/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* $Id$ */ package org.apache.fop.layoutmgr; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.fop.fo.FONode; /** * The set of nodes is sorted into lines indexed into activeLines. * The nodes in each line are linked together in a single linked list by the * KnuthNode.next field. The activeLines array contains a link to the head of * the linked list in index 'line*2' and a link to the tail at index 'line*2+1'. *

* The set of active nodes can be traversed by *

 * for (int line = startLine; line < endLine; line++) {
 *     for (KnuthNode node = getNode(line); node != null; node = node.next) {
 *         // Do something with 'node'
 *     }
 * }
 * 
*/ public abstract class BreakingAlgorithm { /** the logger for the class */ protected static Log log = LogFactory.getLog(BreakingAlgorithm.class); /** Maximum adjustment ration */ protected static final int INFINITE_RATIO = 1000; private static final int MAX_RECOVERY_ATTEMPTS = 5; // constants identifying a subset of the feasible breaks /** All feasible breaks are ok. */ public static final int ALL_BREAKS = 0; /** This forbids hyphenation. */ public static final int NO_FLAGGED_PENALTIES = 1; /** wrap-option = "no-wrap". */ public static final int ONLY_FORCED_BREAKS = 2; // parameters of Knuth's algorithm: /** Penalty value for flagged penalties. */ private int flaggedPenalty = 50; /** Demerit for consecutive lines ending at flagged penalties. */ protected int repeatedFlaggedDemerit = 50; /** Demerit for consecutive lines belonging to incompatible fitness classes . */ protected int incompatibleFitnessDemerit = 50; /** Maximum number of consecutive lines ending with a flagged penalty. * Only a value >= 1 is a significant limit. */ protected int maxFlaggedPenaltiesCount; /** * The threshold for considering breaks to be acceptable. The adjustment ratio must be * inferior to this threshold. */ private double threshold; /** * The paragraph of KnuthElements. */ protected KnuthSequence par; /** * The width of a line (or height of a column in page-breaking mode). * -1 indicates that the line widths are different for each line. */ protected int lineWidth = -1; /** Force the algorithm to find a set of breakpoints, even if no feasible breakpoints * exist. */ private boolean force = false; /** If set to true, doesn't ignore break possibilities which are definitely too short. */ protected boolean considerTooShort = false; /** When in forced mode, the best node leading to a too long line. The line will be * too long anyway, but this one will lead to a paragraph with fewest demerits. */ private KnuthNode lastTooLong; /** When in forced mode, the best node leading to a too short line. The line will be * too short anyway, but this one will lead to a paragraph with fewest demerits. */ private KnuthNode lastTooShort; /** The node to be reactivated if no set of feasible breakpoints can be found for this * paragraph. */ private KnuthNode lastDeactivated; /** Alignment of the paragraph/page. One of EN_START, EN_JUSTIFY, etc. */ protected int alignment; /** Alignment of the paragraph's last line. */ protected int alignmentLast; /** Used to handle the text-indent property (indent the first line of a paragraph). */ protected boolean bFirst; /** * The set of active nodes in ascending line order. For each line l, activeLines[2l] contains a * link to l's first active node, and activeLines[2l+1] a link to l's last active node. The * line number l corresponds to the number of the line ending at the node's breakpoint. */ protected KnuthNode[] activeLines; /** * The number of active nodes. */ protected int activeNodeCount; /** * The lowest available line in the set of active nodes. */ protected int startLine = 0; /** * The highest + 1 available line in the set of active nodes. */ protected int endLine = 0; /** * The total width of all elements handled so far. */ protected int totalWidth; /** * The total stretch of all elements handled so far. */ protected int totalStretch = 0; /** * The total shrink of all elements handled so far. */ protected int totalShrink = 0; protected BestRecords best; /** {@inheritDoc} */ private boolean partOverflowRecoveryActivated = true; private KnuthNode lastRecovered; /** * Create a new instance. * @param align alignment of the paragraph/page. One of EN_START, EN_JUSTIFY, etc. For * pages EN_BEFORE, EN_AFTER are mapped to the corresponding inline properties * (EN_START, EN_END) * @param alignLast alignment of the paragraph's last line * @param first for the text-indent property (indent the first line of a paragraph) * @param partOverflowRecovery true if too long elements should be moved to the next line/part * @param maxFlagCount maximum allowed number of consecutive lines ending at a flagged penalty * item */ public BreakingAlgorithm(int align, int alignLast, boolean first, boolean partOverflowRecovery, int maxFlagCount) { alignment = align; alignmentLast = alignLast; bFirst = first; this.partOverflowRecoveryActivated = partOverflowRecovery; this.best = new BestRecords(); maxFlaggedPenaltiesCount = maxFlagCount; } /** * Class recording all the informations of a feasible breaking point. */ public class KnuthNode { /** index of the breakpoint represented by this node */ public int position; /** number of the line ending at this breakpoint */ public int line; /** fitness class of the line ending at this breakpoint. One of 0, 1, 2, 3. */ public int fitness; /** accumulated width of the KnuthElements up to after this breakpoint. */ public int totalWidth; /** accumulated stretchability of the KnuthElements up to after this breakpoint. */ public int totalStretch; /** accumulated shrinkability of the KnuthElements up to after this breakpoint. */ public int totalShrink; /** adjustment ratio if the line ends at this breakpoint */ public double adjustRatio; /** available stretch of the line ending at this breakpoint */ public int availableShrink; /** available shrink of the line ending at this breakpoint */ public int availableStretch; /** difference between target and actual line width */ public int difference; /** minimum total demerits up to this breakpoint */ public double totalDemerits; /** best node for the preceding breakpoint */ public KnuthNode previous; /** next possible node in the same line */ public KnuthNode next; /** * Holds the number of subsequent recovery attempty that are made to get content fit * into a line. */ public int fitRecoveryCounter = 0; public KnuthNode(int position, int line, int fitness, int totalWidth, int totalStretch, int totalShrink, double adjustRatio, int availableShrink, int availableStretch, int difference, double totalDemerits, KnuthNode previous) { this.position = position; this.line = line; this.fitness = fitness; this.totalWidth = totalWidth; this.totalStretch = totalStretch; this.totalShrink = totalShrink; this.adjustRatio = adjustRatio; this.availableShrink = availableShrink; this.availableStretch = availableStretch; this.difference = difference; this.totalDemerits = totalDemerits; this.previous = previous; } public String toString() { return ""; } } /** Class that stores, for each fitness class, the best active node that could start * a line of the corresponding fitness ending at the current element. */ protected class BestRecords { private static final double INFINITE_DEMERITS = Double.POSITIVE_INFINITY; //private static final double INFINITE_DEMERITS = 1E11; private double[] bestDemerits = new double[4]; private KnuthNode[] bestNode = new KnuthNode[4]; private double[] bestAdjust = new double[4]; private int[] bestDifference = new int[4]; private int[] bestAvailableShrink = new int[4]; private int[] bestAvailableStretch = new int[4]; /** Points to the fitness class which currently leads to the best demerits. */ private int bestIndex = -1; public BestRecords() { reset(); } /** Registers the new best active node for the given fitness class. * @param demerits the total demerits of the new optimal set of breakpoints * @param node the node starting the line ending at the current element * @param adjust adjustment ratio of the current line * @param availableShrink how much the current line can be shrinked * @param availableStretch how much the current line can be stretched * @param difference difference between the width of the considered line and the * width of the "real" line * @param fitness fitness class of the current line */ public void addRecord(double demerits, KnuthNode node, double adjust, int availableShrink, int availableStretch, int difference, int fitness) { if (demerits > bestDemerits[fitness]) { log.error("New demerits value greater than the old one"); } bestDemerits[fitness] = demerits; bestNode[fitness] = node; bestAdjust[fitness] = adjust; bestAvailableShrink[fitness] = availableShrink; bestAvailableStretch[fitness] = availableStretch; bestDifference[fitness] = difference; if (bestIndex == -1 || demerits < bestDemerits[bestIndex]) { bestIndex = fitness; } } public boolean hasRecords() { return (bestIndex != -1); } /** * @param fitness fitness class (0, 1, 2 or 3, i.e. "tight" to "very loose") * @return true if there is a set of feasible breakpoints registered for the * given fitness. */ public boolean notInfiniteDemerits(int fitness) { return (bestDemerits[fitness] != INFINITE_DEMERITS); } public double getDemerits(int fitness) { return bestDemerits[fitness]; } public KnuthNode getNode(int fitness) { return bestNode[fitness]; } public double getAdjust(int fitness) { return bestAdjust[fitness]; } public int getAvailableShrink(int fitness) { return bestAvailableShrink[fitness]; } public int getAvailableStretch(int fitness) { return bestAvailableStretch[fitness]; } public int getDifference(int fitness) { return bestDifference[fitness]; } public double getMinDemerits() { if (bestIndex != -1) { return getDemerits(bestIndex); } else { // anyway, this should never happen return INFINITE_DEMERITS; } } /** Reset when a new breakpoint is being considered. */ public void reset() { for (int i = 0; i < 4; i++) { bestDemerits[i] = INFINITE_DEMERITS; // there is no need to reset the other arrays } bestIndex = -1; } } /** * @return the number of times the algorithm should try to move overflowing content to the * next line/page. */ protected int getMaxRecoveryAttempts() { return MAX_RECOVERY_ATTEMPTS; } /** * Controls the behaviour of the algorithm in cases where the first element of a part * overflows a line/page. * @return true if the algorithm should try to send the element to the next line/page. */ protected boolean isPartOverflowRecoveryActivated() { return this.partOverflowRecoveryActivated; } /** Empty method, hook for subclasses. Called before determining the optimal * breakpoints corresponding to a given active node. * @param total number of lines for the active node * @param demerits total demerits of the paragraph for the active node */ public abstract void updateData1(int total, double demerits); /** Empty method, hook for subclasses. Called when determining the optimal breakpoints * for a given active node. * @param bestActiveNode a node in the chain of best active nodes, corresponding to * one of the optimal breakpoints * @param sequence the corresponding paragraph * @param total the number of lines into which the paragraph will be broken * @see #calculateBreakPoints(KnuthNode, KnuthSequence, int) */ public abstract void updateData2(KnuthNode bestActiveNode, KnuthSequence sequence, int total); public void setConstantLineWidth(int lineWidth) { this.lineWidth = lineWidth; } /** @see #findBreakingPoints(KnuthSequence, int, double, boolean, int) */ public int findBreakingPoints(KnuthSequence par, double threshold, boolean force, int allowedBreaks) { return findBreakingPoints(par, 0, threshold, force, allowedBreaks); } /** Finds an optimal set of breakpoints for the given paragraph. * @param par the paragraph to break * @param startIndex index of the Knuth element at which the breaking must start * @param threshold upper bound of the adjustment ratio * @param force true if a set of breakpoints must be found even if there are no * feasible ones * @param allowedBreaks one of ONLY_FORCED_BREAKS, NO_FLAGGED_PENALTIES, ALL_BREAKS */ public int findBreakingPoints(KnuthSequence par, int startIndex, double threshold, boolean force, int allowedBreaks) { this.par = par; this.threshold = threshold; this.force = force; //this.lineWidth = lineWidth; initialize(); activeLines = new KnuthNode[20]; // reset lastTooShort and lastTooLong, as they could be not null // because of previous calls to findBreakingPoints lastTooShort = lastTooLong = null; // reset startLine and endLine startLine = endLine = 0; // current element in the paragraph KnuthElement thisElement = null; // previous element in the paragraph is a KnuthBox? boolean previousIsBox = false; // index of the first KnuthBox in the sequence int firstBoxIndex = startIndex; if (alignment != org.apache.fop.fo.Constants.EN_CENTER) { while (par.size() > firstBoxIndex && !((KnuthElement) par.get(firstBoxIndex)).isBox()) { firstBoxIndex++; } } // create an active node representing the starting point activeLines = new KnuthNode[20]; addNode(0, createNode(firstBoxIndex, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, null)); if (log.isTraceEnabled()) { log.trace("Looping over " + (par.size() - startIndex) + " elements"); } KnuthNode lastForced = getNode(0); // main loop for (int i = startIndex; i < par.size(); i++) { thisElement = getElement(i); if (thisElement.isBox()) { // a KnuthBox object is not a legal line break totalWidth += thisElement.getW(); previousIsBox = true; handleBox((KnuthBox) thisElement); } else if (thisElement.isGlue()) { // a KnuthGlue object is a legal line break // only if the previous object is a KnuthBox // consider these glues according to the value of allowedBreaks if (previousIsBox && !(allowedBreaks == ONLY_FORCED_BREAKS)) { considerLegalBreak(thisElement, i); } totalWidth += thisElement.getW(); totalStretch += thisElement.getY(); totalShrink += thisElement.getZ(); previousIsBox = false; } else { // a KnuthPenalty is a legal line break // only if its penalty is not infinite; // consider all penalties, non-flagged penalties or non-forcing penalties // according to the value of allowedBreaks if (((KnuthPenalty) thisElement).getP() < KnuthElement.INFINITE && (!(allowedBreaks == NO_FLAGGED_PENALTIES) || !(((KnuthPenalty) thisElement).isFlagged())) && (!(allowedBreaks == ONLY_FORCED_BREAKS) || ((KnuthPenalty) thisElement).getP() == -KnuthElement.INFINITE)) { considerLegalBreak(thisElement, i); } previousIsBox = false; } if (activeNodeCount == 0) { if (!force) { log.debug("Could not find a set of breaking points " + threshold); return 0; } // lastDeactivated was a "good" break, while lastTooShort and lastTooLong // were "bad" breaks since the beginning; // if it is not the node we just restarted from, lastDeactivated can // replace either lastTooShort or lastTooLong if (lastDeactivated != null && lastDeactivated != lastForced) { if (lastDeactivated.adjustRatio > 0) { lastTooShort = lastDeactivated; } else { lastTooLong = lastDeactivated; } } if (lastTooShort == null || lastForced.position == lastTooShort.position) { if (isPartOverflowRecoveryActivated()) { if (this.lastRecovered == null) { this.lastRecovered = lastTooLong; if (log.isDebugEnabled()) { log.debug("Recovery point: " + lastRecovered); } } // content would overflow, insert empty line/page and try again KnuthNode node = createNode( lastTooLong.previous.position, lastTooLong.previous.line + 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, lastTooLong.previous); lastForced = node; node.fitRecoveryCounter = lastTooLong.previous.fitRecoveryCounter + 1; if (log.isDebugEnabled()) { log.debug("first part doesn't fit into line, recovering: " + node.fitRecoveryCounter); } if (node.fitRecoveryCounter > getMaxRecoveryAttempts()) { while (lastForced.fitRecoveryCounter > 0) { lastForced = lastForced.previous; lastDeactivated = lastForced.previous; startLine--; endLine--; } lastForced = this.lastRecovered; this.lastRecovered = null; startLine = lastForced.line; endLine = lastForced.line; log.debug("rolled back..."); } } else { lastForced = lastTooLong; } } else { lastForced = lastTooShort; this.lastRecovered = null; } if (log.isDebugEnabled()) { log.debug("Restarting at node " + lastForced); } i = restartFrom(lastForced, i); } } finish(); if (log.isTraceEnabled()) { log.trace("Main loop completed " + activeNodeCount); log.trace("Active nodes=" + toString("")); } // there is at least one set of breaking points // select one or more active nodes, removing the others from the list int line = filterActiveNodes(); // for each active node, create a set of breaking points for (int i = startLine; i < endLine; i++) { for (KnuthNode node = getNode(i); node != null; node = node.next) { updateData1(node.line, node.totalDemerits); calculateBreakPoints(node, par, node.line); } } activeLines = null; return line; } /** * This method tries to find the context FO for a position in a KnuthSequence. * @param seq the KnuthSequence to inspect * @param position the index of the position in the KnuthSequence * @return the requested context FO note or null, if no context node could be determined */ private FONode findContextFO(KnuthSequence seq, int position) { ListElement el = seq.getElement(position); while (el.getLayoutManager() == null && position < seq.size() - 1) { position++; el = seq.getElement(position); } Position pos = (el != null ? el.getPosition() : null); LayoutManager lm = (pos != null ? pos.getLM() : null); while (pos instanceof NonLeafPosition) { pos = ((NonLeafPosition)pos).getPosition(); if (pos != null && pos.getLM() != null) { lm = pos.getLM(); } } if (lm != null) { return lm.getFObj(); } else { return null; } } /** Resets the algorithm's variables. */ protected void initialize() { this.totalWidth = 0; this.totalStretch = 0; this.totalShrink = 0; } /** Creates a new active node for a feasible breakpoint at the given position. Only * called in forced mode. * @param position index of the element in the Knuth sequence * @param line number of the line ending at the breakpoint * @param fitness fitness class of the line ending at the breakpoint. One of 0, 1, 2, 3. * @param totalWidth accumulated width of the KnuthElements up to after the breakpoint * @param totalStretch accumulated stretchability of the KnuthElements up to after the * breakpoint * @param totalShrink accumulated shrinkability of the KnuthElements up to after the * breakpoint * @param adjustRatio adjustment ratio if the line ends at this breakpoint * @param availableShrink available stretch of the line ending at this breakpoint * @param availableStretch available shrink of the line ending at this breakpoint * @param difference difference between target and actual line width * @param totalDemerits minimum total demerits up to the breakpoint * @param previous active node for the preceding breakpoint */ protected KnuthNode createNode(int position, int line, int fitness, int totalWidth, int totalStretch, int totalShrink, double adjustRatio, int availableShrink, int availableStretch, int difference, double totalDemerits, KnuthNode previous) { return new KnuthNode(position, line, fitness, totalWidth, totalStretch, totalShrink, adjustRatio, availableShrink, availableStretch, difference, totalDemerits, previous); } /** Creates a new active node for a break from the best active node of the given * fitness class to the element at the given position. * @see #createNode(int, int, int, int, int, int, double, int, int, int, double, org.apache.fop.layoutmgr.BreakingAlgorithm.KnuthNode) * @see BreakingAlgorithm.BestRecords */ protected KnuthNode createNode(int position, int line, int fitness, int totalWidth, int totalStretch, int totalShrink) { return new KnuthNode(position, line, fitness, totalWidth, totalStretch, totalShrink, best.getAdjust(fitness), best.getAvailableShrink(fitness), best.getAvailableStretch(fitness), best.getDifference(fitness), best.getDemerits(fitness), best.getNode(fitness)); } /** Empty method, hook for subclasses. */ protected void handleBox(KnuthBox box) { } protected int restartFrom(KnuthNode restartingNode, int currentIndex) { restartingNode.totalDemerits = 0; addNode(restartingNode.line, restartingNode); startLine = restartingNode.line; endLine = startLine + 1; totalWidth = restartingNode.totalWidth; totalStretch = restartingNode.totalStretch; totalShrink = restartingNode.totalShrink; lastTooShort = null; lastTooLong = null; // the width, stretch and shrink already include the width, // stretch and shrink of the suppressed glues; // advance in the sequence in order to avoid taking into account // these elements twice int restartingIndex = restartingNode.position; while (restartingIndex + 1 < par.size() && !(getElement(restartingIndex + 1).isBox())) { restartingIndex++; } return restartingIndex; } /** Determines if the given breakpoint is a feasible breakpoint. That is, if a decent * line may be built between one of the currently active nodes and this breakpoint. * @param element the paragraph's element to consider * @param elementIdx the element's index inside the paragraph */ protected void considerLegalBreak(KnuthElement element, int elementIdx) { if (log.isTraceEnabled()) { log.trace("considerLegalBreak() at " + elementIdx + " (" + totalWidth + "+" + totalStretch + "-" + totalShrink + "), parts/lines: " + startLine + "-" + endLine); log.trace("\tCurrent active node list: " + activeNodeCount + " " + this.toString("\t")); } lastDeactivated = null; lastTooLong = null; for (int line = startLine; line < endLine; line++) { for (KnuthNode node = getNode(line); node != null; node = node.next) { if (node.position == elementIdx) { continue; } int difference = computeDifference(node, element, elementIdx); double r = computeAdjustmentRatio(node, difference); int availableShrink = totalShrink - node.totalShrink; int availableStretch = totalStretch - node.totalStretch; if (log.isTraceEnabled()) { log.trace("\tr=" + r + " difference=" + difference); log.trace("\tline=" + line); } // The line would be too long. if (r < -1 || element.isForcedBreak()) { // Deactivate node. if (log.isTraceEnabled()) { log.trace("Removing " + node); } removeNode(line, node); lastDeactivated = compareNodes(lastDeactivated, node); } // The line is within the available shrink and the threshold. if (r >= -1 && r <= threshold) { int fitnessClass = computeFitness(r); double demerits = computeDemerits(node, element, fitnessClass, r); if (log.isTraceEnabled()) { log.trace("\tDemerits=" + demerits); log.trace("\tFitness class=" + fitnessClass); } if (demerits < best.getDemerits(fitnessClass)) { // updates best demerits data best.addRecord(demerits, node, r, availableShrink, availableStretch, difference, fitnessClass); lastTooShort = null; } } // The line is way too short, but we are in forcing mode, so a node is // calculated and stored in lastValidNode. if (force && (r <= -1 || r > threshold)) { int fitnessClass = computeFitness(r); double demerits = computeDemerits(node, element, fitnessClass, r); int newWidth = totalWidth; int newStretch = totalStretch; int newShrink = totalShrink; // add the width, stretch and shrink of glue elements after // the break // this does not affect the dimension of the line / page, only // the values stored in the node; these would be as if the break // was just before the next box element, thus ignoring glues and // penalties between the "real" break and the following box for (int i = elementIdx; i < par.size(); i++) { KnuthElement tempElement = getElement(i); if (tempElement.isBox()) { break; } else if (tempElement.isGlue()) { newWidth += tempElement.getW(); newStretch += tempElement.getY(); newShrink += tempElement.getZ(); } else if (tempElement.isForcedBreak() && i != elementIdx) { break; } } if (r <= -1) { if (lastTooLong == null || demerits < lastTooLong.totalDemerits) { lastTooLong = createNode(elementIdx, line + 1, fitnessClass, newWidth, newStretch, newShrink, r, availableShrink, availableStretch, difference, demerits, node); if (log.isTraceEnabled()) { log.trace("Picking tooLong " + lastTooLong); } } } else { if (lastTooShort == null || demerits <= lastTooShort.totalDemerits) { if (considerTooShort) { //consider possibilities which are too short best.addRecord(demerits, node, r, availableShrink, availableStretch, difference, fitnessClass); } lastTooShort = createNode(elementIdx, line + 1, fitnessClass, newWidth, newStretch, newShrink, r, availableShrink, availableStretch, difference, demerits, node); if (log.isTraceEnabled()) { log.trace("Picking tooShort " + lastTooShort); } } } } } addBreaks(line, elementIdx); } } /** * Adds new active nodes for breaks at the given element. * @param line number of the previous line; this element will end line number (line+1) * @param elementIdx the element's index */ private void addBreaks(int line, int elementIdx) { if (!best.hasRecords()) { return; } int newWidth = totalWidth; int newStretch = totalStretch; int newShrink = totalShrink; // add the width, stretch and shrink of glue elements after // the break // this does not affect the dimension of the line / page, only // the values stored in the node; these would be as if the break // was just before the next box element, thus ignoring glues and // penalties between the "real" break and the following box for (int i = elementIdx; i < par.size(); i++) { KnuthElement tempElement = getElement(i); if (tempElement.isBox()) { break; } else if (tempElement.isGlue()) { newWidth += tempElement.getW(); newStretch += tempElement.getY(); newShrink += tempElement.getZ(); } else if (tempElement.isForcedBreak() && i != elementIdx) { break; } } // add nodes to the active nodes list double minimumDemerits = best.getMinDemerits() + incompatibleFitnessDemerit; for (int i = 0; i <= 3; i++) { if (best.notInfiniteDemerits(i) && best.getDemerits(i) <= minimumDemerits) { // the nodes in activeList must be ordered // by line number and position; if (log.isTraceEnabled()) { log.trace("\tInsert new break in list of " + activeNodeCount + " from fitness class " + i); } KnuthNode newNode = createNode(elementIdx, line + 1, i, newWidth, newStretch, newShrink); addNode(line + 1, newNode); } } best.reset(); } /** * Return the difference between the natural width of a line that would be made * between the given active node and the given element, and the available width of the * real line. * @param activeNode node for the previous breakpoint * @param element currently considered breakpoint * @return The difference in width. Positive numbers mean extra space in the line, * negative number that the line overflows. */ protected int computeDifference(KnuthNode activeNode, KnuthElement element, int elementIndex) { // compute the adjustment ratio int actualWidth = totalWidth - activeNode.totalWidth; if (element.isPenalty()) { actualWidth += element.getW(); } return getLineWidth() - actualWidth; } /** * Return the adjust ration needed to make up for the difference. A ration of * * @param activeNode * @param difference * @return The ration. */ protected double computeAdjustmentRatio(KnuthNode activeNode, int difference) { // compute the adjustment ratio if (difference > 0) { int maxAdjustment = totalStretch - activeNode.totalStretch; if (maxAdjustment > 0) { return (double) difference / maxAdjustment; } else { return INFINITE_RATIO; } } else if (difference < 0) { int maxAdjustment = totalShrink - activeNode.totalShrink; if (maxAdjustment > 0) { return (double) difference / maxAdjustment; } else { return -INFINITE_RATIO; } } else { return 0; } } /** * Figure out the fitness class of this line (tight, loose, * very tight or very loose). * See the section on "More Bells and Whistles" in Knuth's * "Breaking Paragraphs Into Lines". * @param r * @return the fitness class */ private int computeFitness(double r) { if (r < -0.5) { return 0; } else if (r <= 0.5) { return 1; } else if (r <= 1) { return 2; } else { return 3; } } /** * Computes the demerits of the current breaking (that is, up to the given element), * if the next-to-last chosen breakpoint is the given active node. This adds to the * total demerits of the given active node, the demerits of a line starting at this * node and ending at the given element. * @param activeNode considered preceding line break * @param element considered current line break * @param fitnessClass fitness of the current line * @param r adjustment ratio for the current line * @return the demerit of the current line */ protected double computeDemerits(KnuthNode activeNode, KnuthElement element, int fitnessClass, double r) { double demerits = 0; // compute demerits double f = Math.abs(r); f = 1 + 100 * f * f * f; if (element.isPenalty() && element.getP() >= 0) { f += element.getP(); demerits = f * f; } else if (element.isPenalty() && !element.isForcedBreak()) { double penalty = element.getP(); demerits = f * f - penalty * penalty; } else { demerits = f * f; } if (element.isPenalty() && ((KnuthPenalty) element).isFlagged() && getElement(activeNode.position).isPenalty() && ((KnuthPenalty) getElement(activeNode.position)).isFlagged()) { // add demerit for consecutive breaks at flagged penalties demerits += repeatedFlaggedDemerit; // there are at least two consecutive lines ending with a flagged penalty; // check if the previous line end with a flagged penalty too, // and if this situation is allowed int flaggedPenaltiesCount = 2; for (KnuthNode prevNode = activeNode.previous; prevNode != null && flaggedPenaltiesCount <= maxFlaggedPenaltiesCount; prevNode = prevNode.previous) { KnuthElement prevElement = getElement(prevNode.position); if (prevElement.isPenalty() && ((KnuthPenalty) prevElement).isFlagged()) { // the previous line ends with a flagged penalty too flaggedPenaltiesCount++; } else { // the previous line does not end with a flagged penalty, // exit the loop break; } } if (maxFlaggedPenaltiesCount >= 1 && flaggedPenaltiesCount > maxFlaggedPenaltiesCount) { // add infinite demerits, so this break will not be chosen // unless there isn't any alternative break demerits += BestRecords.INFINITE_DEMERITS; } } if (Math.abs(fitnessClass - activeNode.fitness) > 1) { // add demerit for consecutive breaks // with very different fitness classes demerits += incompatibleFitnessDemerit; } demerits += activeNode.totalDemerits; return demerits; } protected void finish() { } /** * Return the element at index idx in the paragraph. * @param idx index of the element. * @return the element at index idx in the paragraph. */ protected KnuthElement getElement(int idx) { return (KnuthElement) par.get(idx); } /** * Compare two KnuthNodes and return the node with the least demerit. * @param node1 The first knuth node. * @param node2 The other knuth node. * @return the node with the least demerit. */ protected KnuthNode compareNodes(KnuthNode node1, KnuthNode node2) { if (node1 == null || node2.position > node1.position) { return node2; } if (node2.position == node1.position) { if (node2.totalDemerits < node1.totalDemerits) { return node2; } } return node1; } /** * Add a node at the end of the given line's existing active nodes. * If this is the first node in the line, adjust endLine accordingly. * @param line number of the line ending at the node's corresponding breakpoint * @param node the active node to add */ protected void addNode(int line, KnuthNode node) { int headIdx = line * 2; if (headIdx >= activeLines.length) { KnuthNode[] oldList = activeLines; activeLines = new KnuthNode[headIdx + headIdx]; System.arraycopy(oldList, 0, activeLines, 0, oldList.length); } node.next = null; if (activeLines[headIdx + 1] != null) { activeLines[headIdx + 1].next = node; } else { activeLines[headIdx] = node; endLine = line + 1; } activeLines[headIdx + 1] = node; activeNodeCount++; } /** * Remove the given active node registered for the given line. If there are no more active nodes * for this line, adjust the startLine accordingly. * @param line number of the line ending at the node's corresponding breakpoint * @param node the node to deactivate */ protected void removeNode(int line, KnuthNode node) { int headIdx = line * 2; KnuthNode n = getNode(line); if (n != node) { // nodes could be rightly deactivated in a different order KnuthNode prevNode = null; while (n != node) { prevNode = n; n = n.next; } prevNode.next = n.next; if (prevNode.next == null) { activeLines[headIdx + 1] = prevNode; } } else { activeLines[headIdx] = node.next; if (node.next == null) { activeLines[headIdx + 1] = null; } while (startLine < endLine && getNode(startLine) == null) { startLine++; } } activeNodeCount--; } /** * Returns the first active node for the given line. * @param line the line/part number * @return the requested active node */ protected KnuthNode getNode(int line) { return activeLines[line * 2]; } /** * Returns the line/part width of a given line/part. * @param line the line/part number * @return the width/length in millipoints */ protected int getLineWidth(int line) { if (this.lineWidth < 0) { throw new IllegalStateException("lineWidth must be set" + (this.lineWidth != 0 ? " and positive, but it is: " + this.lineWidth : "")); } else { return this.lineWidth; } } /** @return the constant line/part width or -1 if there is no such value */ protected int getLineWidth() { return this.lineWidth; } /** * Creates a string representation of the active nodes. Used for debugging. * @param prepend a string to prepend on each entry * @return the requested string */ public String toString(String prepend) { StringBuffer sb = new StringBuffer(); sb.append("[\n"); for (int i = startLine; i < endLine; i++) { for (KnuthNode node = getNode(i); node != null; node = node.next) { sb.append(prepend + "\t" + node + ",\n"); } } sb.append(prepend + "]"); return sb.toString(); } protected abstract int filterActiveNodes(); /** * Determines the set of optimal breakpoints corresponding to the given active node. * @param node the active node * @param par the corresponding paragraph * @param total the number of lines into which the paragraph will be broken */ private void calculateBreakPoints(KnuthNode node, KnuthSequence par, int total) { KnuthNode bestActiveNode = node; // use bestActiveNode to determine the optimum breakpoints for (int i = node.line; i > 0; i--) { updateData2(bestActiveNode, par, total); bestActiveNode = bestActiveNode.previous; } } /** @return the alignment for normal lines/parts */ public int getAlignment() { return this.alignment; } /** @return the alignment for the last line/part */ public int getAlignmentLast() { return this.alignmentLast; } }