/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* $Id$ */ package org.apache.fop.hyphenation; import java.util.Enumeration; import java.util.Stack; import java.io.Serializable; /** *

Ternary Search Tree.

* *

A ternary search tree is a hibrid between a binary tree and * a digital search tree (trie). Keys are limited to strings. * A data value of type char is stored in each leaf node. * It can be used as an index (or pointer) to the data. * Branches that only contain one key are compressed to one node * by storing a pointer to the trailer substring of the key. * This class is intended to serve as base class or helper class * to implement Dictionary collections or the like. Ternary trees * have some nice properties as the following: the tree can be * traversed in sorted order, partial matches (wildcard) can be * implemented, retrieval of all keys within a given distance * from the target, etc. The storage requirements are higher than * a binary tree but a lot less than a trie. Performance is * comparable with a hash table, sometimes it outperforms a hash * function (most of the time can determine a miss faster than a hash).

* *

The main purpose of this java port is to serve as a base for * implementing TeX's hyphenation algorithm (see The TeXBook, * appendix H). Each language requires from 5000 to 15000 hyphenation * patterns which will be keys in this tree. The strings patterns * are usually small (from 2 to 5 characters), but each char in the * tree is stored in a node. Thus memory usage is the main concern. * We will sacrify 'elegance' to keep memory requirenments to the * minimum. Using java's char type as pointer (yes, I know pointer * it is a forbidden word in java) we can keep the size of the node * to be just 8 bytes (3 pointers and the data char). This gives * room for about 65000 nodes. In my tests the english patterns * took 7694 nodes and the german patterns 10055 nodes, * so I think we are safe.

* *

All said, this is a map with strings as keys and char as value. * Pretty limited!. It can be extended to a general map by * using the string representation of an object and using the * char value as an index to an array that contains the object * values.

* * @author cav@uniscope.co.jp */ public class TernaryTree implements Cloneable, Serializable { /** * We use 4 arrays to represent a node. I guess I should have created * a proper node class, but somehow Knuth's pascal code made me forget * we now have a portable language with virtual memory management and * automatic garbage collection! And now is kind of late, furthermore, * if it ain't broken, don't fix it. */ private static final long serialVersionUID = 3175412271203716160L; /** * Pointer to low branch and to rest of the key when it is * stored directly in this node, we don't have unions in java! */ protected char[] lo; /** * Pointer to high branch. */ protected char[] hi; /** * Pointer to equal branch and to data when this node is a string terminator. */ protected char[] eq; /** *

The character stored in this node: splitchar. * Two special values are reserved:

* *

This shouldn't be a problem if we give the usual semantics to * strings since 0xFFFF is garanteed not to be an Unicode character.

*/ protected char[] sc; /** * This vector holds the trailing of the keys when the branch is compressed. */ protected CharVector kv; /** root */ protected char root; /** free node */ protected char freenode; /** number of items in tree */ protected int length; /** allocation size for arrays */ protected static final int BLOCK_SIZE = 2048; /** default constructor */ TernaryTree() { init(); } /** initialize */ protected void init() { root = 0; freenode = 1; length = 0; lo = new char[BLOCK_SIZE]; hi = new char[BLOCK_SIZE]; eq = new char[BLOCK_SIZE]; sc = new char[BLOCK_SIZE]; kv = new CharVector(); } /** * Branches are initially compressed, needing * one node per key plus the size of the string * key. They are decompressed as needed when * another key with same prefix * is inserted. This saves a lot of space, * specially for long keys. * @param key the key * @param val a value */ public void insert(String key, char val) { // make sure we have enough room in the arrays int len = key.length() + 1; // maximum number of nodes that may be generated if (freenode + len > eq.length) { redimNodeArrays(eq.length + BLOCK_SIZE); } char[] strkey = new char[len--]; key.getChars(0, len, strkey, 0); strkey[len] = 0; root = insert(root, strkey, 0, val); } /** * Insert key. * @param key the key * @param start offset into key array * @param val a value */ public void insert(char[] key, int start, char val) { int len = strlen(key) + 1; if (freenode + len > eq.length) { redimNodeArrays(eq.length + BLOCK_SIZE); } root = insert(root, key, start, val); } /** * The actual insertion function, recursive version. */ private char insert(char p, char[] key, int start, char val) { int len = strlen(key, start); if (p == 0) { // this means there is no branch, this node will start a new branch. // Instead of doing that, we store the key somewhere else and create // only one node with a pointer to the key p = freenode++; eq[p] = val; // holds data length++; hi[p] = 0; if (len > 0) { sc[p] = 0xFFFF; // indicates branch is compressed lo[p] = (char)kv.alloc(len + 1); // use 'lo' to hold pointer to key strcpy(kv.getArray(), lo[p], key, start); } else { sc[p] = 0; lo[p] = 0; } return p; } if (sc[p] == 0xFFFF) { // branch is compressed: need to decompress // this will generate garbage in the external key array // but we can do some garbage collection later char pp = freenode++; lo[pp] = lo[p]; // previous pointer to key eq[pp] = eq[p]; // previous pointer to data lo[p] = 0; if (len > 0) { sc[p] = kv.get(lo[pp]); eq[p] = pp; lo[pp]++; if (kv.get(lo[pp]) == 0) { // key completly decompressed leaving garbage in key array lo[pp] = 0; sc[pp] = 0; hi[pp] = 0; } else { // we only got first char of key, rest is still there sc[pp] = 0xFFFF; } } else { // In this case we can save a node by swapping the new node // with the compressed node sc[pp] = 0xFFFF; hi[p] = pp; sc[p] = 0; eq[p] = val; length++; return p; } } char s = key[start]; if (s < sc[p]) { lo[p] = insert(lo[p], key, start, val); } else if (s == sc[p]) { if (s != 0) { eq[p] = insert(eq[p], key, start + 1, val); } else { // key already in tree, overwrite data eq[p] = val; } } else { hi[p] = insert(hi[p], key, start, val); } return p; } /** * Compares 2 null terminated char arrays * @param a a character array * @param startA an index into character array * @param b a character array * @param startB an index into character array * @return an integer */ public static int strcmp(char[] a, int startA, char[] b, int startB) { for (; a[startA] == b[startB]; startA++, startB++) { if (a[startA] == 0) { return 0; } } return a[startA] - b[startB]; } /** * Compares a string with null terminated char array * @param str a string * @param a a character array * @param start an index into character array * @return an integer */ public static int strcmp(String str, char[] a, int start) { int i, d, len = str.length(); for (i = 0; i < len; i++) { d = (int)str.charAt(i) - a[start + i]; if (d != 0) { return d; } if (a[start + i] == 0) { return d; } } if (a[start + i] != 0) { return (int)-a[start + i]; } return 0; } /** * @param dst a character array * @param di an index into character array * @param src a character array * @param si an index into character array */ public static void strcpy(char[] dst, int di, char[] src, int si) { while (src[si] != 0) { dst[di++] = src[si++]; } dst[di] = 0; } /** * @param a a character array * @param start an index into character array * @return an integer */ public static int strlen(char[] a, int start) { int len = 0; for (int i = start; i < a.length && a[i] != 0; i++) { len++; } return len; } /** * @param a a character array * @return an integer */ public static int strlen(char[] a) { return strlen(a, 0); } /** * Find key. * @param key the key * @return result */ public int find(String key) { int len = key.length(); char[] strkey = new char[len + 1]; key.getChars(0, len, strkey, 0); strkey[len] = 0; return find(strkey, 0); } /** * Find key. * @param key the key * @param start offset into key array * @return result */ public int find(char[] key, int start) { int d; char p = root; int i = start; char c; while (p != 0) { if (sc[p] == 0xFFFF) { if (strcmp(key, i, kv.getArray(), lo[p]) == 0) { return eq[p]; } else { return -1; } } c = key[i]; d = c - sc[p]; if (d == 0) { if (c == 0) { return eq[p]; } i++; p = eq[p]; } else if (d < 0) { p = lo[p]; } else { p = hi[p]; } } return -1; } /** * @param key a key * @return trye if key present */ public boolean knows(String key) { return (find(key) >= 0); } // redimension the arrays private void redimNodeArrays(int newsize) { int len = newsize < lo.length ? newsize : lo.length; char[] na = new char[newsize]; System.arraycopy(lo, 0, na, 0, len); lo = na; na = new char[newsize]; System.arraycopy(hi, 0, na, 0, len); hi = na; na = new char[newsize]; System.arraycopy(eq, 0, na, 0, len); eq = na; na = new char[newsize]; System.arraycopy(sc, 0, na, 0, len); sc = na; } /** @return length */ public int size() { return length; } /** {@inheritDoc} */ public Object clone() { TernaryTree t = new TernaryTree(); t.lo = (char[])this.lo.clone(); t.hi = (char[])this.hi.clone(); t.eq = (char[])this.eq.clone(); t.sc = (char[])this.sc.clone(); t.kv = (CharVector)this.kv.clone(); t.root = this.root; t.freenode = this.freenode; t.length = this.length; return t; } /** * Recursively insert the median first and then the median of the * lower and upper halves, and so on in order to get a balanced * tree. The array of keys is assumed to be sorted in ascending * order. * @param k array of keys * @param v array of values * @param offset where to insert * @param n count to insert */ protected void insertBalanced(String[] k, char[] v, int offset, int n) { int m; if (n < 1) { return; } m = n >> 1; insert(k[m + offset], v[m + offset]); insertBalanced(k, v, offset, m); insertBalanced(k, v, offset + m + 1, n - m - 1); } /** * Balance the tree for best search performance */ public void balance() { // System.out.print("Before root splitchar = "); System.out.println(sc[root]); int i = 0, n = length; String[] k = new String[n]; char[] v = new char[n]; Iterator iter = new Iterator(); while (iter.hasMoreElements()) { v[i] = iter.getValue(); k[i++] = (String)iter.nextElement(); } init(); insertBalanced(k, v, 0, n); // With uniform letter distribution sc[root] should be around 'm' // System.out.print("After root splitchar = "); System.out.println(sc[root]); } /** * Each node stores a character (splitchar) which is part of * some key(s). In a compressed branch (one that only contain * a single string key) the trailer of the key which is not * already in nodes is stored externally in the kv array. * As items are inserted, key substrings decrease. * Some substrings may completely disappear when the whole * branch is totally decompressed. * The tree is traversed to find the key substrings actually * used. In addition, duplicate substrings are removed using * a map (implemented with a TernaryTree!). * */ public void trimToSize() { // first balance the tree for best performance balance(); // redimension the node arrays redimNodeArrays(freenode); // ok, compact kv array CharVector kx = new CharVector(); kx.alloc(1); TernaryTree map = new TernaryTree(); compact(kx, map, root); kv = kx; kv.trimToSize(); } private void compact(CharVector kx, TernaryTree map, char p) { int k; if (p == 0) { return; } if (sc[p] == 0xFFFF) { k = map.find(kv.getArray(), lo[p]); if (k < 0) { k = kx.alloc(strlen(kv.getArray(), lo[p]) + 1); strcpy(kx.getArray(), k, kv.getArray(), lo[p]); map.insert(kx.getArray(), k, (char)k); } lo[p] = (char)k; } else { compact(kx, map, lo[p]); if (sc[p] != 0) { compact(kx, map, eq[p]); } compact(kx, map, hi[p]); } } /** @return the keys */ public Enumeration keys() { return new Iterator(); } /** an iterator */ public class Iterator implements Enumeration { /** * current node index */ int cur; // CSOK: VisibilityModifier /** * current key */ String curkey; // CSOK: VisibilityModifier private class Item implements Cloneable { /** parent */ char parent; // CSOK: VisibilityModifier /** child */ char child; // CSOK: VisibilityModifier /** default constructor */ public Item() { parent = 0; child = 0; } /** * Construct item. * @param p a char * @param c a char */ public Item(char p, char c) { parent = p; child = c; } /** {@inheritDoc} */ public Object clone() { return new Item(parent, child); } } /** * Node stack */ Stack ns; // CSOK: VisibilityModifier /** * key stack implemented with a StringBuffer */ StringBuffer ks; // CSOK: VisibilityModifier /** default constructor */ public Iterator() { cur = -1; ns = new Stack(); ks = new StringBuffer(); rewind(); } /** rewind iterator */ public void rewind() { ns.removeAllElements(); ks.setLength(0); cur = root; run(); } /** @return next element */ public Object nextElement() { String res = new String(curkey); cur = up(); run(); return res; } /** @return value */ public char getValue() { if (cur >= 0) { return eq[cur]; } return 0; } /** @return true if more elements */ public boolean hasMoreElements() { return (cur != -1); } /** * traverse upwards */ private int up() { Item i = new Item(); int res = 0; if (ns.empty()) { return -1; } if (cur != 0 && sc[cur] == 0) { return lo[cur]; } boolean climb = true; while (climb) { i = (Item)ns.pop(); i.child++; switch (i.child) { case 1: if (sc[i.parent] != 0) { res = eq[i.parent]; ns.push(i.clone()); ks.append(sc[i.parent]); } else { i.child++; ns.push(i.clone()); res = hi[i.parent]; } climb = false; break; case 2: res = hi[i.parent]; ns.push(i.clone()); if (ks.length() > 0) { ks.setLength(ks.length() - 1); // pop } climb = false; break; default: if (ns.empty()) { return -1; } climb = true; break; } } return res; } /** * traverse the tree to find next key */ private int run() { if (cur == -1) { return -1; } boolean leaf = false; while (true) { // first go down on low branch until leaf or compressed branch while (cur != 0) { if (sc[cur] == 0xFFFF) { leaf = true; break; } ns.push(new Item((char)cur, '\u0000')); if (sc[cur] == 0) { leaf = true; break; } cur = lo[cur]; } if (leaf) { break; } // nothing found, go up one node and try again cur = up(); if (cur == -1) { return -1; } } // The current node should be a data node and // the key should be in the key stack (at least partially) StringBuffer buf = new StringBuffer(ks.toString()); if (sc[cur] == 0xFFFF) { int p = lo[cur]; while (kv.get(p) != 0) { buf.append(kv.get(p++)); } } curkey = buf.toString(); return 0; } } /** * Print stats (for testing). */ public void printStats() { System.out.println("Number of keys = " + Integer.toString(length)); System.out.println("Node count = " + Integer.toString(freenode)); // System.out.println("Array length = " + Integer.toString(eq.length)); System.out.println("Key Array length = " + Integer.toString(kv.length())); /* * for(int i=0; i574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009