aboutsummaryrefslogtreecommitdiffstats
path: root/documentation/advanced/chapter-advanced.asciidoc
blob: 7e4f2ed66c00689675ebff1e8fca62fbe9aeb42c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
[[advanced]]
== Advanced Web Application Topics

This chapter covers various features and topics often needed in applications.


include::advanced-windows.asciidoc[leveloffset=+2]

include::advanced-embedding.asciidoc[leveloffset=+2]

include::advanced-debug.asciidoc[leveloffset=+2]

include::advanced-requesthandler.asciidoc[leveloffset=+2]

include::advanced-shortcuts.asciidoc[leveloffset=+2]

include::advanced-printing.asciidoc[leveloffset=+2]

include::advanced-security.asciidoc[leveloffset=+2]

include::advanced-navigator.asciidoc[leveloffset=+2]

include::advanced-architecture.asciidoc[leveloffset=+2]

include::advanced-urifu.asciidoc[leveloffset=+2]

include::advanced-dragndrop.asciidoc[leveloffset=+2]

include::advanced-logging.asciidoc[leveloffset=+2]

include::advanced-javascript.asciidoc[leveloffset=+2]

include::advanced-global.asciidoc[leveloffset=+2]

include::advanced-push.asciidoc[leveloffset=+2]

include::advanced-cdi.asciidoc[leveloffset=+2]

include::advanced-spring.asciidoc[leveloffset=+2]

include::advanced-osgi.asciidoc[leveloffset=+2]
id='n328' href='#n328'>328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
<appendix id="semantics" xreflabel="Semantics">

  <title>Language Semantics</title>

  <sect1 id="semantics-intro">
    <title>Introduction</title>

    <para>
      AspectJ extends Java by overlaying a concept of join points onto the
      existing Java semantics and adding a few new program elements to Java:
    </para>

    <para>
      A join point is a well-defined point in the execution of a
      program. These include method and constructor calls, field accesses and
      others described below.
    </para>

    <para>
      A pointcut picks out join points, and exposes some of the values in the
      execution context of those join points. There are several primitive
      pointcut designators, and others can be named and defined by the
      <literal>pointcut</literal> declaration.
    </para>

    <para>
      A piece of advice is code that executes at each join point in a
      pointcut. Advice has access to the values exposed by the
      pointcut. Advice is defined by <literal>before</literal>,
      <literal>after</literal>, and <literal>around</literal> declarations.
    </para>

    <para>
      Inter-type declarations form AspectJ's static crosscutting features,
      that is, is code that may change the type structure of a program, by
      adding to or extending interfaces and classes with new fields,
      constructors, or methods.  Some inter-type declarations are defined
      through an extension of usual method, field, and constructor
      declarations, and other declarations are made with a new
      <literal>declare</literal> keyword.
    </para>

    <para>
      An aspect is a crosscutting type that encapsulates pointcuts, advice,
      and static crosscutting features. By type, we mean Java's notion: a
      modular unit of code, with a well-defined interface, about which it is
      possible to do reasoning at compile time. Aspects are defined by the
      <literal>aspect</literal> declaration.
    </para>
  </sect1>

<!-- ============================== -->

  <sect1 id="semantics-joinPoints">
    <title>Join Points</title>

    <para>
      While aspects define types that crosscut, the AspectJ system does not
      allow completely arbitrary crosscutting. Rather, aspects define types
      that cut across principled points in a program's execution. These
      principled points are called join points.
    </para>

    <para>
      A join point is a well-defined point in the execution of a
      program. The join points defined by AspectJ are:
    </para>

    <variablelist>
      <varlistentry>
        <term>Method call</term>
        <listitem>
          When a method is called, not including super calls of
          non-static methods.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Method execution</term>
        <listitem>
          When the body of code for an actual method executes.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Constructor call</term>
        <listitem>
          When an object is built and that object's initial constructor is
          called (i.e., not for "super" or "this" constructor calls).  The
          object being constructed is returned at a constructor call join
          point, so its return type is considered to be the type of the
          object, and the object itself may be accessed with <literal>after
          returning</literal> advice.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Constructor execution</term>
        <listitem>
          When the body of code for an actual constructor executes, after
          its this or super constructor call.  The object being constructed
          is the currently executing object, and so may be accessed with
          the <literal>this</literal> pointcut.  The constructor execution
          join point for a constructor that calls a super constructor also
          includes any non-static initializers of enclosing class.  No
          value is returned from a constructor execution join point, so its
          return type is considered to be void.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Static initializer execution</term>
        <listitem>
          When the static initializer for a class executes.  No value is
          returned from a static initializer execution join point, so its
          return type is considered to be void.
        </listitem>
      </varlistentry>

      <varlistentry>
       <term>Object pre-initialization</term>
       <listitem>
         Before the object initialization code for a particular class runs.
         This encompasses the time between the start of its first called
         constructor and the start of its parent's constructor.  Thus, the
         execution of these join points encompass the join points of the
         evaluation of the arguments of <literal>this()</literal> and
         <literal>super()</literal> constructor calls.  No value is
         returned from an object pre-initialization join point, so its
         return type is considered to be void.
       </listitem>
      </varlistentry>

      <varlistentry>
        <term>Object initialization</term>
        <listitem>
          When the object initialization code for a particular class runs.
          This encompasses the time between the return of its parent's
          constructor and the return of its first called constructor. It
          includes all the dynamic initializers and constructors used to
          create the object.  The object being constructed is the currently
          executing object, and so may be accessed with the
          <literal>this</literal> pointcut.  No value is returned from a
          constructor execution join point, so its return type is
          considered to be void.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Field reference</term>
        <listitem>
          When a non-constant field is referenced.  [Note that references
          to constant fields (static final fields bound to a constant
          string object or primitive value) are not join points, since Java
          requires them to be inlined.]
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Field set</term>
        <listitem>
          When a field is assigned to.
          Field set join points are considered to have one argument,
          the value the field is being set to.
          No value is returned from a field set join point, so
          its return type is considered to be void.
          [Note that the initializations of constant fields (static
          final fields where the initializer is a constant string object or
          primitive value) are not join points, since Java requires their
          references to be inlined.]
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Handler execution</term>
        <listitem>
          When an exception handler executes.
          Handler execution join points are considered to have one argument,
          the exception being handled.
          No value is returned from a field set join point, so
          its return type is considered to be void.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Advice execution</term>
        <listitem>
          When the body of code for a piece of advice executes.
        </listitem>
      </varlistentry>
    </variablelist>

    <para>
      Each join point potentially has three pieces of state associated
      with it: the currently executing object, the target object, and
      an object array of arguments.  These are exposed by the three
      state-exposing pointcuts, <literal>this</literal>,
      <literal>target</literal>, and <literal>args</literal>,
      respectively.
    </para>

    <para>
      Informally, the currently executing object is the object that a
      <literal>this</literal> expression would pick out at the join
      point.  The target object is where control or attention is
      transferred to by the join point.  The arguments are those
      values passed for that transfer of control or attention. 
    </para>

    <informaltable frame="1">
      <tgroup cols="4" align="left">
        <thead valign="top">
          <row>
            <entry><emphasis role="bold">Join Point</emphasis></entry>
            <entry><emphasis role="bold">Current Object</emphasis></entry>
            <entry><emphasis role="bold">Target Object</emphasis></entry>
            <entry><emphasis role="bold">Arguments</emphasis></entry>
          </row>
       </thead>   
       <tbody>
          <row>
            <entry>Method Call</entry>
            <entry>executing object*</entry>
            <entry>target object**</entry>
            <entry>method arguments</entry>
          </row>

          <row>
            <entry>Method Execution</entry>
            <entry>executing object*</entry>
            <entry>executing object*</entry>
            <entry>method arguments</entry>
          </row>
          <row>
            <entry>Constructor Call</entry>
            <entry>executing object*</entry>
            <entry>None</entry>
            <entry>constructor arguments</entry>
          </row>

          <row>
            <entry>Constructor Execution</entry>
            <entry>executing object</entry>
            <entry>executing object</entry>
            <entry>constructor arguments</entry>
          </row>

          <row>
            <entry>Static initializer execution</entry>
            <entry>None</entry>
            <entry>None</entry>
            <entry>None</entry>
          </row>
          <row>
            <entry>Object pre-initialization</entry>
            <entry>None</entry>
            <entry>None</entry>
            <entry>constructor arguments</entry>
          </row>
          <row>
            <entry>Object initialization</entry>
            <entry>executing object</entry>
            <entry>executing object</entry>
            <entry>constructor arguments</entry>
          </row>
          <row>
            <entry>Field reference</entry>
            <entry>executing object*</entry>
            <entry>target object**</entry>
            <entry>None</entry>
          </row>
          <row>
            <entry>Field assignment</entry>
            <entry>executing object*</entry>
            <entry>target object**</entry>
            <entry>assigned value</entry>
          </row>
          <row>
            <entry>Handler execution</entry>
            <entry>executing object*</entry>
            <entry>executing object*</entry>
            <entry>caught exception</entry>
          </row>
          <row>
            <entry>Advice execution</entry>
            <entry>executing aspect</entry>
            <entry>executing aspect</entry>
            <entry>advice arguments</entry>
          </row>
	</tbody>
      </tgroup>
     </informaltable>

     <para>* There is no executing object in static contexts such as
     static method bodies or static initializers.
     </para>

     <para>** There is no target object for join points associated
     with static methods or fields. 
     </para>

  </sect1>

<!-- ============================== -->

  <sect1 id="semantics-pointcuts">
    <title>Pointcuts</title>

    <para>
      A pointcut is a program element that picks out join points and
      exposes data from the execution context of those join points.
      Pointcuts are used primarily by advice.  They can be composed with
      boolean operators to build up other pointcuts.  The primitive
      pointcuts and combinators provided by the language are:
    </para>

    <variablelist>
      <varlistentry>
        <term><literal>call(<replaceable>MethodPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each method call join point whose signature matches
          <replaceable>MethodPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>execution(<replaceable>MethodPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each method execution join point whose signature matches
          <replaceable>MethodPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>get(<replaceable>FieldPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each field reference join point whose signature matches
          <replaceable>FieldPattern</replaceable>.
          [Note that references to constant fields (static final
          fields bound to a constant string object or primitive value) are not
          join points, since Java requires them to be inlined.]
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>set(<replaceable>FieldPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each field set join point whose signature matches
          <replaceable>FieldPattern</replaceable>.
          [Note that the initializations of constant fields (static
          final fields where the initializer is a constant string object or
          primitive value) are not join points, since Java requires their
          references to be inlined.]
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>call(<replaceable>ConstructorPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each constructor call join point whose signature matches
          <replaceable>ConstructorPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>execution(<replaceable>ConstructorPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each constructor execution join point whose signature matches
          <replaceable>ConstructorPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>initialization(<replaceable>ConstructorPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each object initialization join point whose signature matches
          <replaceable>ConstructorPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>preinitialization(<replaceable>ConstructorPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each object pre-initialization join point whose signature matches
          <replaceable>ConstructorPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>staticinitialization(<replaceable>TypePattern</replaceable>)</literal></term>
        <listitem>
          Picks out each static initializer execution join point whose signature matches
          <replaceable>TypePattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>handler(<replaceable>TypePattern</replaceable>)</literal></term>
        <listitem>
          Picks out each exception handler join point whose signature matches
          <replaceable>TypePattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>adviceexecution()</literal></term>
        <listitem>
          Picks out all advice execution join points.
        </listitem>
      </varlistentry>


      <varlistentry>
        <term><literal>within(<replaceable>TypePattern</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the executing code is defined
          in a type matched by <replaceable>TypePattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>withincode(<replaceable>MethodPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the executing code is defined in
          a method whose signature matches
          <replaceable>MethodPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>withincode(<replaceable>ConstructorPattern</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the executing code is defined
          in a constructor whose signature matches
          <replaceable>ConstructorPattern</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>cflow(<replaceable>Pointcut</replaceable>)</literal></term>
        <listitem>
          Picks out each join point in the control flow of any join point
          <replaceable>P</replaceable> picked out by
          <replaceable>Pointcut</replaceable>, including
          <replaceable>P</replaceable> itself.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>cflowbelow(<replaceable>Pointcut</replaceable>)</literal></term>
        <listitem>
          Picks out each join point in the control flow of any join point
          <replaceable>P</replaceable> picked out by
          <replaceable>Pointcut</replaceable>, but not
          <replaceable>P</replaceable> itself.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>this(<replaceable>Type</replaceable> or <replaceable>Id</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the currently executing object
          (the object bound to <literal>this</literal>) is an instance of
          <replaceable>Type</replaceable>, or of the type of the
          identifier <replaceable>Id</replaceable> (which must be bound in the enclosing
          advice or pointcut definition).
          Will not match any join points from static contexts.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>target(<replaceable>Type</replaceable> or <replaceable>Id</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the target object (the object
          on which a call or field operation is applied to) is an instance of
          <replaceable>Type</replaceable>, or of the type of the identifier
          <replaceable>Id</replaceable> (which must be bound in the enclosing
          advice or pointcut definition).
          Will not match any calls, gets, or sets of static members.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>args(<replaceable>Type</replaceable> or <replaceable>Id</replaceable>, ...)</literal></term>
        <listitem>
          Picks out each join point where the arguments are instances of
          the appropriate type (or type of the identifier if using that form). A
          <literal>null</literal> argument is matched iff the static type of the 
          argument (declared parameter type or field type) is the same as, or a subtype of,
          the specified args type. 
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal><replaceable>PointcutId</replaceable>(<replaceable>TypePattern</replaceable> or <replaceable>Id</replaceable>, ...)</literal></term>
        <listitem>
          Picks out each join point that is picked out by the
          user-defined pointcut designator named by
          <replaceable>PointcutId</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>if(<replaceable>BooleanExpression</replaceable>)</literal></term>
        <listitem>
          Picks out each join point where the boolean expression
          evaluates to <literal>true</literal>.  The boolean expression used
          can only access static members, parameters exposed by the enclosing
          pointcut or advice, and <literal>thisJoinPoint</literal> forms.  In
          particular, it cannot call non-static methods on the aspect or
		  use return values or exceptions exposed by after advice.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>! <replaceable>Pointcut</replaceable></literal></term>
        <listitem>
          Picks out each join point that is not picked out by
          <replaceable>Pointcut</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal><replaceable>Pointcut0</replaceable> <![CDATA[&&]]> <replaceable>Pointcut1</replaceable></literal></term>
        <listitem>
          Picks out each join points that is picked out by both
          <replaceable>Pointcut0</replaceable> and
          <replaceable>Pointcut1</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal><replaceable>Pointcut0</replaceable> || <replaceable>Pointcut1</replaceable></literal></term>
        <listitem>
          Picks out each join point that is picked out by either
          pointcuts. <replaceable>Pointcut0</replaceable> or
          <replaceable>Pointcut1</replaceable>.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term><literal>( <replaceable>Pointcut</replaceable> )</literal></term>
        <listitem>
          Picks out each join points picked out by
          <replaceable>Pointcut</replaceable>.
        </listitem>
      </varlistentry>
    </variablelist>

    <sect2 id="pointcut-definition" xreflabel="pointcut-definition">
      <title>Pointcut definition</title>

      <para>
        Pointcuts are defined and named by the programmer with the
        <literal>pointcut</literal> declaration.
      </para>

<programlisting>
  pointcut publicIntCall(int i):
      call(public * *(int)) <![CDATA[&&]]> args(i);
</programlisting>

      <para>
        A named pointcut may be defined in either a class or aspect, and is
        treated as a member of the class or aspect where it is found.  As a
        member, it may have an access modifier such as
        <literal>public</literal> or <literal>private</literal>.
      </para>

<programlisting>
  class C {
      pointcut publicCall(int i):
	  call(public * *(int)) <![CDATA[&&]]> args(i);
  }

  class D {
      pointcut myPublicCall(int i):
	  C.publicCall(i) <![CDATA[&&]]> within(SomeType);
  }
</programlisting>

      <para>
        Pointcuts that are not final may be declared abstract, and defined
        without a body.  Abstract pointcuts may only be declared within
        abstract aspects.
      </para>

<programlisting>
  abstract aspect A {
      abstract pointcut publicCall(int i);
  }
</programlisting>

      <para>
        In such a case, an extending aspect may override the abstract
        pointcut.
      </para>

<programlisting>
  aspect B extends A {
      pointcut publicCall(int i): call(public Foo.m(int)) <![CDATA[&&]]> args(i);
  }
</programlisting>

      <para>
        For completeness, a pointcut with a declaration may be declared
        <literal>final</literal>.
      </para>

      <para>
        Though named pointcut declarations appear somewhat like method
        declarations, and can be overridden in subaspects, they cannot be
        overloaded. It is an error for two pointcuts to be named with the
        same name in the same class or aspect declaration.
      </para>

      <para>
        The scope of a named pointcut is the enclosing class declaration.
        This is different than the scope of other members; the scope of
        other members is the enclosing class <emphasis>body</emphasis>.
        This means that the following code is legal:
      </para>

<programlisting>
  aspect B percflow(publicCall()) {
      pointcut publicCall(): call(public Foo.m(int));
  }
</programlisting>
    </sect2>

    <sect2 id="context-exposure" xreflabel="context-exposure">
      <title>Context exposure</title>

      <para>
        Pointcuts have an interface; they expose some parts of the
        execution context of the join points they pick out. For example,
        the PublicIntCall above exposes the first argument from the
        receptions of all public unary integer methods.  This context is
        exposed by providing typed formal parameters to named pointcuts and
        advice, like the formal parameters of a Java method. These formal
        parameters are bound by name matching.
      </para>

      <para>
        On the right-hand side of advice or pointcut declarations, in
        certain pointcut designators, a Java identifier is allowed in place
        of a type or collection of types.  The pointcut designators that
        allow this are <literal>this</literal>, <literal>target</literal>,
        and <literal>args</literal>.  In all such cases, using an
        identifier rather than a type does two things.  First, it selects
        join points as based on the type of the formal parameter.  So the
        pointcut
      </para>

<programlisting>
  pointcut intArg(int i): args(i);
</programlisting>

      <para>
        picks out join points where an <literal>int</literal> (or
        a <literal>byte</literal>, <literal>short</literal>, or
        <literal>char</literal>; anything assignable to an
        <literal>int</literal>) is being passed as an argument.
        Second, though, it makes the value of that argument
        available to the enclosing advice or pointcut.  
      </para>

      <para>
        Values can be exposed from named pointcuts as well, so
      </para>

<programlisting>
  pointcut publicCall(int x): call(public *.*(int)) <![CDATA[&&]]> intArg(x);
  pointcut intArg(int i): args(i);
</programlisting>

      <para>
        is a legal way to pick out all calls to public methods accepting an
        int argument, and exposing that argument.
      </para>

      <para>
        There is one special case for this kind of exposure.  Exposing an
        argument of type Object will also match primitive typed arguments,
        and expose a "boxed" version of the primitive.  So,
      </para>

<programlisting>
  pointcut publicCall(): call(public *.*(..)) <![CDATA[&&]]> args(Object);
</programlisting>

      <para>
        will pick out all unary methods that take, as their only argument,
        subtypes of Object (i.e., not primitive types like
        <literal>int</literal>), but
      </para>

<programlisting>
  pointcut publicCall(Object o): call(public *.*(..)) <![CDATA[&&]]> args(o);
</programlisting>

      <para>
        will pick out all unary methods that take any argument: And if the
        argument was an <literal>int</literal>, then the value passed to
        advice will be of type <literal>java.lang.Integer</literal>.
      </para>

      <para>
        The "boxing" of the primitive value is based on the
        <emphasis>original</emphasis> primitive type.  So in the
        following program
      </para>

<programlisting>
  public class InstanceOf {

    public static void main(String[] args) {
      doInt(5);
    }

    static void doInt(int i) {  }
  }

  aspect IntToLong {
    pointcut el(long l) : 
        execution(* doInt(..)) <![CDATA[&&]]> args(l);

    before(Object o) : el(o) {
         System.out.println(o.getClass());
    }
  }
</programlisting>

      <para>
        The pointcut will match and expose the integer argument,
        but it will expose it as an <literal>Integer</literal>,
        not a <literal>Long</literal>.
      </para>

    </sect2>

    <sect2 id="primitive-pointcuts" xreflabel="primitive-pointcuts">
      <title>Primitive pointcuts</title>

      <sect3>
        <title>Method-related pointcuts</title>

        <para>AspectJ provides two primitive pointcut designators designed to
        capture method call and execution join points. </para>

        <itemizedlist>
        <listitem><literal>call(<replaceable>MethodPattern</replaceable>)</literal></listitem>
        <listitem><literal>execution(<replaceable>MethodPattern</replaceable>)</literal></listitem>
        </itemizedlist>
      </sect3>

      <sect3>
        <title>Field-related pointcuts</title>

        <para>
          AspectJ provides two primitive pointcut designators designed to
          capture field reference and set join points:
        </para>

        <itemizedlist>
        <listitem><literal>get(<replaceable>FieldPattern</replaceable>)</literal></listitem>
        <listitem><literal>set(<replaceable>FieldPattern</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          All set join points are treated as having one argument, the value the
          field is being set to, so at a set join point, that value can be
          accessed with an <literal>args</literal> pointcut.  So an aspect
          guarding a static integer variable x declared in type T might be written as
        </para>

<programlisting><![CDATA[
  aspect GuardedX {
      static final int MAX_CHANGE = 100;
      before(int newval): set(static int T.x) && args(newval) {
	  if (Math.abs(newval - T.x) > MAX_CHANGE)
	      throw new RuntimeException();
      }
  }
]]></programlisting>

      </sect3>

      <sect3>
        <title>Object creation-related pointcuts</title>

        <para>
          AspectJ provides primitive pointcut designators designed to
          capture the initializer execution join points of objects.
        </para>

        <itemizedlist>
          <listitem><literal>call(<replaceable>ConstructorPattern</replaceable>)</literal></listitem>
          <listitem><literal>execution(<replaceable>ConstructorPattern</replaceable>)</literal></listitem>
          <listitem><literal>initialization(<replaceable>ConstructorPattern</replaceable>)</literal></listitem>
          <listitem><literal>preinitialization(<replaceable>ConstructorPattern</replaceable>)</literal></listitem>
        </itemizedlist>

      </sect3>

      <sect3>
        <title>Class initialization-related pointcuts</title>

        <para>
          AspectJ provides one primitive pointcut designator to pick out
          static initializer execution join points.
        </para>

        <itemizedlist>
        <listitem><literal>staticinitialization(<replaceable>TypePattern</replaceable>)</literal></listitem>
        </itemizedlist>

      </sect3>

      <sect3>
        <title>Exception handler execution-related pointcuts</title>

        <para>
          AspectJ provides one primitive pointcut designator to capture
          execution of exception handlers:
        </para>

        <itemizedlist>
        <listitem><literal>handler(<replaceable>TypePattern</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          All handler join points are treated as having one argument, the value
          of the exception being handled.  That value can be accessed with an
          <literal>args</literal> pointcut.  So an aspect used to put
          <literal>FooException</literal> objects into some normal form before
          they are handled could be written as
        </para>

<programlisting>
  aspect NormalizeFooException {
      before(FooException e): handler(FooException) <![CDATA[&&]]> args(e) {
	  e.normalize();
      }
  }
</programlisting>

      </sect3>

      <sect3>
        <title>Advice execution-related pointcuts</title>

        <para>
          AspectJ provides one primitive pointcut designator to capture
          execution of advice
        </para>

        <itemizedlist>
          <listitem><literal>adviceexecution()</literal></listitem>
        </itemizedlist>

        <para>
          This can be used, for example, to filter out any join point in the
          control flow of advice from a particular aspect.
        </para>

<programlisting>
  aspect TraceStuff {
      pointcut myAdvice(): adviceexecution() <![CDATA[&&]]> within(TraceStuff);

      before(): call(* *(..)) <![CDATA[&&]]> !cflow(myAdvice) {
	  // do something
      }
  }
</programlisting>

      </sect3>

      <sect3>
        <title>State-based pointcuts</title>

        <para>
          Many concerns cut across the dynamic times when an object of a
          particular type is executing, being operated on, or being passed
          around.  AspectJ provides primitive pointcuts that capture join
          points at these times.  These pointcuts use the dynamic types of
          their objects to pick out join points.  They may also be used to
          expose the objects used for discrimination.
        </para>

        <itemizedlist>
          <listitem><literal>this(<replaceable>Type</replaceable> or <replaceable>Id</replaceable>)</literal></listitem>
          <listitem><literal>target(<replaceable>Type</replaceable> or <replaceable>Id</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          The <literal>this</literal> pointcut picks out each join point where
          the currently executing object (the object bound to
          <literal>this</literal>) is an instance of a particular type.  The
          <literal>target</literal> pointcut picks out each join point where
          the target object (the object on which a method is called or a field
          is accessed) is an instance of a particular type.  Note that
          <literal>target</literal> should be understood to be the object the
          current join point is transfering control to.  This means that the
          target object is the same as the current object at a method execution
          join point, for example, but may be different at a method call join
          point.
        </para>

        <itemizedlist>
          <listitem><literal>args(<replaceable>Type</replaceable> or <replaceable>Id</replaceable> or "..", ...)</literal></listitem>
        </itemizedlist>

        <para>
          The args pointcut picks out each join point where the arguments are
          instances of some types.  Each element in the comma-separated list is
          one of four things.  If it is a type name, then the argument in that
          position must be an instance of that type. If it is an identifier,
          then that identifier must be bound in the enclosing advice or
          pointcut declaration, and so the argument in that position must be an
          instance of the type of the identifier (or of any type if the
          identifier is typed to Object).  If it is the "*" wildcard, then any
          argument will match, and if it is the special wildcard "..", then any
          number of arguments will match, just like in signature patterns.  So the
          pointcut
        </para>

<programlisting>
  args(int, .., String)
</programlisting>

        <para>
          will pick out all join points where the first argument is an
          <literal>int</literal> and the last is a <literal>String</literal>.
        </para>

      </sect3>

      <sect3>
        <title>Control flow-based pointcuts</title>

        <para>
          Some concerns cut across the control flow of the program. The
          <literal>cflow</literal> and <literal>cflowbelow</literal> primitive
          pointcut designators capture join points based on control flow.
        </para>

        <itemizedlist>
          <listitem><literal>cflow(<replaceable>Pointcut</replaceable>)</literal></listitem>
          <listitem><literal>cflowbelow(<replaceable>Pointcut</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          The <literal>cflow</literal> pointcut picks out all join points that
          occur between entry and exit of each join point
          <replaceable>P</replaceable> picked out by
          <replaceable>Pointcut</replaceable>, including
          <replaceable>P</replaceable> itself.  Hence, it picks out the join
          points <emphasis>in</emphasis> the control flow of the join points
          picked out by <replaceable>Pointcut</replaceable>.
        </para>

        <para>
          The <literal>cflowbelow</literal> pointcut picks out all join points
          that occur between entry and exit of each join point
          <replaceable>P</replaceable> picked out by
          <replaceable>Pointcut</replaceable>, but not including
          <replaceable>P</replaceable> itself.  Hence, it picks out the join
          points <emphasis>below</emphasis> the control flow of the join points
          picked out by <replaceable>Pointcut</replaceable>.
        </para>

        <sect4>
          <title>Context exposure from control flows</title>

          <para>
            The <literal>cflow</literal> and
            <literal>cflowbelow</literal> pointcuts may expose context
            state through enclosed <literal>this</literal>,
            <literal>target</literal>, and <literal>args</literal>
            pointcuts. 
          </para>

          <para>
	    Anytime such state is accessed, it is accessed through the
	    <emphasis>most recent</emphasis> control flow that
	    matched.   So the "current arg" that would be printed by
	    the following program is zero, even though it is in many
	    control flows.
          </para>

<programlisting>
class Test {
    public static void main(String[] args) {
        fact(5);
    }
    static int fact(int x) {
        if (x == 0) {
            System.err.println("bottoming out");
            return 1;
        }
        else return x * fact(x - 1);
    }
}

aspect A {
    pointcut entry(int i): call(int fact(int)) <![CDATA[&&]]> args(i);
    pointcut writing(): call(void println(String)) <![CDATA[&&]]> ! within(A);
    
    before(int i): writing() <![CDATA[&&]]> cflow(entry(i)) {
        System.err.println("Current arg is " + i);
    }
}
</programlisting>

          <para>
            It is an error to expose such state through
            <emphasis>negated</emphasis> control flow pointcuts, such
            as within <literal>!
            cflowbelow(<replaceable>P</replaceable>)</literal>.
          </para>

        </sect4>
      </sect3>

      <sect3>
        <title>Program text-based pointcuts</title>

        <para>
          While many concerns cut across the runtime structure of the program,
          some must deal with the lexical structure. AspectJ allows aspects to
          pick out join points based on where their associated code is defined.
        </para>

        <itemizedlist>
        <listitem><literal>within(<replaceable>TypePattern</replaceable>)</literal></listitem>
        <listitem><literal>withincode(<replaceable>MethodPattern</replaceable>)</literal></listitem>
        <listitem><literal>withincode(<replaceable>ConstructorPattern</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          The <literal>within</literal> pointcut picks out each join point
          where the code executing is defined in the declaration of one of the
          types in <replaceable>TypePattern</replaceable>. This includes the
          class initialization, object initialization, and method and
          constructor execution join points for the type, as well as any join
          points associated with the statements and expressions of the type.
          It also includes any join points that are associated with code in a
          type's nested types, and that type's default constructor, if there is
          one.
        </para>

        <para>
          The <literal>withincode</literal> pointcuts picks out each join point
          where the code executing is defined in the declaration of a
          particular method or constructor.  This includes the method or
          constructor execution join point as well as any join points
          associated with the statements and expressions of the method or
          constructor.  It also includes any join points that are associated
          with code in a method or constructor's local or anonymous types.
        </para>

      </sect3>

      <sect3>
        <title>Expression-based pointcuts</title>

        <itemizedlist>
        <listitem><literal>if(<replaceable>BooleanExpression</replaceable>)</literal></listitem>
        </itemizedlist>

        <para>
          The if pointcut picks out join points based on a dynamic property.
          its syntax takes an expression, which must evaluate to a boolean
          true or false.  Within this expression, the
          <literal>thisJoinPoint</literal> object is available.  So one
          (extremely inefficient) way of picking out all call join points would
          be to use the pointcut
        </para>

<programlisting>
  if(thisJoinPoint.getKind().equals("call"))
</programlisting>

	    <para>
	    	Note that the order of evaluation for pointcut expression 
	    	components at a join point is undefined. Writing <literal>if</literal> 
	    	pointcuts that have side-effects is considered bad style and may also 
	    	lead to potentially confusing or even changing behavior with regard 
	    	to when or if the test code will run.
	    </para>
      </sect3>
    </sect2>

    <sect2 id="signatures" xreflabel="signatures">
      <title>Signatures</title>

      <para>
        One very important property of a join point is its signature, which is
        used by many of AspectJ's pointcut designators to select particular
        join points.
      </para>

      <sect3>
        <title>Methods</title>

        <para>
          Join points associated with methods typically have method signatures,
          consisting of a method name, parameter types, return type, the types of
          the declared (checked) exceptions, and some type that the method could
          be called on (below called the "qualifying type").
        </para>

        <para>
          At a method call join point, the signature is a method signature whose
          qualifying type is the static type used to <emphasis>access</emphasis>
          the method.  This means that the signature for the join point created
          from the call <literal>((Integer)i).toString()</literal> is different
          than that for the call <literal>((Object)i).toString()</literal>, even
          if <literal>i</literal> is the same variable.
        </para>

        <para>
          At a method execution join point, the signature is a method signature
          whose qualifying type is the declaring type of the method.
        </para>

      </sect3>

      <sect3>
        <title>Fields</title>

        <para>
          Join points associated with fields typically have field signatures,
          consisting of a field name and a field type.  A field reference join
          point has such a signature, and no parameters.  A field set join point
          has such a signature, but has a has a single parameter whose type is
          the same as the field type.
        </para>

      </sect3>

      <sect3>
        <title>Constructors</title>

        <para>
          Join points associated with constructors typically have constructor
          signatures, consisting of a parameter types, the types of the declared
          (checked) exceptions, and the declaring type.
        </para>

        <para>
          At a constructor call join point, the signature is the constructor
          signature of the called constructor.  At a constructor execution join
          point, the signature is the constructor signature of the currently
          executing constructor.
        </para>

        <para>
          At object initialization and pre-initialization join points, the
          signature is the constructor signature for the constructor that started
          this initialization: the first constructor entered during this type's
          initialization of this object.
        </para>
      </sect3>

      <sect3>
        <title>Others</title>

        <para>
          At a handler execution join point, the signature is composed of the
          exception type that the handler handles.
        </para>

        <para>
          At an advice execution join point, the signature is composed of the
          aspect type, the parameter types of the advice, the return type (void
          for all but around advice) and the types of the declared (checked)
          exceptions.
        </para>
      </sect3>
    </sect2>

<!-- ============================== -->

    <sect2 id="matching" xreflabel="matching">
      <title>Matching</title>

      <para>
        The <literal>withincode</literal>, <literal>call</literal>,
        <literal>execution</literal>, <literal>get</literal>, and
        <literal>set</literal> primitive pointcut designators all use signature
        patterns to determine the join points they describe. A signature
        pattern is an abstract description of one or more join-point
        signatures. Signature patterns are intended to match very closely the
        same kind of things one would write when declaring individual members
        and constructors.
      </para>

      <para>
        Method declarations in Java include method names, method parameters,
        return types, modifiers like static or private, and throws clauses,
        while constructor declarations omit the return type and replace the
        method name with the class name. The start of a particular method
        declaration, in class <literal>Test</literal>, for example, might be
      </para>


<programlisting>
  class C {
      public final void foo() throws ArrayOutOfBoundsException { ... }
  }
</programlisting>

      <para>
        In AspectJ, method signature patterns have all these, but most elements
        can be replaced by wildcards. So
      </para>


<programlisting>
  call(public final void C.foo() throws ArrayOutOfBoundsException)
</programlisting>

      <para>
        picks out call join points to that method, and the pointcut
      </para>

<programlisting>
  call(public final void *.*() throws ArrayOutOfBoundsException)
</programlisting>


      <para>
        picks out all call join points to methods, regardless of their name
        name or which class they are defined on, so long as they take no
        arguments, return no value, are both <literal>public</literal> and
        <literal>final</literal>, and are declared to throw
        <literal>ArrayOutOfBounds</literal> exceptions.
      </para>

      <para>
        The defining type name, if not present, defaults to *, so another way
        of writing that pointcut would be
      </para>

<programlisting>
  call(public final void *() throws ArrayOutOfBoundsException)
</programlisting>

      <para>
        The wildcard <literal>..</literal> indicates zero or more 
        parameters, so
      </para>

<programlisting>
  execution(void m(..))
</programlisting>

      <para>
        picks out execution join points for void methods named
        <literal>m</literal>, of any number of arguments, while
      </para>

<programlisting>
  execution(void m(.., int))
</programlisting>

      <para>
        picks out execution join points for void methods named
        <literal>m</literal> whose last parameter is of type
        <literal>int</literal>.
      </para>

      <para>
        The modifiers also form part of the signature pattern. If an AspectJ
        signature pattern should match methods without a particular modifier,
        such as all non-public methods, the appropriate modifier should be
        negated with the <literal>!</literal> operator. So,
      </para>

<programlisting>
  withincode(!public void foo())
</programlisting>

      <para>
        picks out all join points associated with code in null non-public
        void methods named <literal>foo</literal>, while
      </para>

<programlisting>
  withincode(void foo())
</programlisting>

      <para>
        picks out all join points associated with code in null void methods
        named <literal>foo</literal>, regardless of access modifier.
      </para>

      <para>
        Method names may contain the * wildcard, indicating any number of
        characters in the method name.  So
      </para>

<programlisting>
  call(int *())
</programlisting>

      <para>
        picks out all call join points to <literal>int</literal> methods
        regardless of name, but
      </para>

<programlisting>
  call(int get*())
</programlisting>

      <para>
        picks out all call join points to <literal>int</literal> methods
        where the method name starts with the characters "get".
      </para>

      <para>
        AspectJ uses the <literal>new</literal> keyword for constructor
        signature patterns rather than using a particular class name. So the
        execution join points of private null constructor of a class C
        defined to throw an ArithmeticException can be picked out with
      </para>

<programlisting>
  execution(private C.new() throws ArithmeticException)
</programlisting>

      <sect3>
        <title>Matching based on the declaring type</title>

        <para>
        The signature-matching pointcuts all specify a declaring type,
        but the meaning varies slightly for each join point signature,
        in line with Java semantics.
        </para>

        <para>
        When matching for pointcuts <literal>withincode</literal>, 
        <literal>get</literal>, and <literal>set</literal>, the declaring
        type is the class that contains the declaration.
        </para>

        <para>
        When matching method-call join points, the 
        declaring type is the static type used to access the method.
        A common mistake is to specify a declaring type for the 
        <literal>call</literal> pointcut that is a subtype of the 
        originally-declaring type. For example, given the class
        </para>

<programlisting>
  class Service implements Runnable {
    public void run() { ... }
  } 
</programlisting>

        <para>
        the following pointcut
        </para>

<programlisting>
  call(void Service.run())
</programlisting>

        <para>
        would fail to pick out the join point for the code
        </para>

<programlisting>
  ((Runnable) new Service()).run();
</programlisting>

        <para>
        Specifying the originally-declaring type is correct, but would
        pick out any such call (here, calls to the <literal>run()</literal>
        method of any Runnable).  
        In this situation, consider instead picking out the target type:
        </para>

<programlisting>
  call(void run()) &amp;&amp; target(Service)
</programlisting>

        <para>
        When matching method-execution join points, 
        if the execution pointcut method signature specifies a declaring type, 
        the pointcut will only match methods declared in that type, or methods 
        that override methods declared in or inherited by that type.
        So the pointcut
      </para>

<programlisting>
  execution(public void Middle.*())
</programlisting>

      <para>
      picks out all method executions for public methods returning void
      and having no arguments that are either declared in, or inherited by, 
      Middle, even if those methods are overridden in a subclass of Middle. 
      So the pointcut would pick out the method-execution join point
      for Sub.m() in this code:
      </para>

<programlisting>
  class Super {
    protected void m() { ... }
  }
  class Middle extends Super {
  }
  class Sub extends Middle {
    public void m() { ... }
  }
</programlisting>

      </sect3>

      <sect3>
        <title>Matching based on the throws clause</title>

        <para>
          Type patterns may be used to pick out methods and constructors
          based on their throws clauses. This allows the following two
          kinds of extremely wildcarded pointcuts:
        </para>

<programlisting>
  pointcut throwsMathlike():
      // each call to a method with a throws clause containing at least
      // one exception exception with "Math" in its name.
      call(* *(..) throws *..*Math*);

  pointcut doesNotThrowMathlike():
      // each call to a method with a throws clause containing no
      // exceptions with "Math" in its name.
      call(* *(..) throws !*..*Math*);
</programlisting>

        <para>
          A <replaceable>ThrowsClausePattern</replaceable> is a comma-separated list of
          <replaceable>ThrowsClausePatternItem</replaceable>s, where

          <variablelist>
            <varlistentry>
              <term><replaceable>ThrowsClausePatternItem</replaceable> :</term>
              <listitem>
                <literal>[ ! ]
                <replaceable>TypeNamePattern</replaceable></literal>
              </listitem>
            </varlistentry>
          </variablelist>
        </para>

        <para>
          A <replaceable>ThrowsClausePattern</replaceable> matches the
          throws clause of any code member signature. To match, each
          <literal>ThrowsClausePatternItem</literal> must
          match the throws clause of the member in question. If any item
          doesn't match, then the whole pattern doesn't match.
        </para>

        <para>
          If a ThrowsClausePatternItem begins with "!", then it matches a
          particular throws clause if and only if <emphasis>none</emphasis>
          of the types named in the throws clause is matched by the
          <literal>TypeNamePattern</literal>.
        </para>

        <para>
          If a <replaceable>ThrowsClausePatternItem</replaceable> does not
          begin with "!", then it matches a throws clause if and only if
          <emphasis>any</emphasis> of the types named in the throws clause
          is matched by the <emphasis>TypeNamePattern</emphasis>.
        </para>

        <para>
          The rule for "!" matching has one potentially surprising
          property, in that these two pointcuts

          <itemizedlist>
            <listitem> call(* *(..) throws !IOException) </listitem>
            <listitem> call(* *(..) throws (!IOException)) </listitem>
          </itemizedlist>

          will match differently on calls to

          <blockquote>
            <literal>
              void m() throws RuntimeException, IOException {}
            </literal>
          </blockquote>
        </para>

        <para>
          [1] will NOT match the method m(), because method m's throws
          clause declares that it throws IOException. [2] WILL match the
          method m(), because method m's throws clause declares the it
          throws some exception which does not match IOException,
          i.e. RuntimeException.
        </para>
      </sect3>
    </sect2>

    <sect2 id="type-patterns" xreflabel="type-patterns">
      <title>Type patterns</title>

      <para>
        Type patterns are a way to pick out collections of types and use them
        in places where you would otherwise use only one type.  The rules for
        using type patterns are simple.
      </para>

      <sect3>
        <title>Exact type pattern</title>

        <para>
          First, all type names are also type patterns.  So
          <literal>Object</literal>, <literal>java.util.HashMap</literal>,
          <literal>Map.Entry</literal>, <literal>int</literal> are all type
          patterns.
        </para>

	<para>
	  If a type pattern is an exact type - if it doesn't
	  include a wildcard - then the matching works just
	  like normal type lookup in Java: </para>

        <itemizedlist>
          <listitem>Patterns that have the same names as
          primitive types (like <literal>int</literal>) match
          those primitive types.</listitem>

          <listitem>Patterns that are qualified by package names
          (like <literal>java.util.HashMap</literal>) match types
          in other packages.
          </listitem>

          <listitem>Patterns that are not qualified (like
          <literal>HashMap</literal>) match types that are
          resolved by Java's normal scope rules.  So, for
          example, <literal>HashMap</literal> might match a
          package-level type in the same package or a type that
          have been imported with java's
          <literal>import</literal> form.  But it would not match
          <literal>java.util.HashMap</literal> unless the aspect
          were in <literal>java.util</literal> or the type had
          been imported.
          </listitem> 
        </itemizedlist>

        <para>
	  So exact type patterns match based on usual Java scope
	  rules.
        </para>

      </sect3>

      <sect3>
        <title>Type name patterns</title>

        <para>
          There is a special type name, *, which is also a type pattern.  * picks out all
          types, including primitive types.  So
        </para>

<programlisting>
  call(void foo(*))
</programlisting>

        <para>
          picks out all call join points to void methods named foo, taking one
          argument of any type.
        </para>

        <para>
          Type names that contain the two wildcards "*" and
          "<literal>..</literal>" are also type patterns.  The * wildcard matches
          zero or more characters characters except for ".", so it can be used
          when types have a certain naming convention.  So
        </para>

<programlisting>
  handler(java.util.*Map)
</programlisting>

        <para>
          picks out the types java.util.Map and java.util.java.util.HashMap,
          among others, and
        </para>

<programlisting>
  handler(java.util.*)
</programlisting>

        <para>
          picks out all types that start with "<literal>java.util.</literal>" and
          don't have any more "."s, that is, the types in the
          <literal>java.util</literal> package, but not inner types
          (such as java.util.Map.Entry).
        </para>

        <para>
          The "<literal>..</literal>" wildcard matches any sequence of
          characters that start and end with a ".", so it can be used
          to pick out all types in any subpackage, or all inner types.  So
        </para>

<programlisting>
  within(com.xerox..*)
</programlisting>

        <para>
          picks out all join points where the code is in any 
          declaration of a type whose name begins with "<literal>com.xerox.</literal>".
        </para>

	<para>
	  Type patterns with wildcards do not depend on Java's
	  usual scope rules - they match against all types
	  available to the weaver, not just those that are
	  imported into an Aspect's declaring file.
        </para>

      </sect3>

      <sect3>
        <title>Subtype patterns</title>

        <para>
          It is possible to pick out all subtypes of a type (or a collection of
          types) with the "+" wildcard.  The "+" wildcard follows immediately a
          type name pattern.  So, while
        </para>

<programlisting>
  call(Foo.new())
</programlisting>

        <para>
          picks out all constructor call join points where an instance of exactly
          type Foo is constructed,
        </para>

<programlisting>
  call(Foo+.new())
</programlisting>

        <para>
          picks out all constructor call join points where an instance of any
          subtype of Foo (including Foo itself) is constructed, and the unlikely
        </para>

<programlisting>
  call(*Handler+.new())
</programlisting>

        <para>
          picks out all constructor call join points where an instance of any
          subtype of any type whose name ends in "Handler" is constructed.
        </para>

      </sect3>

      <sect3>
        <title>Array type patterns</title>

        <para>
          A type name pattern or subtype pattern can be followed by one or more
          sets of square brackets to make array type patterns.  So
          <literal>Object[]</literal> is an array type pattern, and so is
          <literal>com.xerox..*[][]</literal>, and so is
          <literal>Object+[]</literal>.
        </para>
      </sect3>

      <sect3>
        <title>Type patterns</title>

        <para>
          Type patterns are built up out of type name patterns, subtype patterns,
          and array type patterns, and constructed with boolean operators
          <literal><![CDATA[&&]]></literal>, <literal>||</literal>, and
          <literal>!</literal>.  So
        </para>

<programlisting>
  staticinitialization(Foo || Bar)
</programlisting>

        <para>
          picks out the static initializer execution join points of either Foo or Bar,
          and
        </para>

<programlisting>
  call((Foo+ <![CDATA[&&]]> ! Foo).new(..))
</programlisting>

        <para>
          picks out the constructor call join points when a subtype of Foo, but
          not Foo itself, is constructed.
        </para>
      </sect3>
    </sect2>

    <sect2 id="pattern-summary" xreflabel="pattern-summary">
      <title>Pattern Summary</title>

      <para>
        Here is a summary of the pattern syntax used in AspectJ:
      </para>

<programlisting>
MethodPattern = 
  [ModifiersPattern] TypePattern 
        [TypePattern . ] IdPattern (TypePattern | ".." , ... ) 
        [ throws ThrowsPattern ]
ConstructorPattern = 
  [ModifiersPattern ] 
        [TypePattern . ] new (TypePattern | ".." , ...) 
        [ throws ThrowsPattern ]
FieldPattern = 
  [ModifiersPattern] TypePattern [TypePattern . ] IdPattern
ThrowsPattern = 
  [ ! ] TypePattern , ...
TypePattern = 
    IdPattern [ + ] [ [] ... ]
    | ! TypePattern
    | TypePattern <![CDATA[&&]]> TypePattern
    | TypePattern || TypePattern
    | ( TypePattern )  
IdPattern =
  Sequence of characters, possibly with special * and .. wildcards
ModifiersPattern =
  [ ! ] JavaModifier  ...
</programlisting>

    </sect2>

  </sect1>

<!-- ============================== -->

  <sect1 id="semantics-advice">
    <title>Advice</title>

    <para>
      Each piece of advice is of the form

      <blockquote>
        <literal>[ strictfp ] <replaceable>AdviceSpec</replaceable> [
        throws <replaceable>TypeList</replaceable> ] :
        <replaceable>Pointcut</replaceable> {
        <replaceable>Body</replaceable> } </literal>
      </blockquote>

      where <replaceable>AdviceSpec</replaceable> is one of
    </para>

    <itemizedlist>
      <listitem>
        <literal>before( <replaceable>Formals</replaceable> ) </literal>
      </listitem>
      <listitem>
        <literal>after( <replaceable>Formals</replaceable> ) returning
        [ ( <replaceable>Formal</replaceable> ) ] </literal>
      </listitem>
      <listitem>
        <literal>after( <replaceable>Formals</replaceable> ) throwing [
        ( <replaceable>Formal</replaceable> ) ] </literal>
      </listitem>
      <listitem>
        <literal>after( <replaceable>Formals</replaceable> ) </literal>
      </listitem>
      <listitem>
        <literal><replaceable>Type</replaceable>
        around( <replaceable>Formals</replaceable> )</literal>
      </listitem>
    </itemizedlist>
    <para>
      and where <replaceable>Formal</replaceable> refers to a
        variable binding like those used for method parameters,
        of the form 
        <literal><replaceable>Type</replaceable></literal>
        <literal><replaceable>Variable-Name</replaceable></literal>,
        and <replaceable>Formals</replaceable> refers to a comma-delimited
        list of <replaceable>Formal</replaceable>.
    </para>


    <para>
      Advice defines crosscutting behavior.  It is defined in terms of
      pointcuts. The code of a piece of advice runs at every join point
      picked out by its pointcut. Exactly how the code runs depends on the
      kind of advice.
    </para>

    <para>
      AspectJ supports three kinds of advice. The kind of advice determines how
      it interacts with the join points it is defined over. Thus AspectJ
      divides advice into that which runs before its join points, that which
      runs after its join points, and that which runs in place of (or "around")
      its join points.
    </para>

    <para>
      While before advice is relatively unproblematic, there can be three
      interpretations of after advice: After the execution of a join point
      completes normally, after it throws an exception, or after it does either
      one. AspectJ allows after advice for any of these situations.
    </para>

<programlisting>
  aspect A {
      pointcut publicCall(): call(public Object *(..));
      after() returning (Object o): publicCall() {
	  System.out.println("Returned normally with " + o);
      }
      after() throwing (Exception e): publicCall() {
	  System.out.println("Threw an exception: " + e);
      }
      after(): publicCall(){
	  System.out.println("Returned or threw an Exception");
      }
  }
</programlisting>

    <para>
      After returning advice may not care about its returned object, in which
      case it may be written
    </para>

<programlisting>
  after() returning: call(public Object *(..)) {
      System.out.println("Returned normally");
  }
</programlisting>

    <para>
      If after returning does expose its returned object, then the
      type of the parameter is considered to be an
      <literal>instanceof</literal>-like constraint on the advice:  it
      will run only when the return value is of the appropriate type.
    </para>

    <para>
      A value is of the appropriate type if it would be assignable to
      a variable of that type, in the Java sense.  That is, a
      <literal>byte</literal> value is assignable to a
      <literal>short</literal> parameter but not vice-versa, an
      <literal>int</literal> is assignable to a
      <literal>float</literal> parameter, <literal>boolean</literal>
      values are only assignable to <literal>boolean</literal>
      parameters, and reference types work by instanceof.
    </para>

    <para>
      There are two special cases: If the exposed value is typed to
      <literal>Object</literal>, then the advice is not constrained by
      that type: the actual return value is converted to an object
      type for the body of the advice: <literal>int</literal> values
      are represented as <literal>java.lang.Integer</literal> objects,
      etc, and no value (from void methods, for example) is
      represented as <literal>null</literal>.
    </para>

    <para>
      Secondly, the <literal>null</literal> value is assignable to a
      parameter <literal>T</literal> if the join point
      <emphasis>could</emphasis> return something of type
      <literal>T</literal>.
    </para>

    <para>
      Around advice runs in place of the join point it operates over, rather
      than before or after it.  Because around is allowed to return a value, it
      must be declared with a return type, like a method.
    </para>

    <para>
      Thus, a simple use of around advice is to make a particular method
      constant:
    </para>

<programlisting>
  aspect A {
      int around(): call(int C.foo()) {
	  return 3;
      }
  }
</programlisting>

    <para>
      Within the body of around advice, though, the computation of the original
      join point can be executed with the special syntax
    </para>

<programlisting>
  proceed( ... )
</programlisting>

    <para>
      The proceed form takes as arguments the context exposed by the around's
      pointcut, and returns whatever the around is declared to return. So the
      following around advice will double the second argument to
      <literal>foo</literal> whenever it is called, and then halve its result:
    </para>


<programlisting>
  aspect A {
      int around(int i): call(int C.foo(Object, int)) <![CDATA[&&]]> args(i) {
	  int newi = proceed(i*2)
	  return newi/2;
      }
  }
</programlisting>

    <para>
      If the return value of around advice is typed to
      <literal>Object</literal>, then the result of proceed is converted to an
      object representation, even if it is originally a primitive value.  And
      when the advice returns an Object value, that value is converted back to
      whatever representation it was originally.  So another way to write the
      doubling and halving advice is:
    </para>

<programlisting>
  aspect A {
      Object around(int i): call(int C.foo(Object, int)) <![CDATA[&&]]> args(i) {
	  Integer newi = (Integer) proceed(i*2)
	  return new Integer(newi.intValue() / 2);
      }
  }
</programlisting>
    
    <para>
		Any occurence of <literal>proceed(..)</literal> within the body of around 
        advice is treated as the special proceed form (even if the
		aspect defines a method named <literal>proceed</literal>), unless a 
		target other than the aspect instance is specified as the recipient of
		the call.
		For example, in the following program the first 
		call to proceed will be treated as a method call to
		the <literal>ICanProceed</literal> instance, whereas the second call to
		proceed is treated as the special proceed form.
	</para>

<programlisting>
  aspect A {
     Object around(ICanProceed canProceed) : execution(* *(..)) <![CDATA[&&]]> this(canProceed) {
        canProceed.proceed();         // a method call
        return proceed(canProceed);   // the special proceed form
     }
     
     private Object proceed(ICanProceed canProceed) {
        // this method cannot be called from inside the body of around advice in
        // the aspect
     }
  }	
</programlisting>

    <para>
      In all kinds of advice, the parameters of the advice behave exactly like
      method parameters.  In particular, assigning to any parameter affects
      only the value of the parameter, not the value that it came from.  This
      means that
    </para>

<programlisting>
  aspect A {
      after() returning (int i): call(int C.foo()) {
	  i = i * 2;
      }
  }
</programlisting>

    <para>
      will <emphasis>not</emphasis> double the returned value of the advice.
      Rather, it will double the local parameter.  Changing the values of
      parameters or return values of join points can be done by using around
      advice.
    </para>
    <para>
        With <literal>proceed(..)</literal> it is possible to change the values
        used by less-precedent advice and the underlying join point by supplying
        different values for the variables.  For example, this aspect replaces
        the string bound to <literal>s</literal> in the named pointcut 
        <literal>privateData</literal>:
    </para>

<programlisting>
  aspect A {
    Object around(String s): MyPointcuts.privateData(s) {
      return proceed("private data");
    }
  }
</programlisting>
    <para>
        If you replace an argument to <literal>proceed(..)</literal>, you can cause 
        a <literal>ClassCastException</literal> at runtime when the argument
        refers to a supertype of the actual type and you do not supply a 
        reference of the actual type.  In the following aspect, the
        around advice replaces the declared target <literal>List</literal> 
        with an <literal>ArrayList</literal>.  This is valid code at
        compile-time since the types match.  
    </para>
<programlisting>
  import java.util.*;

  aspect A {
    Object around(List list): call(* List+.*()) <![CDATA[&&]]> target(list) {
      return proceed(new ArrayList());
    }
  }
</programlisting>
    <para>
        But imagine a simple program where the actual target is
        <literal>LinkedList</literal>.  In this case, the advice would cause a
        <literal>ClassCastException</literal> at runtime, and 
        <literal>peek()</literal> is not declared in <literal>ArrayList</literal>.
    </para>
<programlisting>
  public class Test {
    public static void main(String[] args) {
      new LinkedList().peek();
    }
  }
</programlisting>
    <para>
        The <literal>ClassCastException</literal> can occur even in situations
        where it appears to be unnecessary, e.g., if the program is changed to
        call <literal>size()</literal>, declared in <literal>List</literal>:
    </para>
<programlisting>
  public class Test {
    public static void main(String[] args) {
      new LinkedList().size();
    }
  }
</programlisting>
    <para>
        There will still be a <literal>ClassCastException</literal> because
        it is impossible to prove that there won't be a runtime binary-compatible
        change in the hierarchy of <literal>LinkedList</literal> or some
        other advice on the join point that requires a 
        <literal>LinkedList</literal>.
    </para>

    <sect2 id="advice-modifiers" xreflabel="advice-modifiers">
      <title>Advice modifiers</title>

      <para>
        The <literal>strictfp</literal> modifier is the only modifier allowed
        on advice, and it has the effect of making all floating-point
        expressions within the advice be FP-strict.
      </para>
    </sect2>

    <sect2 id="advice-and-checked-exceptions" xreflabel="advice-and-checked-exceptions">
      <title>Advice and checked exceptions</title>

      <para>
        An advice declaration must include a <literal>throws</literal> clause
        listing the checked exceptions the body may throw.  This list of
        checked exceptions must be compatible with each target join point
        of the advice, or an error is signalled by the compiler.
      </para>

      <para>
        For example, in the following declarations:
      </para>

<programlisting>
  import java.io.FileNotFoundException;

  class C {
      int i;

      int getI() { return i; }
  }

  aspect A {
      before(): get(int C.i) {
	  throw new FileNotFoundException();
      }
      before() throws FileNotFoundException: get(int C.i) {
	  throw new FileNotFoundException();
      }
  }
</programlisting>

      <para>
        both pieces of advice are illegal.  The first because the body throws
        an undeclared checked exception, and the second because field get join
        points cannot throw <literal>FileNotFoundException</literal>s.
      </para>

      <para> The exceptions that each kind of join point in AspectJ may throw are:
      </para>

    <variablelist>
      <varlistentry>
        <term>method call and execution</term>
        <listitem>
          the checked exceptions declared by the target method's
          <literal>throws</literal> clause.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>constructor call and execution</term>
        <listitem>
          the checked exceptions declared by the target constructor's
          <literal>throws</literal> clause.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>field get and set</term>
        <listitem>
          no checked exceptions can be thrown from these join points. 
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>exception handler execution</term>
        <listitem>
          the exceptions that can be thrown by the target exception handler.
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>static initializer execution</term>
        <listitem>
          no checked exceptions can be thrown from these join points. 
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>pre-initialization and initialization</term>
        <listitem>
          any exception that is in the throws clause of
          <emphasis>all</emphasis> constructors of the initialized class. 
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>advice execution</term>
        <listitem>
          any exception that is in the throws clause of the advice. 
        </listitem>
      </varlistentry>

    </variablelist>

    </sect2>

    <sect2 id="advice-precedence" xreflabel="advice-precedence">
      <title>Advice precedence</title>

      <para>
        Multiple pieces of advice may apply to the same join point.  In such
        cases, the resolution order of the advice is based on advice
        precedence.
      </para>

      <sect3>
        <title>Determining precedence</title>

        <para>There are a number of rules that determine whether a particular
        piece of advice has precedence over another when they advise the same
        join point. </para>

        <para>If the two pieces of advice are defined in different aspects,
        then there are three cases: </para>

        <itemizedlist>
          <listitem>If aspect A is matched earlier than aspect B in some
          <literal>declare precedence</literal> form, then all advice in
          concrete aspect A has precedence over all advice in concrete aspect B
          when they are on the same join point.  </listitem>

          <listitem>
          Otherwise, if aspect A is a subaspect of aspect B, then all advice
          defined in A has precedence over all advice defined in
          B. So, unless otherwise specified with
          <literal>declare precedence</literal>, advice in a subaspect
          has precedence over advice in a superaspect.
          </listitem>

          <listitem>
          Otherwise, if two pieces of advice are defined in two different
          aspects, it is undefined which one has precedence.
          </listitem>

        </itemizedlist>

        <para>If the two pieces of advice are defined in the same aspect, then
        there are two cases: </para>

        <itemizedlist>
          <listitem>If either are <literal>after</literal> advice, then the one that
          appears later in the aspect has precedence over the one that appears
          earlier. </listitem>

          <listitem>Otherwise, then the one that appears earlier in the aspect
          has precedence over the one that appears later.
          </listitem>

        </itemizedlist>

        <para>These rules can lead to circularity, such as</para>

<programlisting>
  aspect A {
      before(): execution(void main(String[] args)) {}
      after():  execution(void main(String[] args)) {}
      before(): execution(void main(String[] args)) {}
  }
</programlisting>

        <para>such circularities will result in errors signalled by the compiler. </para>
      </sect3>

      <sect3>
        <title>Effects of precedence</title>

        <para>At a particular join point, advice is ordered by precedence.</para>

        <para>A piece of <literal>around</literal> advice controls whether
        advice of lower precedence will run by calling
        <literal>proceed</literal>.  The call to <literal>proceed</literal>
        will run the advice with next precedence, or the computation under the
        join point if there is no further advice. </para>

        <para>A piece of <literal>before</literal> advice can prevent advice of
        lower precedence from running by throwing an exception.  If it returns
        normally, however, then the advice of the next precedence, or the
        computation under the join pint if there is no further advice, will run.
        </para>

        <para>Running <literal>after returning</literal> advice will run the
        advice of next precedence, or the computation under the join point if
        there is no further advice.  Then, if that computation returned
        normally, the body of the advice will run. </para>

        <para>Running <literal>after throwing</literal> advice will run the
        advice of next precedence, or the computation under the join
        point if there is no further advice.  Then, if that computation threw
        an exception of an appropriate type, the body of the advice will
        run. </para>

        <para>Running <literal>after</literal> advice will run the advice of
        next precedence, or the computation under the join point if
        there is no further advice.  Then the body of the advice will
        run. </para>
      </sect3>
    </sect2>

    <sect2 id="reflective-access-to-the-join-point" xreflabel="reflective-access-to-the-join-point">
      <title>Reflective access to the join point</title>

      <para>
        Three special variables are visible within bodies of advice
          and within <literal>if()</literal> pointcut expressions: 
        <literal>thisJoinPoint</literal>,
        <literal>thisJoinPointStaticPart</literal>, and
        <literal>thisEnclosingJoinPointStaticPart</literal>. Each is bound to
        an object that encapsulates some of the context of the advice's current
        or enclosing join point.  These variables exist because some pointcuts
        may pick out very large collections of join points. For example, the
        pointcut
      </para>


<programlisting>
  pointcut publicCall(): call(public * *(..));
</programlisting>


      <para>
        picks out calls to many methods. Yet the body of advice over this
        pointcut may wish to have access to the method name or parameters of a
        particular join point.
      </para>

      <para>
        <literal>thisJoinPoint</literal> is bound to a complete join point
        object.

      </para>

      <para>
        <literal>thisJoinPointStaticPart</literal> is bound to a part of the
        join point object that includes less information, but for which no
        memory allocation is required on each execution of the advice.  It is
        equivalent to <literal>thisJoinPoint.getStaticPart()</literal>.
      </para>

      <para>
        <literal>thisEnclosingJoinPointStaticPart</literal> is bound to the
        static part of the join point enclosing the current join point.  Only
        the static part of this enclosing join point is available through this
        mechanism.
      </para>

      <para>
        Standard Java reflection uses objects from the
        <literal>java.lang.reflect</literal> hierarchy to build up its
        reflective objects.  Similarly, AspectJ join point objects have types
        in a type hierarchy.  The type of objects bound to
        <literal>thisJoinPoint</literal> is
        <literal>org.aspectj.lang.JoinPoint</literal>, while
        <literal>thisStaticJoinPoint</literal> is bound to objects of interface
        type <literal>org.aspectj.lang.JoinPoint.StaticPart</literal>.
      </para>
    </sect2>

  </sect1>

  <sect1 id="semantics-declare">
    <title>Static crosscutting</title>

    <para>
      Advice declarations change the behavior of classes they crosscut, but do
      not change their static type structure. For crosscutting concerns that do
      operate over the static structure of type hierarchies, AspectJ provides
      inter-type member declarations and other <literal>declare</literal> forms.
    </para>

    <sect2 id="inter-type-member-declarations" xreflabel="inter-type-member-declarations">
      <title>Inter-type member declarations</title>

        <para>
          AspectJ allows the declaration of members by aspects that are
          associated with other types.
        </para>

      <para>
        An inter-type method declaration looks like
      </para>

      <itemizedlist>
        <listitem><literal>
        [ <replaceable>Modifiers</replaceable> ]
        <replaceable>Type</replaceable> <replaceable>OnType</replaceable>
        .
        <replaceable>Id</replaceable>(<replaceable>Formals</replaceable>)
        [ <replaceable>ThrowsClause</replaceable> ]
        { <replaceable>Body</replaceable> }</literal></listitem>

        <listitem><literal>abstract
        [ <replaceable>Modifiers</replaceable> ]
        <replaceable>Type</replaceable> <replaceable>OnType</replaceable>
        .  <replaceable>Id</replaceable>(<replaceable>Formals</replaceable>)
        [ <replaceable>ThrowsClause</replaceable> ]
        ;
        </literal></listitem>
      </itemizedlist>

      <para>
        The effect of such a declaration is to make <replaceable>OnType</replaceable>
        support the new method.  Even if <replaceable>OnType</replaceable> is
        an interface.  Even if the method is neither public nor abstract.  So the
        following is legal AspectJ code:
      </para>

<programlisting>
  interface Iface {}

  aspect A {
      private void Iface.m() {
	  System.err.println("I'm a private method on an interface");
      }
      void worksOnI(Iface iface) {
	  // calling a private method on an interface
	  iface.m();
      }
  }
</programlisting>

      <para>
        An inter-type constructor declaration looks like
      </para>

      <itemizedlist>
        <listitem><literal>
        [ <replaceable>Modifiers</replaceable> ]
        <replaceable>OnType</replaceable> . new (
        <replaceable>Formals</replaceable> )
        [ <replaceable>ThrowsClause</replaceable> ]
        { <replaceable>Body</replaceable> }</literal></listitem>
      </itemizedlist>

      <para>
        The effect of such a declaration is to make
        <replaceable>OnType</replaceable> support the new constructor.  It is
        an error for <replaceable>OnType</replaceable> to be an interface.
      </para>

	  <para>
	    Inter-type declared constructors cannot be used to assign a
	    value to a final variable declared in <replaceable>OnType</replaceable>.
	    This limitation significantly increases the ability to both understand
	    and compile the <replaceable>OnType</replaceable> class and the
	    declaring aspect separately.
	  </para>

      <para>
        Note that in the Java language, classes that define no constructors
        have an implicit no-argument constructor that just calls
        <literal>super()</literal>.  This means that attempting to declare
        a no-argument inter-type constructor on such a class may result in
        a conflict, even though it <emphasis>looks</emphasis> like no
        constructor is defined.
      </para>

      <para>
        An inter-type field declaration looks like one of
      </para>

      <itemizedlist>
        <listitem><literal>
        [ <replaceable>Modifiers</replaceable> ]
        <replaceable>Type</replaceable>
        <replaceable>OnType</replaceable> . <replaceable>Id</replaceable>
        = <replaceable>Expression</replaceable>;</literal></listitem>

        <listitem><literal>
        [ <replaceable>Modifiers</replaceable> ]
        <replaceable>Type</replaceable>
        <replaceable>OnType</replaceable> . <replaceable>Id</replaceable>;</literal></listitem>
      </itemizedlist>

      <para>
        The effect of such a declaration is to make
        <replaceable>OnType</replaceable> support the new field. Even if
        <replaceable>OnType</replaceable> is an interface. Even if the field is
        neither public, nor static, nor final.
      </para>

      <para>
        The initializer, if any, of an inter-type field declaration runs
        before the class-local initializers defined in its target class.
      </para>

    </sect2>

      <para>
        Any occurrence of the identifier <literal>this</literal> in the body of
        an inter-type constructor or method declaration, or in the initializer
        of an inter-type field declaration, refers to the
        <replaceable>OnType</replaceable> object rather than to the aspect
        type; it is an error to access <literal>this</literal> in such a
        position from a <literal>static</literal> inter-type member
        declaration.
      </para>

    <sect2 id="access-modifiers" xreflabel="access-modifiers">
      <title>Access modifiers</title>

      <para>
        Inter-type member declarations may be public or private, or have
        default (package-protected) visibility.  AspectJ does not provide
        protected inter-type members.
      </para>

      <para>
        The access modifier applies in relation to the aspect, not in relation
        to the target type. So a private inter-type member is visible only from
        code that is defined within the declaring aspect. A default-visibility
        inter-type member is visible only from code that is defined within the
        declaring aspect's package.
      </para>

      <para>
        Note that a declaring a private inter-type method (which AspectJ
        supports) is very different from inserting a private method declaration
        into another class.  The former allows access only from the declaring
        aspect, while the latter would allow access only from the target type.
        Java serialization, for example, uses the presense of a private method
        <literal>void writeObject(ObjectOutputStream)</literal> for the
        implementation of <literal>java.io.Serializable</literal>.  A private
        inter-type declaration of that method would not fulfill this
        requirement, since it would be private to the aspect, not private to
        the target type.
      </para>

      <para>
        The access modifier of abstract inter-type methods has
        one constraint: It is illegal to declare an abstract
        non-public inter-type method on a public interface.  This
        is illegal because it would say that a public interface
        has a constraint that only non-public implementors must
        fulfill.  This would not be compatible with Java's type
        system.  
      </para>
    </sect2>

    <sect2 id="conflicts" xreflabel="conflicts">
      <title>Conflicts</title>

      <para>
        Inter-type declarations raise the possibility of conflicts among
        locally declared members and inter-type members.  For example, assuming
        <literal>otherPackage</literal> is not the package containing the
        aspect <classname>A</classname>, the code
      </para>

<programlisting>
  aspect A {
      private Registry otherPackage.onType.r;
      public void otherPackage.onType.register(Registry r) {
	    r.register(this);
	    this.r = r;
      }
  }
</programlisting>

      <para>
        declares that <literal>onType</literal> in <literal>otherPackage</literal> has a field
        <literal>r</literal>.  This field, however, is only accessible from the
        code inside of aspect <literal>A</literal>.  The aspect also declares
        that <literal>onType</literal> has a method
        "<literal>register</literal>", but makes this method accessible from
        everywhere.
      </para>

      <para>
        If <literal>onType</literal> already defines a
        private or package-protected field "<literal>r</literal>", there is no
        conflict: The aspect cannot see such a field, and no code in
        <literal>otherPackage</literal> can see the inter-type
        "<literal>r</literal>".
      </para>

      <para>
        If <literal>onType</literal> defines a public field
        "<literal>r</literal>", there is a conflict: The expression
      </para>

<programlisting>
  this.r = r
</programlisting>

      <para>
        is an error, since it is ambiguous whether the private inter-type
        "<literal>r</literal>" or the public locally-defined
        "<literal>r</literal>" should be used.
      </para>

      <para>
        If <literal>onType</literal> defines a method
        "<literal>register(Registry)</literal>" there is a conflict, since it
        would be ambiguous to any code that could see such a defined method
        which "<literal>register(Registry)</literal>" method was applicable.
      </para>

      <para>
        Conflicts are resolved as much as possible as per Java's conflict
        resolution rules:
      </para>

      <itemizedlist>
        <listitem>A subclass can inherit multiple <emphasis>fields</emphasis> from its superclasses,
        all with the same name and type.  However, it is an error to have an ambiguous
        <emphasis>reference</emphasis> to a field.</listitem>

        <listitem>A subclass can only inherit multiple
        <emphasis>methods</emphasis> with the same name and argument types from
        its superclasses if only zero or one of them is concrete (i.e., all but
        one is abstract, or all are abstract).
        </listitem>
      </itemizedlist>

      <para>
        Given a potential conflict between inter-type member declarations in
        different aspects, if one aspect has precedence over the other its
        declaration will take effect without any conflict notice from compiler.
        This is true both when the precedence is declared explicitly with
        <literal>declare precedence</literal> as well as when when sub-aspects
        implicitly have precedence over their super-aspect.
      </para>

    </sect2>

    <sect2 id="extension-and-implementation" xreflabel="extension-and-implementation">
      <title>Extension and Implementation</title>

      <para>
        An aspect may change the inheritance hierarchy of a system by changing
        the superclass of a type or adding a superinterface onto a type, with
        the <literal>declare parents</literal> form.
      </para>

      <itemizedlist>
        <listitem><literal>declare parents: <replaceable>TypePattern</replaceable> extends <replaceable>Type</replaceable>;</literal></listitem>
        <listitem><literal>declare parents: <replaceable>TypePattern</replaceable> implements <replaceable>TypeList</replaceable>;</literal></listitem>
      </itemizedlist>

      <para>
        For example, if an aspect wished to make a particular class runnable,
        it might define appropriate inter-type <literal>void
        run()</literal> method, but it should also declare that the class
        fulfills the <literal>Runnable</literal> interface.  In order to
        implement the methods in the <literal>Runnable</literal> interface, the
        inter-type <literal>run()</literal> method must be public:
      </para>

<programlisting>
  aspect A {
      declare parents: SomeClass implements Runnable;
      public void SomeClass.run() { ... }
  }
</programlisting>

    </sect2>

    <sect2 id="interfaces-with-members" xreflabel="interfaces-with-members">
      <title>Interfaces with members</title>

      <para>
        Through the use of inter-type members, interfaces may now carry
        (non-public-static-final) fields and (non-public-abstract) methods that
        classes can inherit. Conflicts may occur from ambiguously inheriting
        members from a superclass and multiple superinterfaces.
      </para>

      <para>
        Because interfaces may carry non-static initializers, each interface
        behaves as if it has a zero-argument constructor containing its
        initializers.  The order of super-interface instantiation is
        observable. We fix this order with the following properties: A
        supertype is initialized before a subtype, initialized code runs only
        once, and the initializers for a type's superclass are run before the
        initializers for its superinterfaces.  Consider the following hierarchy
        where {<literal>Object</literal>, <literal>C</literal>,
        <literal>D</literal>, <literal>E</literal>} are classes,
        {<literal>M</literal>, <literal>N</literal>, <literal>O</literal>,
        <literal>P</literal>, <literal>Q</literal>} are interfaces.
      </para>

<programlisting>
    Object  M   O
	 \ / \ /
	  C   N   Q
	   \ /   /
	    D   P
	     \ /
	      E
</programlisting>

      <para>
        when a new <literal>E</literal> is instantiated, the initializers run in this order:
      </para>

<programlisting>
    Object M C O N D Q P E
</programlisting>

    </sect2>

<!-- ============================== -->

    <sect2 id="warnings-and-errors" xreflabel="warnings-and-errors">
      <title>Warnings and Errors</title>

      <para>An aspect may specify that a particular join point should never be
      reached.  </para>

      <itemizedlist>
        <listitem><literal>declare error: <replaceable>Pointcut</replaceable>: <replaceable>String</replaceable>;</literal></listitem>
        <listitem><literal>declare warning: <replaceable>Pointcut</replaceable>: <replaceable>String</replaceable>;</literal></listitem>
      </itemizedlist>

      <para>If the compiler determines that a join point in
      <replaceable>Pointcut</replaceable> could possibly be reached, then it
      will signal either an error or warning, as declared, using the
      <replaceable>String</replaceable> for its message.   </para>

    </sect2>

    <sect2 id="softened-exceptions" xreflabel="softened-exceptions">
      <title>Softened exceptions</title>

      <para>An aspect may specify that a particular kind of exception, if
      thrown at a join point, should bypass Java's usual static exception
      checking system and instead be thrown as a
      <literal>org.aspectj.lang.SoftException</literal>, which is subtype of
      <literal>RuntimeException</literal> and thus does not need to be
      declared.  </para>

      <itemizedlist>
        <listitem><literal>declare soft: <replaceable>Type</replaceable>: <replaceable>Pointcut</replaceable>;</literal></listitem>
      </itemizedlist>

      <para>For example, the aspect</para>

<programlisting>
  aspect A {
      declare soft: Exception: execution(void main(String[] args));
  }
</programlisting>

      <para>Would, at the execution join point, catch any
      <literal>Exception</literal> and rethrow a
      <literal>org.aspectj.lang.SoftException</literal> containing
      original exception. </para>

      <para>This is similar to what the following advice would do</para>

<programlisting>
  aspect A {
      void around() execution(void main(String[] args)) {
	  try { proceed(); }
	  catch (Exception e) {
	      throw new org.aspectj.lang.SoftException(e);
	  }
      }
  }
</programlisting>

      <para>except, in addition to wrapping the exception, it also affects
      Java's static exception checking mechanism. </para>

      <para> Like advice, the declare soft form has no effect in an
      abstract aspect that is not extended by a concreate aspect.  So
      the following code will not compile unless it is compiled with an
      extending concrete aspect:</para>

<programlisting>
  abstract aspect A {
    abstract pointcut softeningPC();

    before() : softeningPC() {     
      Class.forName("FooClass"); // error:  uncaught ClassNotFoundException
    }    
                                                      
    declare soft : ClassNotFoundException : call(* Class.*(..));
  }
</programlisting>

    </sect2>

    <sect2 id="advice-precedence" xreflabel="advice-precedence">
      <title>Advice Precedence</title>

      <para>
        An aspect may declare a precedence relationship between concrete
        aspects with the <literal>declare precedence</literal> form:
      </para>

      <itemizedlist>
        <listitem><literal>declare precedence :
        <replaceable>TypePatternList</replaceable> ; </literal></listitem>
      </itemizedlist>

      <para>This signifies that if any join point has advice from two
      concrete aspects matched by some pattern in
      <replaceable>TypePatternList</replaceable>, then the precedence of
      the advice will be the order of in the list.  </para>

      <para>In <replaceable>TypePatternList</replaceable>, the wildcard "*" can
      appear at most once, and it means "any type not matched by any other
      pattern in the list". </para>

      <para>For example, the constraints that (1) aspects that have
      Security as part of their name should have precedence over all other
      aspects, and (2) the Logging aspect (and any aspect that extends it)
      should have precedence over all non-security aspects, can be
      expressed by:</para>

<programlisting>
  declare precedence: *..*Security*, Logging+, *;
</programlisting>

      <para>
        For another example, the CountEntry aspect might want to count the
        entry to methods in the current package accepting a Type object as
        its first argument.  However, it should count all entries, even
        those that the aspect DisallowNulls causes to throw exceptions.
        This can be accomplished by stating that CountEntry has precedence
        over DisallowNulls.  This declaration could be in either aspect, or
        in another, ordering aspect:
      </para>

<programlisting>
  aspect Ordering {
      declare precedence: CountEntry, DisallowNulls;
  }
  aspect DisallowNulls {
      pointcut allTypeMethods(Type obj): call(* *(..)) <![CDATA[&&]]> args(obj, ..);
      before(Type obj):  allTypeMethods(obj) {
	  if (obj == null) throw new RuntimeException();
      }
  }
  aspect CountEntry {
      pointcut allTypeMethods(Type obj): call(* *(..)) <![CDATA[&&]]> args(obj, ..);
      static int count = 0;
      before():  allTypeMethods(Type) {
	  count++;
      }
  }
</programlisting>

      <sect3>
        <title>Various cycles</title>

        <para>
          It is an error for any aspect to be matched by more than one
          TypePattern in a single decare precedence, so:
        </para>

<programlisting>
  declare precedence:  A, B, A ;  // error
</programlisting>

        <para>
          However, multiple declare precedence forms may legally have this
          kind of circularity. For example, each of these declare
          precedence is perfectly legal:
        </para>

<programlisting>
  declare precedence: B, A;
  declare precedence: A, B;
</programlisting>

        <para>
          And a system in which both constraints are active may also be
          legal, so long as advice from A and B don't share a join
          point. So this is an idiom that can be used to enforce that A and
          B are strongly independent.
        </para>
      </sect3>

      <sect3>
        <title>Applies to concrete aspects</title>

        <para>
          Consider the following library aspects:
        </para>

<programlisting>
  abstract aspect Logging {
      abstract pointcut logged();

      before(): logged() {
          System.err.println("thisJoinPoint: " + thisJoinPoint);
      }
  }

  abstract aspect MyProfiling {
      abstract pointcut profiled();

      Object around(): profiled() {
          long beforeTime = System.currentTimeMillis();
          try {
              return proceed();
          } finally {
              long afterTime = System.currentTimeMillis();
              addToProfile(thisJoinPointStaticPart,
                           afterTime - beforeTime);
          }
      }
      abstract void addToProfile(
          org.aspectj.JoinPoint.StaticPart jp,
          long elapsed);
  }
</programlisting>

        <para>
          In order to use either aspect, they must be extended with
          concrete aspects, say, MyLogging and MyProfiling. Because advice
          only applies from concrete aspects, the declare precedence form
          only matters when declaring precedence with concrete aspects.  So
        </para>

<programlisting>
  declare precedence: Logging, Profiling;
</programlisting>

        <para>
          has no effect, but both
        </para>

<programlisting>
  declare precedence: MyLogging, MyProfiling;
  declare precedence: Logging+, Profiling+;
</programlisting>

        <para>
          are meaningful.
        </para>
      </sect3>
    </sect2>


    <sect2 id="statically-determinable-pointcuts" xreflabel="statically-determinable-pointcuts">
      <title>Statically determinable pointcuts</title>

      <para>Pointcuts that appear inside of <literal>declare</literal> forms
      have certain restrictions.  Like other pointcuts, these pick out join
      points, but they do so in a way that is statically determinable.  </para>

      <para>Consequently, such pointcuts may not include, directly or
      indirectly (through user-defined pointcut declarations) pointcuts that
      discriminate based on dynamic (runtime) context.  Therefore, such
      pointcuts may not be defined in terms of</para>

      <itemizedlist>
        <listitem>cflow</listitem>
        <listitem>cflowbelow</listitem>
        <listitem>this</listitem>
        <listitem>target</listitem>
        <listitem>args</listitem>
        <listitem>if</listitem>
      </itemizedlist>

      <para> all of which can discriminate on runtime information. </para>
    </sect2>
  </sect1>

  <sect1 id="semantics-aspects">
    <title>Aspects</title>

    <para>
      An aspect is a crosscutting type defined by the <literal>aspect</literal>
      declaration. 
    </para>

    <sect2 id="aspect-declaration" xreflabel="aspect-declaration">
      <title>Aspect Declaration</title>

      <para>
        The <literal>aspect</literal> declaration is similar to the
	<literal>class</literal> declaration in that it defines a type and an
	implementation for that type. It differs in a number of
	ways:
      </para>

      <sect3>
        <title>Aspect implementation can cut across other types</title>

	<para> In addition to normal Java class declarations such as
	methods and fields, aspect declarations can include AspectJ
	declarations such as advice, pointcuts, and inter-type
	declarations.  Thus, aspects contain implementation
	declarations that can can cut across other types (including those defined by
	other aspect declarations).
        </para>
      </sect3> 

      <sect3>
        <title>Aspects are not directly instantiated</title>

	<para> Aspects are not directly instantiated with a new
	expression, with cloning, or with serialization. Aspects may
	have one constructor definition, but if so it must be of a
	constructor taking no arguments and throwing no checked
	exceptions.
        </para>
      </sect3> 

      <sect3>
        <title>Nested aspects must be <literal>static</literal></title>

	<para> 
	  Aspects may be defined either at the package level, or as a static nested
          aspect -- that is, a static member of a class, interface, or aspect.  If it
          is not at the package level, the aspect <emphasis>must</emphasis> be
          defined with the static keyword.  Local and anonymous aspects are not
          allowed.
        </para>
      </sect3> 
    </sect2>

    <sect2 id="aspect-extension" xreflabel="aspect-extension">
      <title>Aspect Extension</title>

      <para>
        To support abstraction and composition of crosscutting concerns,
        aspects can be extended in much the same way that classes can. Aspect
        extension adds some new rules, though.
      </para>

      <sect3>
        <title>Aspects may extend classes and implement interfaces</title>

        <para>
          An aspect, abstract or concrete, may extend a class and may implement
          a set of interfaces. Extending a class does not provide the ability
          to instantiate the aspect with a new expression: The aspect may still
          only define a null constructor.
        </para>
      </sect3>

      <sect3>
        <title>Classes may not extend aspects</title>

        <para>
          It is an error for a class to extend or implement an aspect.
        </para>
      </sect3>

      <sect3>
        <title>Aspects extending aspects
        </title>
        <para>
          Aspects may extend other aspects, in which case not only are fields
          and methods inherited but so are pointcuts. However, aspects may only
          extend abstract aspects. It is an error for a concrete aspect to
          extend another concrete aspect.
        </para>
      </sect3>
    </sect2>

    <sect2 id="aspect-instantiation" xreflabel="aspect-instantiation">
      <title>Aspect instantiation</title>

      <para>
        Unlike class expressions, aspects are not instantiated with
        <literal>new</literal> expressions.  Rather, aspect instances are
        automatically created to cut across programs.  A program
          can get a reference to an aspect instance using the static
          method <literal>aspectOf(..)</literal>.
      </para>

      <para>
        Because advice only runs in the context of an aspect instance, aspect
        instantiation indirectly controls when advice runs.
      </para>

      <para>
        The criteria used to determine how an aspect is instantiated
        is inherited from its parent aspect.  If the aspect has no parent
        aspect, then by default the aspect is a singleton aspect.
        How an aspect is instantiated controls the form of the 
        <literal>aspectOf(..)</literal> method defined on the
        concrete aspect class.
      </para>

      <sect3>
        <title>Singleton Aspects</title>

        <itemizedlist>
          <listitem><literal>aspect <replaceable>Id</replaceable> { ... }</literal></listitem>
          <listitem><literal>aspect <replaceable>Id</replaceable> issingleton() { ... }</literal></listitem>
        </itemizedlist>

        <para>
          By default (or by using the modifier <literal>issingleton()</literal>)
          an aspect has exactly one instance that cuts across the entire
          program.  That instance is available at any time during program
          execution from the static method <literal>aspectOf()</literal>
          automatically defined on all concrete aspects
          -- so, in the above examples, <literal>A.aspectOf()</literal> will
          return A's instance.  This aspect instance is created as the aspect's
          classfile is loaded.
        </para>

        <para>
          Because the an instance of the aspect exists at all join points in
          the running of a program (once its class is loaded), its advice will
          have a chance to run at all such join points.
        </para>

        <para>
          (In actuality, one instance of the aspect A is made for each version
          of the aspect A, so there will be one instantiation for each time A
          is loaded by a different classloader.)
        </para>
      </sect3>

      <sect3>
        <title>Per-object aspects</title>

        <itemizedlist>
          <listitem><literal>aspect <replaceable>Id</replaceable> perthis(<replaceable>Pointcut</replaceable>) { ... }</literal></listitem>
          <listitem><literal>aspect <replaceable>Id</replaceable> pertarget(<replaceable>Pointcut</replaceable>) { ... }</literal></listitem>
        </itemizedlist>

        <para>
          If an aspect A is defined
          <literal>perthis(<replaceable>Pointcut</replaceable>)</literal>, then
          one object of type A is created for every object that is the
          executing object (i.e., "this") at any of the join points picked out
          by <replaceable>Pointcut</replaceable>.
          The advice defined in A will run only at a join point where the
          currently executing object has been associated with an instance of
          A.
        </para>

        <para> Similarly, if an aspect A is defined
          <literal>pertarget(<replaceable>Pointcut</replaceable>)</literal>,
          then one object of type A is created for every object that is the
          target object of the join points picked out by
          <replaceable>Pointcut</replaceable>.
          The advice defined in A will run only at a join point where the
          target object has been associated with an instance of 
		  A.
        </para>

        <para>
          In either case, the static method call
          <literal>A.aspectOf(Object)</literal> can be used to get the aspect
          instance (of type A) registered with the object.  Each aspect
          instance is created as early as possible, but not before reaching a
          join point picked out by <replaceable>Pointcut</replaceable> where
          there is no associated aspect of type A.
        </para>

        <para> Both <literal>perthis</literal> and <literal>pertarget</literal>
        aspects may be affected by code the AspectJ compiler controls, as
        discussed in the <xref linkend="implementation"/> appendix.  </para>
      </sect3>

      <sect3>
        <title>Per-control-flow aspects</title>

        <itemizedlist>
          <listitem><literal>aspect <replaceable>Id</replaceable> percflow(<replaceable>Pointcut</replaceable>) { ... }</literal></listitem>
          <listitem><literal>aspect <replaceable>Id</replaceable> percflowbelow(<replaceable>Pointcut</replaceable>) { ... }</literal></listitem>
        </itemizedlist>

        <para>
          If an aspect A is defined
          <literal>percflow(<replaceable>Pointcut</replaceable>)</literal> or
          <literal>percflowbelow(<replaceable>Pointcut</replaceable>)</literal>,
          then one object of type A is created for each flow of control of the
          join points picked out by <replaceable>Pointcut</replaceable>, either
          as the flow of control is entered, or below the flow of control,
          respectively.  The advice defined in A may run at any join point in
          or under that control flow.  During each such flow of control, the
          static method <literal>A.aspectOf()</literal> will return an object
          of type
          A. An instance of the aspect is created upon entry into each such
          control flow.
        </para>
      </sect3>

      <sect3>
        <title>Aspect instantiation and advice</title>

        <para>
          All advice runs in the context of an aspect instance,
          but it is possible to write a piece of advice with a pointcut
          that picks out a join point that must occur before asopect
          instantiation.  For example:
        </para>

<programlisting>
  public class Client
  {
      public static void main(String[] args) {
          Client c = new Client();
      }
  }

  aspect Watchcall {
      pointcut myConstructor(): execution(new(..));

      before(): myConstructor() {
          System.err.println("Entering Constructor");
      }
  }
</programlisting>

        <para>
          The before advice should run before the execution of all
          constructors in the system. It must run in the context of an
          instance of the Watchcall aspect. The only way to get such an
          instance is to have Watchcall's default constructor execute. But
          before that executes, we need to run the before advice...
        </para>

        <para>
          There is no general way to detect these kinds of circularities at
          compile time.  If advice runs before its aspect is instantiated,
          AspectJ will throw a <ulink
          url="../api/org/aspectj/lang/NoAspectBoundException.html">
          <literal>org.aspectj.lang.NoAspectBoundException</literal></ulink>.
        </para>
      </sect3>
    </sect2>

    <sect2 id="aspect-privilege" xreflabel="aspect-privilege">
      <title>Aspect privilege</title>

      <itemizedlist>
        <listitem><literal>privileged aspect <replaceable>Id</replaceable> { ... }</literal></listitem>
      </itemizedlist>

      <para>
        Code written in aspects is subject to the same access control rules as
        Java code when referring to members of classes or aspects. So, for
        example, code written in an aspect may not refer to members with
        default (package-protected) visibility unless the aspect is defined in
        the same package.
      </para>

      <para>
        While these restrictions are suitable for many aspects, there may be
        some aspects in which advice or inter-type members needs to access private
        or protected resources of other types. To allow this, aspects may be
        declared <literal>privileged</literal>.  Code in priviliged aspects has
        access to all members, even private ones.
      </para>

<programlisting>
  class C {
      private int i = 0;
      void incI(int x) { i = i+x; }
  }
  privileged aspect A {
      static final int MAX = 1000;
      before(int x, C c): call(void C.incI(int)) <![CDATA[&&]]> target(c) <![CDATA[&&]]> args(x) {
	  if (c.i+x &gt; MAX) throw new RuntimeException();
      }
  }
</programlisting>

      <para>
        In this case, if A had not been declared privileged, the field reference
        c.i would have resulted in an error signaled by the compiler.
      </para>

      <para>
        If a privileged aspect can access multiple versions of a particular
        member, then those that it could see if it were not privileged take
        precedence. For example, in the code
      </para>

<programlisting>
  class C {
      private int i = 0;
      void foo() { }
  }
  privileged aspect A {
      private int C.i = 999;
      before(C c): call(void C.foo()) target(c) {
	  System.out.println(c.i);
      }
  }
</programlisting>

      <para>
        A's private inter-type field C.i, initially bound to 999, will be
        referenced in the body of the advice in preference to C's privately
        declared field, since the A would have access to its own inter-type
        fields even if it were not privileged.
      </para>

      <para>
        Note that a privileged aspect can access private inter-type
        declarations made by other aspects, since they are simply
        considered private members of that other aspect.
      </para>
    </sect2>
  </sect1>
</appendix>