summaryrefslogtreecommitdiffstats
path: root/java/com/tigervnc/rdr/InStream.java
blob: 3f91671a02df4257f1a6720b7c28b1f30c338028 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/* Copyright (C) 2002-2005 RealVNC Ltd.  All Rights Reserved.
 * 
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this software; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
 * USA.
 */

//
// rdr::InStream marshalls data from a buffer stored in RDR (RFB Data
// Representation).
//

package com.tigervnc.rdr;

import com.tigervnc.network.*;

abstract public class InStream {

  // check() ensures there is buffer data for at least one item of size
  // itemSize bytes.  Returns the number of items in the buffer (up to a
  // maximum of nItems).

  public int check(int itemSize, int nItems, boolean wait) {
    if (ptr + itemSize * nItems > end) {
      if (ptr + itemSize > end)
        return overrun(itemSize, nItems, wait);

      nItems = (end - ptr) / itemSize;
    }
    return nItems;
  }

  public int check(int itemSize, int nItems) { return check(itemSize, nItems, true); }
  public int check(int itemSize) { return check(itemSize, 1); }

  // checkNoWait() tries to make sure that the given number of bytes can
  // be read without blocking.  It returns true if this is the case, false
  // otherwise.  The length must be "small" (less than the buffer size).

  public final boolean checkNoWait(int length) { return check(length, 1, false)!=0; }

  // readU/SN() methods read unsigned and signed N-bit integers.

  public final int readS8()  { check(1); return b[ptr++]; }
  public final int readS16() { check(2); int b0 = b[ptr++];
                               int b1 = b[ptr++] & 0xff; return b0 << 8 | b1; }
  public final int readS32() { check(4); int b0 = b[ptr++];
                               int b1 = b[ptr++] & 0xff;
                               int b2 = b[ptr++] & 0xff;
                               int b3 = b[ptr++] & 0xff;
                               return b0 << 24 | b1 << 16 | b2 << 8 | b3; }

  public final int readU8()  { return readS8()  & 0xff;  }
  public final int readU16() { return readS16() & 0xffff; }
  public final int readU32() { return readS32() & 0xffffffff; }

  // readString() reads a string - a U32 length followed by the data.

  public final String readString() {
    int len = readU32();
    if (len > maxStringLength)
      throw new Exception("InStream max string length exceeded");

    byte[] str = new byte[len];
    readBytes(str, 0, len);
    String utf8string = new String();
    try {
      utf8string = new String(str,"UTF8");
    } catch(java.io.UnsupportedEncodingException e) {
      e.printStackTrace();
    }
    return utf8string;
  }

  // maxStringLength protects against allocating a huge buffer.  Set it
  // higher if you need longer strings.

  public static int maxStringLength = 65535;

  public final void skip(int bytes) {
    while (bytes > 0) {
      int n = check(1, bytes);
      ptr += n;
      bytes -= n;
    }
  }

  // readBytes() reads an exact number of bytes into an array at an offset.

  public void readBytes(byte[] data, int dataPtr, int length) {
    int dataEnd = dataPtr + length;
    while (dataPtr < dataEnd) {
      int n = check(1, dataEnd - dataPtr);
      System.arraycopy(b, ptr, data, dataPtr, n);
      ptr += n;
      dataPtr += n;
    }
  }

  // readOpaqueN() reads a quantity "without byte-swapping".  Because java has
  // no byte-ordering, we just use big-endian.

  public final int readOpaque8()  { return readU8(); }
  public final int readOpaque16() { return readU16(); }
  public final int readOpaque32() { return readU32(); }
  public final int readOpaque24A() { check(3); int b0 = b[ptr++];
                                     int b1 = b[ptr++]; int b2 = b[ptr++];
                                     return b0 << 24 | b1 << 16 | b2 << 8; }
  public final int readOpaque24B() { check(3); int b0 = b[ptr++];
                                     int b1 = b[ptr++]; int b2 = b[ptr++];
                                     return b0 << 16 | b1 << 8 | b2; }

  public final int readPixel(int bytesPerPixel, boolean bigEndian) {
    byte[] pix = new byte[4];
    readBytes(pix, 0, bytesPerPixel);

    if (bigEndian) {
      return 0xff000000 | (pix[0] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[2] & 0xff);
    } else {
      return 0xff000000 | (pix[2] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[0] & 0xff);
    }
  }

  public final void readPixels(int[] buf, int length, int bytesPerPixel, boolean bigEndian) {
    int npixels = length*bytesPerPixel;
    byte[] pixels = new byte[npixels];
    readBytes(pixels, 0, npixels);
    for (int i = 0; i < length; i++) {
      byte[] pix = new byte[4];
      System.arraycopy(pixels, i*bytesPerPixel, pix, 0, bytesPerPixel);
      if (bigEndian) {
        buf[i] = 0xff000000 | (pix[0] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[2] & 0xff);
      } else {
        buf[i] = 0xff000000 | (pix[2] & 0xff)<<16 | (pix[1] & 0xff)<<8 | (pix[0] & 0xff);
      }
    }
  }

  public final int readCompactLength() {
    int b = readU8();
    int result = b & 0x7F;
    if ((b & 0x80) != 0) {
      b = readU8();
      result |= (b & 0x7F) << 7;
      if ((b & 0x80) != 0) {
        b = readU8();
        result |= (b & 0xFF) << 14;
      }
    }
    return result;
  }
  
  // pos() returns the position in the stream.

  abstract public int pos();

  // bytesAvailable() returns true if at least one byte can be read from the
  // stream without blocking.  i.e. if false is returned then readU8() would
  // block.

  public boolean bytesAvailable() { return end != ptr; }

  // getbuf(), getptr(), getend() and setptr() are "dirty" methods which allow
  // you to manipulate the buffer directly.  This is useful for a stream which
  // is a wrapper around an underlying stream.

  public final byte[] getbuf() { return b; }
  public final int getptr() { return ptr; }
  public final int getend() { return end; }
  public final void setptr(int p) { ptr = p; }

  // overrun() is implemented by a derived class to cope with buffer overrun.
  // It ensures there are at least itemSize bytes of buffer data.  Returns
  // the number of items in the buffer (up to a maximum of nItems).  itemSize
  // is supposed to be "small" (a few bytes).

  abstract protected int overrun(int itemSize, int nItems, boolean wait);

  protected InStream() {}
  protected byte[] b;
  protected int ptr;
  protected int end;
}