CMsgHandler* handler); #if BPP == 32 static void FilterGradient24(const Rect& r, rdr::InStream* is, int dataSize, PIXEL_T* buf, CMsgHandler* handler); #endif // Main function implementing Tight decoder void TIGHT_DECODE (const Rect& r, rdr::InStream* is, rdr::ZlibInStream zis[], PIXEL_T* buf #ifdef EXTRA_ARGS , EXTRA_ARGS #endif ) { rdr::U8 *bytebuf = (rdr::U8*) buf; bool cutZeros = false; const rfb::PixelFormat& myFormat = handler->cp.pf(); #if BPP == 32 if (myFormat.depth == 24 && myFormat.redMax == 0xFF && myFormat.greenMax == 0xFF && myFormat.blueMax == 0xFF) { cutZeros = true; } #endif rdr::U8 comp_ctl = is->readU8(); // Flush zlib streams if we are told by the server to do so. for (int i = 0; i < 4; i++) { if (comp_ctl & 1) { zis[i].reset(); } comp_ctl >>= 1; } // "Fill" compression type. if (comp_ctl == rfbTightFill) { PIXEL_T pix; if (cutZeros) { is->readBytes(bytebuf, 3); pix = RGB24_TO_PIXEL32(bytebuf[0], bytebuf[1], bytebuf[2]); } else { pix = is->READ_PIXEL(); } FILL_RECT(r, pix); return; } // "JPEG" compression type. if (comp_ctl == rfbTightJpeg) { DecompressJpegRect(r, is, buf, handler); return; } // Quit on unsupported compression type. if (comp_ctl > rfbTightMaxSubencoding) { throw Exception("TightDecoder: bad subencoding value received"); return; } // "Basic" compression type. int palSize = 0; static PIXEL_T palette[256]; bool useGradient = false; if ((comp_ctl & rfbTightExplicitFilter) != 0) { rdr::U8 filterId = is->readU8(); switch (filterId) { case rfbTightFilterPalette: palSize = is->readU8() + 1; if (cutZeros) { rdr::U8 *tightPalette = (rdr::U8*) palette; is->readBytes(tightPalette, palSize*3); for (int i = palSize - 1; i >= 0; i--) { palette[i] = RGB24_TO_PIXEL32(tightPalette[i*3], tightPalette[i*3+1], tightPalette[i*3+2]); } } else { for (int i = 0; i < palSize; i++) palette[i] = is->READ_PIXEL(); } break; case rfbTightFilterGradient: useGradient = true; break; case rfbTightFilterCopy: break; default: throw Exception("TightDecoder: unknown filter code received"); return; } } int bppp = BPP; if (palSize != 0) { bppp = (palSize <= 2) ? 1 : 8; } else if (cutZeros) { bppp = 24; } // Determine if the data should be decompressed or just copied. int rowSize = (r.width() * bppp + 7) / 8; int dataSize = r.height() * rowSize; int streamId = -1; rdr::InStream *input; if (dataSize < TIGHT_MIN_TO_COMPRESS) { input = is; } else { int length = is->readCompactLength(); streamId = comp_ctl & 0x03; zis[streamId].setUnderlying(is, length); input = &zis[streamId]; } if (palSize == 0) { // Truecolor data if (useGradient) { #if BPP == 32 if (cutZeros) { FilterGradient24(r, input, dataSize, buf, handler); } else #endif { FilterGradient(r, input, dataSize, buf, handler); } } else { input->readBytes(buf, dataSize); if (cutZeros) { for (int p = r.height() * r.width() - 1; p >= 0; p--) { buf[p] = RGB24_TO_PIXEL32(bytebuf[p*3], bytebuf[p*3+1], bytebuf[p*3+2]); } } } } else { int x, y, b, w; PIXEL_T *ptr = buf; rdr::U8 bits; if (palSize <= 2) { // 2-color palette w = (r.width() + 7) / 8; for (y = 0; y < r.height(); y++) { for (x = 0; x < r.width() / 8; x++) { bits = input->readU8(); for (b = 7; b >= 0; b--) { *ptr++ = palette[bits >> b & 1]; } } if (r.width() % 8 != 0) { bits = input->readU8(); for (b = 7; b >= 8 - r.width() % 8; b--) { *ptr++ = palette[bits >> b & 1]; } } } } else { // 256-color palette for (y = 0; y < r.height(); y++) { for (x = 0; x < r.width(); x++) { *ptr++ = palette[input->readU8()]; } } } } IMAGE_RECT(r, buf); if (streamId != -1) { zis[streamId].reset(); } } static bool DecompressJpegRect(const Rect& r, rdr::InStream* is, PIXEL_T* buf, CMsgHandler* handler) { struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; PIXEL_T *pixelPtr = buf; static rdr::U8 scanline_buffer[TIGHT_MAX_WIDTH*3]; JSAMPROW scanline = scanline_buffer; // Read length int compressedLen = is->readCompactLength(); if (compressedLen <= 0) { throw Exception("Incorrect data received from the server.\n"); } // Allocate netbuf and read in data rdr::U8* netbuf = new rdr::U8[compressedLen]; if (!netbuf) { throw Exception("rfb::tightDecode unable to allocate buffer"); } is->readBytes(netbuf, compressedLen); // Set up JPEG decompression cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); JpegSetSrcManager(&cinfo, (char*)netbuf, compressedLen); jpeg_read_header(&cinfo, TRUE); cinfo.out_color_space = JCS_RGB; jpeg_start_decompress(&cinfo); if (cinfo.output_width != (unsigned)r.width() || cinfo.output_height != (unsigned)r.height() || cinfo.output_components != 3) { jpeg_destroy_decompress(&cinfo); throw Exception("Tight Encoding: Wrong JPEG data received.\n"); } // Decompress const rfb::PixelFormat& myFormat = handler->cp.pf(); while (cinfo.output_scanline < cinfo.output_height) { jpeg_read_scanlines(&cinfo, &scanline, 1); if (jpegError) { break; } for (int dx = 0; dx < r.width(); dx++) { *pixelPtr++ = RGB24_TO_PIXEL(scanline[dx*3], scanline[dx*3+1], scanline[dx*3+2]); } } IMAGE_RECT(r, buf); if (!jpegError) { jpeg_finish_decompress(&cinfo); } jpeg_destroy_decompress(&cinfo); delete [] netbuf; return !jpegError; } #if BPP == 32 static void FilterGradient24(const Rect& r, rdr::InStream* is, int dataSize, PIXEL_T* buf, CMsgHandler* handler) { int x, y, c; static rdr::U8 prevRow[TIGHT_MAX_WIDTH*3]; static rdr::U8 thisRow[TIGHT_MAX_WIDTH*3]; rdr::U8 pix[3]; int est[3]; memset(prevRow, 0, sizeof(prevRow)); // Allocate netbuf and read in data rdr::U8 *netbuf = new rdr::U8[dataSize]; if (!netbuf) { throw Exception("rfb::tightDecode unable to allocate buffer"); } is->readBytes(netbuf, dataSize); // Set up shortcut variables const rfb::PixelFormat& myFormat = handler->cp.pf(); int rectHeight = r.height(); int rectWidth = r.width(); for (y = 0; y < rectHeight; y++) { /* First pixel in a row */ for (c = 0; c < 3; c++) { pix[c] = netbuf[y*rectWidth*3+c] + prevRow[c]; thisRow[c] = pix[c]; } buf[y*rectWidth] = RGB24_TO_PIXEL32(pix[0], pix[1], pix[2]); /* Remaining pixels of a row */ for (x = 1; x < rectWidth; x++) { for (c = 0; c < 3; c++) { est[c] = prevRow[x*3+c] + pix[c] - prevRow[(x-1)*3+c]; if (est[c] > 0xff) { est[c] = 0xff; } else if (est[c] < 0) { est[c] = 0; } pix[c] = netbuf[(y*rectWidth+x)*3+c] + est[c]; thisRow[x*3+c] = pix[c]; } buf[y*rectWidth+x] = RGB24_TO_PIXEL32(pix[0], pix[1], pix[2]); } memcpy(prevRow, thisRow, sizeof(prevRow)); } delete [] netbuf; } #endif static void FilterGradient(const Rect& r, rdr::InStream* is, int dataSize, PIXEL_T* buf, CMsgHandler* handler) { int x, y, c; static rdr::U8 prevRow[TIGHT_MAX_WIDTH*sizeof(PIXEL_T)]; static rdr::U8 thisRow[TIGHT_MAX_WIDTH*sizeof(PIXEL_T)]; int pix[3]; int max[3]; int shift[3]; int est[3]; memset(prevRow, 0, sizeof(prevRow)); // Allocate netbuf and read in data PIXEL_T *netbuf = (PIXEL_T*)new rdr::U8[dataSize]; if (!netbuf) { throw Exception("rfb::tightDecode unable to allocate buffer"); } is->readBytes(netbuf, dataSize); // Set up shortcut variables const rfb::PixelFormat& myFormat = handler->cp.pf(); max[0] = myFormat.redMax; max[1] = myFormat.greenMax; max[2] = myFormat.blueMax; shift[0] = myFormat.redShift; shift[1] = myFormat.greenShift; shift[2] = myFormat.blueShift; int rectHeight = r.height(); int rectWidth = r.width(); for (y = 0; y < rectHeight; y++) { /* First pixel in a row */ for (c = 0; c < 3; c++) { pix[c] = (netbuf[y*rectWidth] >> shift[c]) + prevRow[c] & max[c]; thisRow[c] = pix[c]; } buf[y*rectWidth] = RGB_TO_PIXEL(pix[0], pix[1], pix[2]); /* Remaining pixels of a row */ for (x = 1; x < rectWidth; x++) { for (c = 0; c < 3; c++) { est[c] = prevRow[x*3+c] + pix[c] - prevRow[(x-1)*3+c]; if (est[c] > max[c]) { est[c] = max[c]; } else if (est[c] < 0) { est[c] = 0; } pix[c] = (netbuf[y*rectWidth+x] >> shift[c]) + est[c] & max[c]; thisRow[x*3+c] = pix[c]; } buf[y*rectWidth+x] = RGB_TO_PIXEL(pix[0], pix[1], pix[2]); } memcpy(prevRow, thisRow, sizeof(prevRow)); } delete [] netbuf; } #undef TIGHT_MIN_TO_COMPRESS #undef TIGHT_DECODE #undef READ_PIXEL #undef PIXEL_T }