1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
/* Copyright (C) 2000-2003 Constantin Kaplinsky. All Rights Reserved.
* Copyright (C) 2011 D. R. Commander. All Rights Reserved.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*/
#include <rdr/OutStream.h>
#include <rfb/encodings.h>
#include <rfb/ConnParams.h>
#include <rfb/SMsgWriter.h>
#include <rfb/TightEncoder.h>
using namespace rfb;
// Minimum amount of data to be compressed. This value should not be
// changed, doing so will break compatibility with existing clients.
#define TIGHT_MIN_TO_COMPRESS 12
// Adjustable parameters.
// FIXME: Get rid of #defines
#define TIGHT_MAX_SPLIT_TILE_SIZE 16
#define TIGHT_MIN_SPLIT_RECT_SIZE 4096
#define TIGHT_MIN_SOLID_SUBRECT_SIZE 2048
//
// Compression level stuff. The following array contains various
// encoder parameters for each of 10 compression levels (0..9).
// Last three parameters correspond to JPEG quality levels (0..9).
//
// NOTE: The parameters used in this encoder are the result of painstaking
// research by The VirtualGL Project using RFB session captures from a variety
// of both 2D and 3D applications. See http://www.VirtualGL.org for the full
// reports.
// NOTE: The JPEG quality and subsampling levels below were obtained
// experimentally by the VirtualGL Project. They represent the approximate
// average compression ratios listed below, as measured across the set of
// every 10th frame in the SPECviewperf 9 benchmark suite.
//
// 9 = JPEG quality 100, no subsampling (ratio ~= 10:1)
// [this should be lossless, except for round-off error]
// 8 = JPEG quality 92, no subsampling (ratio ~= 20:1)
// [this should be perceptually lossless, based on current research]
// 7 = JPEG quality 86, no subsampling (ratio ~= 25:1)
// 6 = JPEG quality 79, no subsampling (ratio ~= 30:1)
// 5 = JPEG quality 77, 4:2:2 subsampling (ratio ~= 40:1)
// 4 = JPEG quality 62, 4:2:2 subsampling (ratio ~= 50:1)
// 3 = JPEG quality 42, 4:2:2 subsampling (ratio ~= 60:1)
// 2 = JPEG quality 41, 4:2:0 subsampling (ratio ~= 70:1)
// 1 = JPEG quality 29, 4:2:0 subsampling (ratio ~= 80:1)
// 0 = JPEG quality 15, 4:2:0 subsampling (ratio ~= 100:1)
const TIGHT_CONF TightEncoder::conf[10] = {
{ 65536, 2048, 6, 0, 0, 0, 4, 24, 15, SUBSAMP_420 }, // 0
{ 65536, 2048, 6, 1, 1, 1, 8, 24, 29, SUBSAMP_420 }, // 1
{ 65536, 2048, 8, 3, 3, 2, 24, 96, 41, SUBSAMP_420 }, // 2
{ 65536, 2048, 12, 5, 5, 2, 32, 96, 42, SUBSAMP_422 }, // 3
{ 65536, 2048, 12, 6, 7, 3, 32, 96, 62, SUBSAMP_422 }, // 4
{ 65536, 2048, 12, 7, 8, 4, 32, 96, 77, SUBSAMP_422 }, // 5
{ 65536, 2048, 16, 7, 8, 5, 32, 96, 79, SUBSAMP_NONE }, // 6
{ 65536, 2048, 16, 8, 9, 6, 64, 96, 86, SUBSAMP_NONE }, // 7
{ 65536, 2048, 24, 9, 9, 7, 64, 96, 92, SUBSAMP_NONE }, // 8
{ 65536, 2048, 32, 9, 9, 9, 96, 96,100, SUBSAMP_NONE } // 9
};
const int TightEncoder::defaultCompressLevel = 2;
//
// Including BPP-dependent implementation of the encoder.
//
#define BPP 8
#include <rfb/tightEncode.h>
#undef BPP
#define BPP 16
#include <rfb/tightEncode.h>
#undef BPP
#define BPP 32
#include <rfb/tightEncode.h>
#undef BPP
Encoder* TightEncoder::create(SMsgWriter* writer)
{
return new TightEncoder(writer);
}
TightEncoder::TightEncoder(SMsgWriter* writer_) : writer(writer_)
{
setCompressLevel(defaultCompressLevel);
setQualityLevel(-1);
}
TightEncoder::~TightEncoder()
{
}
void TightEncoder::setCompressLevel(int level)
{
if (level >= 0 && level <= 9) {
pconf = &conf[level];
} else {
pconf = &conf[defaultCompressLevel];
}
}
void TightEncoder::setQualityLevel(int level)
{
if (level >= 0 && level <= 9) {
jpegQuality = conf[level].jpegQuality;
jpegSubsampling = conf[level].jpegSubsampling;
} else {
jpegQuality = -1;
jpegSubsampling = SUBSAMP_UNDEFINED;
}
}
void TightEncoder::setFineQualityLevel(int quality, JPEG_SUBSAMP subsampling)
{
if (quality >= 1 && quality <= 100) {
jpegQuality = quality;
}
if (subsampling >= SUBSAMP_NONE && subsampling <= SUBSAMP_GRAY) {
jpegSubsampling = subsampling;
}
}
bool TightEncoder::checkSolidTile(Rect& r, rdr::U32* colorPtr,
bool needSameColor)
{
switch (serverpf.bpp) {
case 32:
return checkSolidTile32(r, colorPtr, needSameColor);
case 16:
return checkSolidTile16(r, colorPtr, needSameColor);
default:
return checkSolidTile8(r, colorPtr, needSameColor);
}
}
void TightEncoder::findBestSolidArea(Rect& r, rdr::U32 colorValue, Rect& bestr)
{
int dx, dy, dw, dh;
int w_prev;
Rect sr;
int w_best = 0, h_best = 0;
bestr.tl.x = bestr.br.x = r.tl.x;
bestr.tl.y = bestr.br.y = r.tl.y;
w_prev = r.width();
for (dy = r.tl.y; dy < r.br.y; dy += TIGHT_MAX_SPLIT_TILE_SIZE) {
dh = (dy + TIGHT_MAX_SPLIT_TILE_SIZE <= r.br.y) ?
TIGHT_MAX_SPLIT_TILE_SIZE : (r.br.y - dy);
dw = (w_prev > TIGHT_MAX_SPLIT_TILE_SIZE) ?
TIGHT_MAX_SPLIT_TILE_SIZE : w_prev;
sr.setXYWH(r.tl.x, dy, dw, dh);
if (!checkSolidTile(sr, &colorValue, true))
break;
for (dx = r.tl.x + dw; dx < r.tl.x + w_prev;) {
dw = (dx + TIGHT_MAX_SPLIT_TILE_SIZE <= r.tl.x + w_prev) ?
TIGHT_MAX_SPLIT_TILE_SIZE : (r.tl.x + w_prev - dx);
sr.setXYWH(dx, dy, dw, dh);
if (!checkSolidTile(sr, &colorValue, true))
break;
dx += dw;
}
w_prev = dx - r.tl.x;
if (w_prev * (dy + dh - r.tl.y) > w_best * h_best) {
w_best = w_prev;
h_best = dy + dh - r.tl.y;
}
}
bestr.br.x = bestr.tl.x + w_best;
bestr.br.y = bestr.tl.y + h_best;
}
void TightEncoder::extendSolidArea(const Rect& r, rdr::U32 colorValue,
Rect& er)
{
int cx, cy;
Rect sr;
// Try to extend the area upwards.
for (cy = er.tl.y - 1; ; cy--) {
sr.setXYWH(er.tl.x, cy, er.width(), 1);
if (cy < r.tl.y || !checkSolidTile(sr, &colorValue, true))
break;
}
er.tl.y = cy + 1;
// ... downwards.
for (cy = er.br.y; ; cy++) {
sr.setXYWH(er.tl.x, cy, er.width(), 1);
if (cy >= r.br.y || !checkSolidTile(sr, &colorValue, true))
break;
}
er.br.y = cy;
// ... to the left.
for (cx = er.tl.x - 1; ; cx--) {
sr.setXYWH(cx, er.tl.y, 1, er.height());
if (cx < r.tl.x || !checkSolidTile(sr, &colorValue, true))
break;
}
er.tl.x = cx + 1;
// ... to the right.
for (cx = er.br.x; ; cx++) {
sr.setXYWH(cx, er.tl.y, 1, er.height());
if (cx >= r.br.x || !checkSolidTile(sr, &colorValue, true))
break;
}
er.br.x = cx;
}
int TightEncoder::getNumRects(const Rect &r)
{
ConnParams* cp = writer->getConnParams();
const unsigned int w = r.width();
const unsigned int h = r.height();
// If last rect. encoding is enabled, we can use the higher-performance
// code that pre-computes solid rectangles. In that case, we don't care
// about the rectangle count.
if (cp->supportsLastRect && w * h >= TIGHT_MIN_SPLIT_RECT_SIZE)
return 0;
// Will this rectangle split into subrects?
bool rectTooBig = w > pconf->maxRectWidth || w * h > pconf->maxRectSize;
if (!rectTooBig)
return 1;
// Compute max sub-rectangle size.
const unsigned int subrectMaxWidth =
(w > pconf->maxRectWidth) ? pconf->maxRectWidth : w;
const unsigned int subrectMaxHeight =
pconf->maxRectSize / subrectMaxWidth;
// Return the number of subrects.
return (((w - 1) / pconf->maxRectWidth + 1) *
((h - 1) / subrectMaxHeight + 1));
}
void TightEncoder::sendRectSimple(const Rect& r)
{
// Shortcuts to rectangle coordinates and dimensions.
const int x = r.tl.x;
const int y = r.tl.y;
const unsigned int w = r.width();
const unsigned int h = r.height();
// Encode small rects as is.
bool rectTooBig = w > pconf->maxRectWidth || w * h > pconf->maxRectSize;
if (!rectTooBig) {
writeSubrect(r);
return;
}
// Compute max sub-rectangle size.
const unsigned int subrectMaxWidth =
(w > pconf->maxRectWidth) ? pconf->maxRectWidth : w;
const unsigned int subrectMaxHeight =
pconf->maxRectSize / subrectMaxWidth;
// Split big rects into separately encoded subrects.
Rect sr;
unsigned int dx, dy, sw, sh;
for (dy = 0; dy < h; dy += subrectMaxHeight) {
for (dx = 0; dx < w; dx += pconf->maxRectWidth) {
sw = (dx + pconf->maxRectWidth < w) ? pconf->maxRectWidth : w - dx;
sh = (dy + subrectMaxHeight < h) ? subrectMaxHeight : h - dy;
sr.setXYWH(x + dx, y + dy, sw, sh);
writeSubrect(sr);
}
}
}
bool TightEncoder::writeRect(const Rect& _r, TransImageGetter* _ig,
Rect* actual)
{
ig = _ig;
serverpf = ig->getPixelBuffer()->getPF();
ConnParams* cp = writer->getConnParams();
clientpf = cp->pf();
// Shortcuts to rectangle coordinates and dimensions.
Rect r = _r;
int x = r.tl.x;
int y = r.tl.y;
int w = r.width();
int h = r.height();
// Encode small rects as is.
if (!cp->supportsLastRect || w * h < TIGHT_MIN_SPLIT_RECT_SIZE) {
sendRectSimple(r);
return true;
}
// Split big rects into separately encoded subrects.
Rect sr, bestr;
int dx, dy, dw, dh;
rdr::U32 colorValue;
int maxRectWidth = pconf->maxRectWidth;
int nMaxWidth = (w > maxRectWidth) ? maxRectWidth : w;
int nMaxRows = pconf->maxRectSize / nMaxWidth;
// Try to find large solid-color areas and send them separately.
for (dy = y; dy < y + h; dy += TIGHT_MAX_SPLIT_TILE_SIZE) {
// If a rectangle becomes too large, send its upper part now.
if (dy - y >= nMaxRows) {
sr.setXYWH(x, y, w, nMaxRows);
sendRectSimple(sr);
r.tl.y += nMaxRows;
y = r.tl.y;
h = r.height();
}
dh = (dy + TIGHT_MAX_SPLIT_TILE_SIZE <= y + h) ?
TIGHT_MAX_SPLIT_TILE_SIZE : (y + h - dy);
for (dx = x; dx < x + w; dx += TIGHT_MAX_SPLIT_TILE_SIZE) {
dw = (dx + TIGHT_MAX_SPLIT_TILE_SIZE <= x + w) ?
TIGHT_MAX_SPLIT_TILE_SIZE : (x + w - dx);
sr.setXYWH(dx, dy, dw, dh);
if (checkSolidTile(sr, &colorValue, false)) {
if (jpegSubsampling == SUBSAMP_GRAY && jpegQuality != -1) {
Colour rgb;
serverpf.rgbFromPixel(colorValue, NULL, &rgb);
rdr::U32 lum = ((257 * rgb.r) + (504 * rgb.g) + (98 * rgb.b)
+ 16500) / 1000;
colorValue = lum + (lum << 8) + (lum << 16);
}
// Get dimensions of solid-color area.
sr.setXYWH(dx, dy, r.br.x - dx, r.br.y - dy);
findBestSolidArea(sr, colorValue, bestr);
// Make sure a solid rectangle is large enough
// (or the whole rectangle is of the same color).
if (bestr.area() != r.area()
&& bestr.area() < TIGHT_MIN_SOLID_SUBRECT_SIZE)
continue;
// Try to extend solid rectangle to maximum size.
extendSolidArea(r, colorValue, bestr);
// Send rectangles at top and left to solid-color area.
if (bestr.tl.y != y) {
sr.setXYWH(x, y, w, bestr.tl.y - y);
sendRectSimple(sr);
}
if (bestr.tl.x != x) {
sr.setXYWH(x, bestr.tl.y, bestr.tl.x - x, bestr.height());
writeRect(sr, _ig, NULL);
}
// Send solid-color rectangle.
writeSubrect(bestr, true);
// Send remaining rectangles (at right and bottom).
if (bestr.br.x != r.br.x) {
sr.setXYWH(bestr.br.x, bestr.tl.y, r.br.x - bestr.br.x,
bestr.height());
writeRect(sr, _ig, NULL);
}
if (bestr.br.y != r.br.y) {
sr.setXYWH(x, bestr.br.y, w, r.br.y - bestr.br.y);
writeRect(sr, _ig, NULL);
}
return true;
}
}
}
// No suitable solid-color rectangles found.
sendRectSimple(r);
return true;
}
void TightEncoder::writeSubrect(const Rect& r, bool forceSolid)
{
mos.clear();
switch (clientpf.bpp) {
case 8:
tightEncode8(r, &mos, forceSolid); break;
case 16:
tightEncode16(r, &mos, forceSolid); break;
case 32:
tightEncode32(r, &mos, forceSolid); break;
}
writer->startRect(r, encodingTight);
rdr::OutStream* os = writer->getOutStream();
os->writeBytes(mos.data(), mos.length());
writer->endRect();
}
|