summaryrefslogtreecommitdiffstats
path: root/common/jpeg/simd/jcqntmmx.asm
blob: fa54902ad8d79bae1e5eed8786d767a3b58b5633 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
;
; jcqntmmx.asm - sample data conversion and quantization (MMX)
;
; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
;
; Based on
; x86 SIMD extension for IJG JPEG library
; Copyright (C) 1999-2006, MIYASAKA Masaru.
; For conditions of distribution and use, see copyright notice in jsimdext.inc
;
; This file should be assembled with NASM (Netwide Assembler),
; can *not* be assembled with Microsoft's MASM or any compatible
; assembler (including Borland's Turbo Assembler).
; NASM is available from http://nasm.sourceforge.net/ or
; http://sourceforge.net/project/showfiles.php?group_id=6208
;
; [TAB8]

%include "jsimdext.inc"
%include "jdct.inc"

; --------------------------------------------------------------------------
	SECTION	SEG_TEXT
	BITS	32
;
; Load data into workspace, applying unsigned->signed conversion
;
; GLOBAL(void)
; jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col,
;                     DCTELEM * workspace);
;

%define sample_data	ebp+8		; JSAMPARRAY sample_data
%define start_col	ebp+12		; JDIMENSION start_col
%define workspace	ebp+16		; DCTELEM * workspace

	align	16
	global	EXTN(jsimd_convsamp_mmx)

EXTN(jsimd_convsamp_mmx):
	push	ebp
	mov	ebp,esp
	push	ebx
;	push	ecx		; need not be preserved
;	push	edx		; need not be preserved
	push	esi
	push	edi

	pxor	mm6,mm6			; mm6=(all 0's)
	pcmpeqw	mm7,mm7
	psllw	mm7,7			; mm7={0xFF80 0xFF80 0xFF80 0xFF80}

	mov	esi, JSAMPARRAY [sample_data]	; (JSAMPROW *)
	mov	eax, JDIMENSION [start_col]
	mov	edi, POINTER [workspace]	; (DCTELEM *)
	mov	ecx, DCTSIZE/4
	alignx	16,7
.convloop:
	mov	ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW]	; (JSAMPLE *)
	mov	edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW]	; (JSAMPLE *)

	movq	mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE]	; mm0=(01234567)
	movq	mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE]	; mm1=(89ABCDEF)

	mov	ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW]	; (JSAMPLE *)
	mov	edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW]	; (JSAMPLE *)

	movq	mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE]	; mm2=(GHIJKLMN)
	movq	mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE]	; mm3=(OPQRSTUV)

	movq      mm4,mm0
	punpcklbw mm0,mm6		; mm0=(0123)
	punpckhbw mm4,mm6		; mm4=(4567)
	movq      mm5,mm1
	punpcklbw mm1,mm6		; mm1=(89AB)
	punpckhbw mm5,mm6		; mm5=(CDEF)

	paddw	mm0,mm7
	paddw	mm4,mm7
	paddw	mm1,mm7
	paddw	mm5,mm7

	movq	MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
	movq	MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4
	movq	MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1
	movq	MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5

	movq      mm0,mm2
	punpcklbw mm2,mm6		; mm2=(GHIJ)
	punpckhbw mm0,mm6		; mm0=(KLMN)
	movq      mm4,mm3
	punpcklbw mm3,mm6		; mm3=(OPQR)
	punpckhbw mm4,mm6		; mm4=(STUV)

	paddw	mm2,mm7
	paddw	mm0,mm7
	paddw	mm3,mm7
	paddw	mm4,mm7

	movq	MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2
	movq	MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0
	movq	MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3
	movq	MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4

	add	esi, byte 4*SIZEOF_JSAMPROW
	add	edi, byte 4*DCTSIZE*SIZEOF_DCTELEM
	dec	ecx
	jnz	short .convloop

	emms		; empty MMX state

	pop	edi
	pop	esi
;	pop	edx		; need not be preserved
;	pop	ecx		; need not be preserved
	pop	ebx
	pop	ebp
	ret

; --------------------------------------------------------------------------
;
; Quantize/descale the coefficients, and store into coef_block
;
; This implementation is based on an algorithm described in
;   "How to optimize for the Pentium family of microprocessors"
;   (http://www.agner.org/assem/).
;
; GLOBAL(void)
; jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM * divisors,
;                     DCTELEM * workspace);
;

%define RECIPROCAL(m,n,b) MMBLOCK(DCTSIZE*0+(m),(n),(b),SIZEOF_DCTELEM)
%define CORRECTION(m,n,b) MMBLOCK(DCTSIZE*1+(m),(n),(b),SIZEOF_DCTELEM)
%define SCALE(m,n,b)      MMBLOCK(DCTSIZE*2+(m),(n),(b),SIZEOF_DCTELEM)
%define SHIFT(m,n,b)      MMBLOCK(DCTSIZE*3+(m),(n),(b),SIZEOF_DCTELEM)

%define coef_block	ebp+8		; JCOEFPTR coef_block
%define divisors	ebp+12		; DCTELEM * divisors
%define workspace	ebp+16		; DCTELEM * workspace

	align	16
	global	EXTN(jsimd_quantize_mmx)

EXTN(jsimd_quantize_mmx):
	push	ebp
	mov	ebp,esp
;	push	ebx		; unused
;	push	ecx		; unused
;	push	edx		; need not be preserved
	push	esi
	push	edi

	mov	esi, POINTER [workspace]
	mov	edx, POINTER [divisors]
	mov	edi, JCOEFPTR [coef_block]
	mov	ah, 2
	alignx	16,7
.quantloop1:
	mov	al, DCTSIZE2/8/2
	alignx	16,7
.quantloop2:
	movq	mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)]
	movq	mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)]

	movq	mm0,mm2
	movq	mm1,mm3

	psraw	mm2,(WORD_BIT-1)  ; -1 if value < 0, 0 otherwise
	psraw	mm3,(WORD_BIT-1)

	pxor	mm0,mm2   ; val = -val
	pxor	mm1,mm3
	psubw	mm0,mm2
	psubw	mm1,mm3

	;
	; MMX is an annoyingly crappy instruction set. It has two
	; misfeatures that are causing problems here:
	;
	; - All multiplications are signed.
	;
	; - The second operand for the shifts is not treated as packed.
	;
	;
	; We work around the first problem by implementing this algorithm:
	;
	; unsigned long unsigned_multiply(unsigned short x, unsigned short y)
	; {
	;   enum { SHORT_BIT = 16 };
	;   signed short sx = (signed short) x;
	;   signed short sy = (signed short) y;
	;   signed long sz;
	; 
	;   sz = (long) sx * (long) sy;     /* signed multiply */
	; 
	;   if (sx < 0) sz += (long) sy << SHORT_BIT;
	;   if (sy < 0) sz += (long) sx << SHORT_BIT;
	; 
	;   return (unsigned long) sz;
	; }
	;
	; (note that a negative sx adds _sy_ and vice versa)
	;
	; For the second problem, we replace the shift by a multiplication.
	; Unfortunately that means we have to deal with the signed issue again.
	;

	paddw	mm0, MMWORD [CORRECTION(0,0,edx)]   ; correction + roundfactor
	paddw	mm1, MMWORD [CORRECTION(0,1,edx)]

	movq	mm4,mm0   ; store current value for later
	movq	mm5,mm1
	pmulhw	mm0, MMWORD [RECIPROCAL(0,0,edx)]   ; reciprocal
	pmulhw	mm1, MMWORD [RECIPROCAL(0,1,edx)]
	paddw	mm0,mm4		; reciprocal is always negative (MSB=1),
	paddw	mm1,mm5   ; so we always need to add the initial value
	                ; (input value is never negative as we
	                ; inverted it at the start of this routine)

	; here it gets a bit tricky as both scale
	; and mm0/mm1 can be negative
	movq	mm6, MMWORD [SCALE(0,0,edx)]	; scale
	movq	mm7, MMWORD [SCALE(0,1,edx)]
	movq	mm4,mm0
	movq	mm5,mm1
	pmulhw	mm0,mm6
	pmulhw	mm1,mm7

	psraw	mm6,(WORD_BIT-1)    ; determine if scale is negative
	psraw	mm7,(WORD_BIT-1)

	pand	mm6,mm4             ; and add input if it is
	pand	mm7,mm5
	paddw	mm0,mm6
	paddw	mm1,mm7

	psraw	mm4,(WORD_BIT-1)    ; then check if negative input 
	psraw	mm5,(WORD_BIT-1)

	pand	mm4, MMWORD [SCALE(0,0,edx)]	; and add scale if it is
	pand	mm5, MMWORD [SCALE(0,1,edx)]
	paddw	mm0,mm4
	paddw	mm1,mm5

	pxor	mm0,mm2   ; val = -val
	pxor	mm1,mm3
	psubw	mm0,mm2
	psubw	mm1,mm3

	movq	MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
	movq	MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1

	add	esi, byte 8*SIZEOF_DCTELEM
	add	edx, byte 8*SIZEOF_DCTELEM
	add	edi, byte 8*SIZEOF_JCOEF
	dec	al
	jnz	near .quantloop2
	dec	ah
	jnz	near .quantloop1	; to avoid branch misprediction

	emms		; empty MMX state

	pop	edi
	pop	esi
;	pop	edx		; need not be preserved
;	pop	ecx		; unused
;	pop	ebx		; unused
	pop	ebp
	ret