aboutsummaryrefslogtreecommitdiffstats
path: root/docs/design/alt.design/spaces.xml
diff options
context:
space:
mode:
authorWilliam Victor Mote <vmote@apache.org>2002-11-30 07:24:10 +0000
committerWilliam Victor Mote <vmote@apache.org>2002-11-30 07:24:10 +0000
commit64b3c5ede295343029ded69bb7f035ddd47409f3 (patch)
tree8e9c4dbe474b2f537f5cb02b8ac7636bef9b8a87 /docs/design/alt.design/spaces.xml
parent8d3f23d1924ceb5822daa3c280864fd58815f8c5 (diff)
downloadxmlgraphics-fop-64b3c5ede295343029ded69bb7f035ddd47409f3.tar.gz
xmlgraphics-fop-64b3c5ede295343029ded69bb7f035ddd47409f3.zip
white-space and line-ending fixes
git-svn-id: https://svn.apache.org/repos/asf/xmlgraphics/fop/trunk@195684 13f79535-47bb-0310-9956-ffa450edef68
Diffstat (limited to 'docs/design/alt.design/spaces.xml')
-rw-r--r--docs/design/alt.design/spaces.xml300
1 files changed, 150 insertions, 150 deletions
diff --git a/docs/design/alt.design/spaces.xml b/docs/design/alt.design/spaces.xml
index c9d56a057..80bb8c46d 100644
--- a/docs/design/alt.design/spaces.xml
+++ b/docs/design/alt.design/spaces.xml
@@ -15,162 +15,162 @@
<!-- one of (anchor s1) -->
<s1 title="Keeps and space-specifiers in layout galleys">
<p>
- The <link href= "galleys.html" >layout galleys</link> and the
- <link href= "galleys.html#layout-tree" >layout tree</link>
- which is the context of this discussion have been discussed
- elsewhere. A <link href="keeps.html">previous document</link>
- discussed data structures which might facilitate the lining of
- blocks necessary to implement keeps. Here we discuss the
- similarities between the keep data structures and those
- required to implement space-specifier resolution.
+ The <link href= "galleys.html" >layout galleys</link> and the
+ <link href= "galleys.html#layout-tree" >layout tree</link>
+ which is the context of this discussion have been discussed
+ elsewhere. A <link href="keeps.html">previous document</link>
+ discussed data structures which might facilitate the lining of
+ blocks necessary to implement keeps. Here we discuss the
+ similarities between the keep data structures and those
+ required to implement space-specifier resolution.
</p>
<s2 title="Space-specifiers">
- <note>
- <strong>4.3 Spaces and Conditionality</strong>
- ... Space-specifiers occurring in sequence may interact with
- each other. The constraint imposed by a sequence of
- space-specifiers is computed by calculating for each
- space-specifier its associated resolved space-specifier in
- accordance with their conditionality and precedence.
- </note>
- <note>
- 4.2.5 Stacking Constraints ... The intention of the
- definitions is to identify areas at any level of the tree
- which have only space between them.
- </note>
- <p>
- The quotations above are pivotal to understanding the
- complex discussion of spaces with which they are associated,
- all of which exists to enable the resolution of adjacent
- &lt;space&gt;s. It may be helpful to think of <em>stacking
- constraints</em> as <em>&lt;space&gt;s interaction</em> or
- <em>&lt;space&gt;s stacking interaction</em>.
- </p>
+ <note>
+ <strong>4.3 Spaces and Conditionality</strong>
+ ... Space-specifiers occurring in sequence may interact with
+ each other. The constraint imposed by a sequence of
+ space-specifiers is computed by calculating for each
+ space-specifier its associated resolved space-specifier in
+ accordance with their conditionality and precedence.
+ </note>
+ <note>
+ 4.2.5 Stacking Constraints ... The intention of the
+ definitions is to identify areas at any level of the tree
+ which have only space between them.
+ </note>
+ <p>
+ The quotations above are pivotal to understanding the
+ complex discussion of spaces with which they are associated,
+ all of which exists to enable the resolution of adjacent
+ &lt;space&gt;s. It may be helpful to think of <em>stacking
+ constraints</em> as <em>&lt;space&gt;s interaction</em> or
+ <em>&lt;space&gt;s stacking interaction</em>.
+ </p>
</s2>
<s2 title="Block stacking constraints">
- <p>
- In the discussion of block stacking constraints in Section
- 4.2.5, the notion of <em>fence</em> is introduced. For
- block stacking constraints, a fence is defined as either a
- reference-area boundary or a non-zero padding or border
- specification. Fences, however, do not come into play
- when determining the constraint between siblings. (See
- <link href="#Figure1">Figure 1</link>.)
- </p>
- <p><strong>Figure 1</strong></p><anchor id="Figure1"/>
- <figure src="block-stacking-constraints.png"
- alt="block-stacking-constraints.png"/>
- <note>
- Figure 1 assumes a block-progression-direction of top to
- bottom.
- </note>
- <p>
- In <link href="#Figure1">Diagram a)</link>, block A has
- non-zero padding and borders, in addition to non-zero
- spaces. Note, however, that the space-after of A is
- adjacent to the space-before of block P, so borders and
- padding on these siblings have no impact on the interaction
- of their &lt;space&gt;s. The stacking constraint A,P is
- indicated by the red rectangle enclosing the space-after of
- A and the space-before of P.
- </p>
- <p>
- In <link href="#Figure1">Diagram b)</link>, block B is the
- first block child of P. The stacking constraint A,P is as
- before; the stacking constraint P,B is the space-before of
- B, as indicated by the enclosing magenta rectangle. In this
- case, however, the non-zero border of P prevents the
- interaction of the A,P and P,B stacking constraints. There
- is a <em>fence-before</em> P. The fence is notional; it has
- no precise location, as the diagram may lead one to believe.
- </p>
- <p>
- In <link href="#Figure1">Diagram c)</link>, because of the
- zero-width borders and padding on block P, the fence-before
- P is not present, and the adjacent &lt;space&gt;s of blocks
- A, P and B are free to interact. In this case, the stacking
- constraints A,P and P,B are as before, but now there is an
- additional stacking constraint A,B, represented by the light
- brown rectangle enclosing the other two stacking
- constraints.
- </p>
- <p>
- The other form of fence occurs when the parent block is a
- reference area. Diagram b) of <link href="#Figure2">Figure
- 2</link> illustrates this situation. Block C is a
- reference-area, involving a 180 degree change of
- block-progression-direction (BPD). In the diagram, the
- inner edge of block C represents the content rectangle, with
- its changed BPD. The thicker outer edge represents the
- outer boundary of the padding, border and spaces of C.
- </p>
- <p>
- While not every reference-area will change the
- inline-progression-direction (IPD) and BPD of an area, no
- attempt is made to discriminate these cases. A
- reference-area always a fence. The fence comes into play in
- analogous circumstances to non-zero borders or padding.
- Space resolution between a reference area and its siblings
- is not affected.
- </p>
- <p>
- In the case of <link href="#Figure2">Diagram b)</link>,
- these are block stacking constraints B,C and C,A. Within
- the reference-area, bock stacing constraints C,D and E,C are
- unaffected. However, the fence prevents block stacking
- constraints such as B,E or D,A. When there is a change of
- BPD, as <link href="#Figure2">Diagram b)</link> makes
- visually obvious, it is difficult to imagine which blocks
- would have such a constraint, and what the ordering of the
- constraint would be.
- </p>
- <p><strong>Figure 2</strong></p>
- <anchor id="Figure2"/>
- <figure src="block-stacking-keeps.png"
- alt="block-stacking-keeps.png"/>
+ <p>
+ In the discussion of block stacking constraints in Section
+ 4.2.5, the notion of <em>fence</em> is introduced. For
+ block stacking constraints, a fence is defined as either a
+ reference-area boundary or a non-zero padding or border
+ specification. Fences, however, do not come into play
+ when determining the constraint between siblings. (See
+ <link href="#Figure1">Figure 1</link>.)
+ </p>
+ <p><strong>Figure 1</strong></p><anchor id="Figure1"/>
+ <figure src="block-stacking-constraints.png"
+ alt="block-stacking-constraints.png"/>
+ <note>
+ Figure 1 assumes a block-progression-direction of top to
+ bottom.
+ </note>
+ <p>
+ In <link href="#Figure1">Diagram a)</link>, block A has
+ non-zero padding and borders, in addition to non-zero
+ spaces. Note, however, that the space-after of A is
+ adjacent to the space-before of block P, so borders and
+ padding on these siblings have no impact on the interaction
+ of their &lt;space&gt;s. The stacking constraint A,P is
+ indicated by the red rectangle enclosing the space-after of
+ A and the space-before of P.
+ </p>
+ <p>
+ In <link href="#Figure1">Diagram b)</link>, block B is the
+ first block child of P. The stacking constraint A,P is as
+ before; the stacking constraint P,B is the space-before of
+ B, as indicated by the enclosing magenta rectangle. In this
+ case, however, the non-zero border of P prevents the
+ interaction of the A,P and P,B stacking constraints. There
+ is a <em>fence-before</em> P. The fence is notional; it has
+ no precise location, as the diagram may lead one to believe.
+ </p>
+ <p>
+ In <link href="#Figure1">Diagram c)</link>, because of the
+ zero-width borders and padding on block P, the fence-before
+ P is not present, and the adjacent &lt;space&gt;s of blocks
+ A, P and B are free to interact. In this case, the stacking
+ constraints A,P and P,B are as before, but now there is an
+ additional stacking constraint A,B, represented by the light
+ brown rectangle enclosing the other two stacking
+ constraints.
+ </p>
+ <p>
+ The other form of fence occurs when the parent block is a
+ reference area. Diagram b) of <link href="#Figure2">Figure
+ 2</link> illustrates this situation. Block C is a
+ reference-area, involving a 180 degree change of
+ block-progression-direction (BPD). In the diagram, the
+ inner edge of block C represents the content rectangle, with
+ its changed BPD. The thicker outer edge represents the
+ outer boundary of the padding, border and spaces of C.
+ </p>
+ <p>
+ While not every reference-area will change the
+ inline-progression-direction (IPD) and BPD of an area, no
+ attempt is made to discriminate these cases. A
+ reference-area always a fence. The fence comes into play in
+ analogous circumstances to non-zero borders or padding.
+ Space resolution between a reference area and its siblings
+ is not affected.
+ </p>
+ <p>
+ In the case of <link href="#Figure2">Diagram b)</link>,
+ these are block stacking constraints B,C and C,A. Within
+ the reference-area, bock stacing constraints C,D and E,C are
+ unaffected. However, the fence prevents block stacking
+ constraints such as B,E or D,A. When there is a change of
+ BPD, as <link href="#Figure2">Diagram b)</link> makes
+ visually obvious, it is difficult to imagine which blocks
+ would have such a constraint, and what the ordering of the
+ constraint would be.
+ </p>
+ <p><strong>Figure 2</strong></p>
+ <anchor id="Figure2"/>
+ <figure src="block-stacking-keeps.png"
+ alt="block-stacking-keeps.png"/>
</s2>
<s2 title="Keep relationships between blocks">
- <p>
- As complicated as space-specifiers become when
- reference-areas are involved, the keep relationships as
- described in the <link
- href="keeps.html#Figure1">keeps</link> document, are
- unchanged. This is also illustrated in <link
- href="#Figure2">Figure 2</link>. Diagram b) shows the
- relative placement of blocks in the rendered output when a
- 180 degree change of BPD occurs, with blocks D and E
- stacking in the reverse direction to blocks B and C.
- Diagram c) shows what happens when the page is too short to
- accommodate the last block. D is still laid out, but E is
- deferred to the next page.
- </p>
- <p>
- Note that this rendering reality is expressed directly in
- the area (and layout) tree view. Consequently, any keep
- relationships expressed as links threading through the
- layout tree will not need to be modified to account for
- reference-area boundaries, as is the case with similar
- space-specifier edge links. E.g., a keep-with-next
- condition on block B can be resolved along the path of these
- links (B->C->D) into a direct relationship of B->D,
- irrespective of the reference-area boundary.
- </p>
- <p>
- While the same relationships obviously hold when a reference
- area induces no change of BPD, the situation for BPD changes
- perpendicular to the parent's BPD may not be so clear. In
- general, it probably does not make much sense to impose keep
- conditions across such a boundary, but there seems to be
- nothing preventing such conditions. They can be dealt with
- in the same way, i.e., the next leaf block linked in area
- tree order must be the next laid out. If a keep condition
- is in place, an attempt must be made to meet it. A number
- of unusual considerations would apply, e.g. the minimum
- inline-progression-dimension of the first leaf block within
- the reference-area as compared to the minimum IPD of
- subsequent blocks, but <em>prima facie</em>, the essential
- logic of the keeps links remains.
- </p>
+ <p>
+ As complicated as space-specifiers become when
+ reference-areas are involved, the keep relationships as
+ described in the <link
+ href="keeps.html#Figure1">keeps</link> document, are
+ unchanged. This is also illustrated in <link
+ href="#Figure2">Figure 2</link>. Diagram b) shows the
+ relative placement of blocks in the rendered output when a
+ 180 degree change of BPD occurs, with blocks D and E
+ stacking in the reverse direction to blocks B and C.
+ Diagram c) shows what happens when the page is too short to
+ accommodate the last block. D is still laid out, but E is
+ deferred to the next page.
+ </p>
+ <p>
+ Note that this rendering reality is expressed directly in
+ the area (and layout) tree view. Consequently, any keep
+ relationships expressed as links threading through the
+ layout tree will not need to be modified to account for
+ reference-area boundaries, as is the case with similar
+ space-specifier edge links. E.g., a keep-with-next
+ condition on block B can be resolved along the path of these
+ links (B->C->D) into a direct relationship of B->D,
+ irrespective of the reference-area boundary.
+ </p>
+ <p>
+ While the same relationships obviously hold when a reference
+ area induces no change of BPD, the situation for BPD changes
+ perpendicular to the parent's BPD may not be so clear. In
+ general, it probably does not make much sense to impose keep
+ conditions across such a boundary, but there seems to be
+ nothing preventing such conditions. They can be dealt with
+ in the same way, i.e., the next leaf block linked in area
+ tree order must be the next laid out. If a keep condition
+ is in place, an attempt must be made to meet it. A number
+ of unusual considerations would apply, e.g. the minimum
+ inline-progression-dimension of the first leaf block within
+ the reference-area as compared to the minimum IPD of
+ subsequent blocks, but <em>prima facie</em>, the essential
+ logic of the keeps links remains.
+ </p>
</s2>
</s1>
</body>