summaryrefslogtreecommitdiffstats
path: root/common/rfb/EncodeManager.cxx
blob: ca60da488d56a92de20ecaf110fe5d3fdee68235 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/* Copyright (C) 2000-2003 Constantin Kaplinsky.  All Rights Reserved.
 * Copyright (C) 2011 D. R. Commander.  All Rights Reserved.
 * Copyright 2014 Pierre Ossman for Cendio AB
 * 
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this software; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,
 * USA.
 */
#include <rfb/EncodeManager.h>
#include <rfb/Encoder.h>
#include <rfb/Palette.h>
#include <rfb/SConnection.h>
#include <rfb/SMsgWriter.h>
#include <rfb/UpdateTracker.h>

#include <rfb/RawEncoder.h>
#include <rfb/RREEncoder.h>
#include <rfb/HextileEncoder.h>
#include <rfb/ZRLEEncoder.h>
#include <rfb/TightEncoder.h>
#include <rfb/TightJPEGEncoder.h>

using namespace rfb;

// Split each rectangle into smaller ones no larger than this area,
// and no wider than this width.
static const int SubRectMaxArea = 65536;
static const int SubRectMaxWidth = 2048;

// The size in pixels of either side of each block tested when looking
// for solid blocks.
static const int SolidSearchBlock = 16;
// Don't bother with blocks smaller than this
static const int SolidBlockMinArea = 2048;

namespace rfb {

enum EncoderClass {
  encoderRaw,
  encoderRRE,
  encoderHextile,
  encoderTight,
  encoderTightJPEG,
  encoderZRLE,
  encoderClassMax,
};

enum EncoderType {
  encoderSolid,
  encoderBitmap,
  encoderBitmapRLE,
  encoderIndexed,
  encoderIndexedRLE,
  encoderFullColour,
  encoderTypeMax,
};

struct RectInfo {
  int rleRuns;
  Palette palette;
};

};

EncodeManager::EncodeManager(SConnection* conn_) : conn(conn_)
{
  encoders.resize(encoderClassMax, NULL);
  activeEncoders.resize(encoderTypeMax, encoderRaw);

  encoders[encoderRaw] = new RawEncoder(conn);
  encoders[encoderRRE] = new RREEncoder(conn);
  encoders[encoderHextile] = new HextileEncoder(conn);
  encoders[encoderTight] = new TightEncoder(conn);
  encoders[encoderTightJPEG] = new TightJPEGEncoder(conn);
  encoders[encoderZRLE] = new ZRLEEncoder(conn);
}

EncodeManager::~EncodeManager()
{
  std::vector<Encoder*>::iterator iter;

  for (iter = encoders.begin();iter != encoders.end();iter++)
    delete *iter;
}

bool EncodeManager::supported(int encoding)
{
  switch (encoding) {
  case encodingRaw:
  case encodingRRE:
  case encodingHextile:
  case encodingZRLE:
  case encodingTight:
    return true;
  default:
    return false;
  }
}

void EncodeManager::writeUpdate(const UpdateInfo& ui, const PixelBuffer* pb,
                                const RenderedCursor* renderedCursor)
{
    int nRects;
    Region changed;

    prepareEncoders();

    if (conn->cp.supportsLastRect)
      nRects = 0xFFFF;
    else {
      nRects = ui.copied.numRects();
      nRects += computeNumRects(ui.changed);

      if (renderedCursor != NULL)
        nRects += 1;
    }

    conn->writer()->writeFramebufferUpdateStart(nRects);

    writeCopyRects(ui);

    /*
     * We start by searching for solid rects, which are then removed
     * from the changed region.
     */
    changed.copyFrom(ui.changed);

    if (conn->cp.supportsLastRect)
      writeSolidRects(&changed, pb);

    writeRects(changed, pb);

    if (renderedCursor != NULL) {
      Rect renderedCursorRect;

      renderedCursorRect = renderedCursor->getEffectiveRect();
      writeSubRect(renderedCursorRect, renderedCursor);
    }

    conn->writer()->writeFramebufferUpdateEnd();
}

void EncodeManager::prepareEncoders()
{
  enum EncoderClass solid, bitmap, bitmapRLE;
  enum EncoderClass indexed, indexedRLE, fullColour;

  rdr::S32 preferred;

  std::vector<int>::iterator iter;

  solid = bitmap = bitmapRLE = encoderRaw;
  indexed = indexedRLE = fullColour = encoderRaw;

  // Try to respect the client's wishes
  preferred = conn->getPreferredEncoding();
  switch (preferred) {
  case encodingRRE:
    // Horrible for anything high frequency and/or lots of colours
    bitmapRLE = indexedRLE = encoderRRE;
    break;
  case encodingHextile:
    // Slightly less horrible
    bitmapRLE = indexedRLE = fullColour = encoderHextile;
    break;
  case encodingTight:
    if (encoders[encoderTightJPEG]->isSupported() &&
        (conn->cp.pf().bpp >= 16))
      fullColour = encoderTightJPEG;
    else
      fullColour = encoderTight;
    indexed = indexedRLE = encoderTight;
    bitmap = bitmapRLE = encoderTight;
    break;
  case encodingZRLE:
    fullColour = encoderZRLE;
    bitmapRLE = indexedRLE = encoderZRLE;
    bitmap = indexed = encoderZRLE;
    break;
  }

  // Any encoders still unassigned?

  if (fullColour == encoderRaw) {
    if (encoders[encoderTightJPEG]->isSupported() &&
        (conn->cp.pf().bpp >= 16))
      fullColour = encoderTightJPEG;
    else if (encoders[encoderZRLE]->isSupported())
      fullColour = encoderZRLE;
    else if (encoders[encoderTight]->isSupported())
      fullColour = encoderTight;
    else if (encoders[encoderHextile]->isSupported())
      fullColour = encoderHextile;
  }

  if (indexed == encoderRaw) {
    if (encoders[encoderZRLE]->isSupported())
      indexed = encoderZRLE;
    else if (encoders[encoderTight]->isSupported())
      indexed = encoderTight;
    else if (encoders[encoderHextile]->isSupported())
      indexed = encoderHextile;
  }

  if (indexedRLE == encoderRaw)
    indexedRLE = indexed;

  if (bitmap == encoderRaw)
    bitmap = indexed;
  if (bitmapRLE == encoderRaw)
    bitmapRLE = bitmap;

  if (solid == encoderRaw) {
    if (encoders[encoderTight]->isSupported())
      solid = encoderTight;
    else if (encoders[encoderRRE]->isSupported())
      solid = encoderRRE;
    else if (encoders[encoderZRLE]->isSupported())
      solid = encoderZRLE;
    else if (encoders[encoderHextile]->isSupported())
      solid = encoderHextile;
  }

  // JPEG is the only encoder that can reduce things to grayscale
  if ((conn->cp.subsampling == subsampleGray) &&
      encoders[encoderTightJPEG]->isSupported()) {
    solid = bitmap = bitmapRLE = encoderTightJPEG;
    indexed = indexedRLE = fullColour = encoderTightJPEG;
  }

  activeEncoders[encoderSolid] = solid;
  activeEncoders[encoderBitmap] = bitmap;
  activeEncoders[encoderBitmapRLE] = bitmapRLE;
  activeEncoders[encoderIndexed] = indexed;
  activeEncoders[encoderIndexedRLE] = indexedRLE;
  activeEncoders[encoderFullColour] = fullColour;

  for (iter = activeEncoders.begin(); iter != activeEncoders.end(); ++iter) {
    Encoder *encoder;

    encoder = encoders[*iter];

    encoder->setCompressLevel(conn->cp.compressLevel);
    encoder->setQualityLevel(conn->cp.qualityLevel);
    encoder->setFineQualityLevel(conn->cp.fineQualityLevel,
                                 conn->cp.subsampling);
  }
}

int EncodeManager::computeNumRects(const Region& changed)
{
  int numRects;
  std::vector<Rect> rects;
  std::vector<Rect>::const_iterator rect;

  numRects = 0;
  changed.get_rects(&rects);
  for (rect = rects.begin(); rect != rects.end(); ++rect) {
    int w, h, sw, sh;

    w = rect->width();
    h = rect->height();

    // No split necessary?
    if (((w*h) < SubRectMaxArea) && (w < SubRectMaxWidth)) {
      numRects += 1;
      continue;
    }

    if (w <= SubRectMaxWidth)
      sw = w;
    else
      sw = SubRectMaxWidth;

    sh = SubRectMaxArea / sw;

    // ceil(w/sw) * ceil(h/sh)
    numRects += (((w - 1)/sw) + 1) * (((h - 1)/sh) + 1);
  }

  return numRects;
}

void EncodeManager::writeCopyRects(const UpdateInfo& ui)
{
  std::vector<Rect> rects;
  std::vector<Rect>::const_iterator rect;

  ui.copied.get_rects(&rects, ui.copy_delta.x <= 0, ui.copy_delta.y <= 0);
  for (rect = rects.begin(); rect != rects.end(); ++rect) {
    conn->writer()->writeCopyRect(*rect, rect->tl.x - ui.copy_delta.x,
                                   rect->tl.y - ui.copy_delta.y);
  }
}

void EncodeManager::writeSolidRects(Region *changed, const PixelBuffer* pb)
{
  std::vector<Rect> rects;
  std::vector<Rect>::const_iterator rect;

  // FIXME: This gives up after the first rect it finds. A large update
  //        (like a whole screen refresh) might have lots of large solid
  //        areas.

  changed->get_rects(&rects);
  for (rect = rects.begin(); rect != rects.end(); ++rect) {
    Rect sr;
    int dx, dy, dw, dh;

    // We start by finding a solid 16x16 block
    for (dy = rect->tl.y; dy < rect->br.y; dy += SolidSearchBlock) {

      dh = SolidSearchBlock;
      if (dy + dh > rect->br.y)
        dh = rect->br.y - dy;

      for (dx = rect->tl.x; dx < rect->br.x; dx += SolidSearchBlock) {
        // We define it like this to guarantee alignment
        rdr::U32 _buffer;
        rdr::U8* colourValue = (rdr::U8*)&_buffer;

        dw = SolidSearchBlock;
        if (dx + dw > rect->br.x)
          dw = rect->br.x - dx;

        pb->getImage(colourValue, Rect(dx, dy, dx+1, dy+1));

        sr.setXYWH(dx, dy, dw, dh);
        if (checkSolidTile(sr, colourValue, pb)) {
          Rect erb, erp;

          Encoder *encoder;

          // We then try extending the area by adding more blocks
          // in both directions and pick the combination that gives
          // the largest area.
          sr.setXYWH(dx, dy, rect->br.x - dx, rect->br.y - dy);
          extendSolidAreaByBlock(sr, colourValue, pb, &erb);

          // Did we end up getting the entire rectangle?
          if (erb.equals(*rect))
            erp = erb;
          else {
            // Don't bother with sending tiny rectangles
            if (erb.area() < SolidBlockMinArea)
              continue;

            // Extend the area again, but this time one pixel
            // row/column at a time.
            extendSolidAreaByPixel(*rect, erb, colourValue, pb, &erp);
          }

          // Send solid-color rectangle.
          encoder = encoders[activeEncoders[encoderSolid]];
          conn->writer()->startRect(erp, encoder->encoding);
          if (encoder->flags & EncoderUseNativePF) {
            encoder->writeSolidRect(erp.width(), erp.height(),
                                    pb->getPF(), colourValue);
          } else {
            rdr::U32 _buffer2;
            rdr::U8* converted = (rdr::U8*)&_buffer2;

            conn->cp.pf().bufferFromBuffer(converted, pb->getPF(),
                                           colourValue, 1);

            encoder->writeSolidRect(erp.width(), erp.height(),
                                    conn->cp.pf(), converted);
          }
          conn->writer()->endRect();

          changed->assign_subtract(Region(erp));

          break;
        }
      }

      if (dx < rect->br.x)
        break;
    }
  }
}

void EncodeManager::writeRects(const Region& changed, const PixelBuffer* pb)
{
  std::vector<Rect> rects;
  std::vector<Rect>::const_iterator rect;

  changed.get_rects(&rects);
  for (rect = rects.begin(); rect != rects.end(); ++rect) {
    int w, h, sw, sh;
    Rect sr;

    w = rect->width();
    h = rect->height();

    // No split necessary?
    if (((w*h) < SubRectMaxArea) && (w < SubRectMaxWidth)) {
      writeSubRect(*rect, pb);
      continue;
    }

    if (w <= SubRectMaxWidth)
      sw = w;
    else
      sw = SubRectMaxWidth;

    sh = SubRectMaxArea / sw;

    for (sr.tl.y = rect->tl.y; sr.tl.y < rect->br.y; sr.tl.y += sh) {
      sr.br.y = sr.tl.y + sh;
      if (sr.br.y > rect->br.y)
        sr.br.y = rect->br.y;

      for (sr.tl.x = rect->tl.x; sr.tl.x < rect->br.x; sr.tl.x += sw) {
        sr.br.x = sr.tl.x + sw;
        if (sr.br.x > rect->br.x)
          sr.br.x = rect->br.x;

        writeSubRect(sr, pb);
      }
    }
  }
}

void EncodeManager::writeSubRect(const Rect& rect, const PixelBuffer *pb)
{
  PixelBuffer *ppb;

  Encoder *encoder;

  struct RectInfo info;
  int divisor, maxColours;

  bool useRLE;
  EncoderType type;

  // FIXME: This is roughly the algorithm previously used by the Tight
  //        encoder. It seems a bit backwards though, that higher
  //        compression setting means spending less effort in building
  //        a palette. It might be that they figured the increase in
  //        zlib setting compensated for the loss.
  if (conn->cp.compressLevel == -1)
    divisor = 2 * 8;
  else
    divisor = conn->cp.compressLevel * 8;
  if (divisor < 4)
    divisor = 4;

  maxColours = rect.area()/divisor;

  // Special exception inherited from the Tight encoder
  if (activeEncoders[encoderFullColour] == encoderTightJPEG) {
    if (conn->cp.compressLevel < 2)
      maxColours = 24;
    else
      maxColours = 96;
  }

  if (maxColours < 2)
    maxColours = 2;

  encoder = encoders[activeEncoders[encoderIndexedRLE]];
  if (maxColours > encoder->maxPaletteSize)
    maxColours = encoder->maxPaletteSize;
  encoder = encoders[activeEncoders[encoderIndexed]];
  if (maxColours > encoder->maxPaletteSize)
    maxColours = encoder->maxPaletteSize;

  ppb = preparePixelBuffer(rect, pb, true);

  if (!analyseRect(ppb, &info, maxColours))
    info.palette.clear();

  // Different encoders might have different RLE overhead, but
  // here we do a guess at RLE being the better choice if reduces
  // the pixel count by 50%.
  useRLE = info.rleRuns <= (rect.area() * 2);

  switch (info.palette.size()) {
  case 0:
    type = encoderFullColour;
    break;
  case 1:
    type = encoderSolid;
    break;
  case 2:
    if (useRLE)
      type = encoderBitmapRLE;
    else
      type = encoderBitmap;
    break;
  default:
    if (useRLE)
      type = encoderIndexedRLE;
    else
      type = encoderIndexed;
  }

  encoder = encoders[activeEncoders[type]];

  if (encoder->flags & EncoderUseNativePF)
    ppb = preparePixelBuffer(rect, pb, false);

  conn->writer()->startRect(rect, encoder->encoding);
  encoder->writeRect(ppb, info.palette);
  conn->writer()->endRect();
}

bool EncodeManager::checkSolidTile(const Rect& r, const rdr::U8* colourValue,
                                   const PixelBuffer *pb)
{
  switch (pb->getPF().bpp) {
  case 32:
    return checkSolidTile(r, *(const rdr::U32*)colourValue, pb);
  case 16:
    return checkSolidTile(r, *(const rdr::U16*)colourValue, pb);
  default:
    return checkSolidTile(r, *(const rdr::U8*)colourValue, pb);
  }
}

void EncodeManager::extendSolidAreaByBlock(const Rect& r,
                                           const rdr::U8* colourValue,
                                           const PixelBuffer *pb, Rect* er)
{
  int dx, dy, dw, dh;
  int w_prev;
  Rect sr;
  int w_best = 0, h_best = 0;

  w_prev = r.width();

  // We search width first, back off when we hit a different colour,
  // and restart with a larger height. We keep track of the
  // width/height combination that gives us the largest area.
  for (dy = r.tl.y; dy < r.br.y; dy += SolidSearchBlock) {

    dh = SolidSearchBlock;
    if (dy + dh > r.br.y)
      dh = r.br.y - dy;

    // We test one block here outside the x loop in order to break
    // the y loop right away.
    dw = SolidSearchBlock;
    if (dw > w_prev)
      dw = w_prev;

    sr.setXYWH(r.tl.x, dy, dw, dh);
    if (!checkSolidTile(sr, colourValue, pb))
      break;

    for (dx = r.tl.x + dw; dx < r.tl.x + w_prev;) {

      dw = SolidSearchBlock;
      if (dx + dw > r.tl.x + w_prev)
        dw = r.tl.x + w_prev - dx;

      sr.setXYWH(dx, dy, dw, dh);
      if (!checkSolidTile(sr, colourValue, pb))
        break;

      dx += dw;
    }

    w_prev = dx - r.tl.x;
    if (w_prev * (dy + dh - r.tl.y) > w_best * h_best) {
      w_best = w_prev;
      h_best = dy + dh - r.tl.y;
    }
  }

  er->tl.x = r.tl.x;
  er->tl.y = r.tl.y;
  er->br.x = er->tl.x + w_best;
  er->br.y = er->tl.y + h_best;
}

void EncodeManager::extendSolidAreaByPixel(const Rect& r, const Rect& sr,
                                           const rdr::U8* colourValue,
                                           const PixelBuffer *pb, Rect* er)
{
  int cx, cy;
  Rect tr;

  // Try to extend the area upwards.
  for (cy = sr.tl.y - 1; cy >= r.tl.y; cy--) {
    tr.setXYWH(sr.tl.x, cy, sr.width(), 1);
    if (!checkSolidTile(tr, colourValue, pb))
      break;
  }
  er->tl.y = cy + 1;

  // ... downwards.
  for (cy = sr.br.y; cy < r.br.y; cy++) {
    tr.setXYWH(sr.tl.x, cy, sr.width(), 1);
    if (!checkSolidTile(tr, colourValue, pb))
      break;
  }
  er->br.y = cy;

  // ... to the left.
  for (cx = sr.tl.x - 1; cx >= r.tl.x; cx--) {
    tr.setXYWH(cx, er->tl.y, 1, er->height());
    if (!checkSolidTile(tr, colourValue, pb))
      break;
  }
  er->tl.x = cx + 1;

  // ... to the right.
  for (cx = sr.br.x; cx < r.br.x; cx++) {
    tr.setXYWH(cx, er->tl.y, 1, er->height());
    if (!checkSolidTile(tr, colourValue, pb))
      break;
  }
  er->br.x = cx;
}

PixelBuffer* EncodeManager::preparePixelBuffer(const Rect& rect,
                                               const PixelBuffer *pb,
                                               bool convert)
{
  const rdr::U8* buffer;
  int stride;

  // Do wo need to convert the data?
  if (convert && !conn->cp.pf().equal(pb->getPF())) {
    convertedPixelBuffer.setPF(conn->cp.pf());
    convertedPixelBuffer.setSize(rect.width(), rect.height());

    buffer = pb->getBuffer(rect, &stride);
    convertedPixelBuffer.imageRect(pb->getPF(),
                                   convertedPixelBuffer.getRect(),
                                   buffer, stride);

    return &convertedPixelBuffer;
  }

  // Otherwise we still need to shift the coordinates. We have our own
  // abusive subclass of FullFramePixelBuffer for this.

  buffer = pb->getBuffer(rect, &stride);

  offsetPixelBuffer.update(pb->getPF(), rect.width(), rect.height(),
                           buffer, stride);

  return &offsetPixelBuffer;
}

bool EncodeManager::analyseRect(const PixelBuffer *pb,
                                struct RectInfo *info, int maxColours)
{
  const rdr::U8* buffer;
  int stride;

  buffer = pb->getBuffer(pb->getRect(), &stride);

  switch (pb->getPF().bpp) {
  case 32:
    return analyseRect(pb->width(), pb->height(),
                       (const rdr::U32*)buffer, stride,
                       info, maxColours);
  case 16:
    return analyseRect(pb->width(), pb->height(),
                       (const rdr::U16*)buffer, stride,
                       info, maxColours);
  default:
    return analyseRect(pb->width(), pb->height(),
                       (const rdr::U8*)buffer, stride,
                       info, maxColours);
  }
}

void EncodeManager::OffsetPixelBuffer::update(const PixelFormat& pf,
                                              int width, int height,
                                              const rdr::U8* data_,
                                              int stride_)
{
  format = pf;
  width_ = width;
  height_ = height;
  // Forced cast. We never write anything though, so it should be safe.
  data = (rdr::U8*)data_;
  stride = stride_;
}

// Preprocessor generated, optimised methods

#define BPP 8
#include "EncodeManagerBPP.cxx"
#undef BPP
#define BPP 16
#include "EncodeManagerBPP.cxx"
#undef BPP
#define BPP 32
#include "EncodeManagerBPP.cxx"
#undef BPP