1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
|
/*
* $Id$
* Copyright (C) 2001 The Apache Software Foundation. All rights reserved.
* For details on use and redistribution please refer to the
* LICENSE file included with these sources.
*/
package org.apache.fop.pdf;
// Java...
import java.util.List;
/**
* class representing a PDF Function.
*
* PDF Functions represent parameterized mathematical formulas and sampled representations with
* arbitrary resolution. Functions are used in two areas: device-dependent
* rasterization information for halftoning and transfer
* functions, and color specification for smooth shading (a PDF 1.3 feature).
*
* All PDF Functions have a FunctionType (0,2,3, or 4), a Domain, and a Range.
*/
public class PDFFunction extends PDFObject {
// Guts common to all function types
/**
* Required: The Type of function (0,2,3,4) default is 0.
*/
protected int functionType = 0; // Default
/**
* Required: 2 * m Array of Double numbers which are possible inputs to the function
*/
protected List domain = null;
/**
* Required: 2 * n Array of Double numbers which are possible outputs to the function
*/
protected List range = null;
/* ********************TYPE 0***************************** */
// FunctionType 0 specific function guts
/**
* Required: Array containing the Integer size of the Domain and Range, respectively.
* Note: This is really more like two seperate integers, sizeDomain, and sizeRange,
* but since they're expressed as an array in PDF, my implementation reflects that.
*/
protected List size = null;
/**
* Required for Type 0: Number of Bits used to represent each sample value. Limited to 1,2,4,8,12,16,24, or 32
*/
protected int bitsPerSample = 1;
/**
* Optional for Type 0: order of interpolation between samples. Limited to linear (1) or cubic (3). Default is 1
*/
protected int order = 1;
/**
* Optional for Type 0: A 2 * m array of Doubles which provides a linear mapping of input values to the domain.
*
* Required for Type 3: A 2 * k array of Doubles that, taken in pairs, map each subset of the domain defined by Domain and the Bounds array to the domain of the corresponding function.
* Should be two values per function, usually (0,1), as in [0 1 0 1] for 2 functions.
*/
protected List encode = null;
/**
* Optinoal for Type 0: A 2 * n array of Doubles which provides a linear mapping of sample values to the range. Defaults to Range.
*/
protected List decode = null;
/**
* Optional For Type 0: A stream of sample values
*/
/**
* Required For Type 4: Postscript Calculator function composed of arithmetic, boolean, and stack operators + boolean constants
*/
protected StringBuffer functionDataStream = null;
/**
* Required (?) For Type 0: A vector of Strings for the various filters to be used to decode the stream.
* These are how the string is compressed. Flate, LZW, etc.
*/
protected List filter = null;
/* *************************TYPE 2************************** */
/**
* Required For Type 2: An Array of n Doubles defining the function result when x=0. Default is [0].
*/
protected List cZero = null;
/**
* Required For Type 2: An Array of n Doubles defining the function result when x=1. Default is [1].
*/
protected List cOne = null;
/**
* Required for Type 2: The interpolation exponent.
* Each value x will return n results.
* Must be greater than 0.
*/
protected double interpolationExponentN = 1;
/* *************************TYPE 3************************** */
/**
* Required for Type 3: An vector of PDFFunctions which form an array of k single input functions making up the stitching function.
*/
protected List functions = null;
/**
* Optional for Type 3: An array of (k-1) Doubles that, in combination with Domain, define the intervals to which each function from the Functions array apply. Bounds elements must be in order of increasing magnitude, and each value must be within the value of Domain.
* k is the number of functions.
* If you pass null, it will output (1/k) in an array of k-1 elements.
* This makes each function responsible for an equal amount of the stitching function.
* It makes the gradient even.
*/
protected List bounds = null;
// See encode above, as it's also part of Type 3 Functions.
/* *************************TYPE 4************************** */
// See 'data' above.
/**
* create an complete Function object of Type 0, A Sampled function.
*
* Use null for an optional object parameter if you choose not to use it.
* For optional int parameters, pass the default.
*
* @param theDomain List objects of Double objects.
* This is the domain of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theRange List objects of Double objects.
* This is the Range of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theSize A List object of Integer objects.
* This is the number of samples in each input dimension.
* I can't imagine there being more or less than two input dimensions,
* so maybe this should be an array of length 2.
*
* See page 265 of the PDF 1.3 Spec.
* @param theBitsPerSample An int specifying the number of bits user to represent each sample value.
* Limited to 1,2,4,8,12,16,24 or 32.
* See page 265 of the 1.3 PDF Spec.
* @param theOrder The order of interpolation between samples. Default is 1 (one). Limited
* to 1 (one) or 3, which means linear or cubic-spline interpolation.
*
* This attribute is optional.
*
* See page 265 in the PDF 1.3 spec.
* @param theEncode List objects of Double objects.
* This is the linear mapping of input values intop the domain
* of the function's sample table. Default is hard to represent in
* ascii, but basically [0 (Size0 1) 0 (Size1 1)...].
* This attribute is optional.
*
* See page 265 in the PDF 1.3 spec.
* @param theDecode List objects of Double objects.
* This is a linear mapping of sample values into the range.
* The default is just the range.
*
* This attribute is optional.
* Read about it on page 265 of the PDF 1.3 spec.
* @param theFunctionDataStream The sample values that specify the function are provided in a stream.
*
* This is optional, but is almost always used.
*
* Page 265 of the PDF 1.3 spec has more.
* @param theFilter This is a vector of String objects which are the various filters that
* have are to be applied to the stream to make sense of it. Order matters,
* so watch out.
*
* This is not documented in the Function section of the PDF 1.3 spec,
* it was deduced from samples that this is sometimes used, even if we may never
* use it in FOP. It is added for completeness sake.
* @param theNumber The object number of this PDF object.
* @param theFunctionType This is the type of function (0,2,3, or 4).
* It should be 0 as this is the constructor for sampled functions.
*/
public PDFFunction(int theNumber, int theFunctionType, List theDomain,
List theRange, List theSize, int theBitsPerSample,
int theOrder, List theEncode, List theDecode,
StringBuffer theFunctionDataStream, List theFilter) {
super(theNumber);
this.functionType = 0; // dang well better be 0;
this.size = theSize;
this.bitsPerSample = theBitsPerSample;
this.order = theOrder; // int
this.encode = theEncode; // vector of int
this.decode = theDecode; // vector of int
this.functionDataStream = theFunctionDataStream;
this.filter = theFilter; // vector of Strings
// the domain and range are actually two dimensional arrays.
// so if there's not an even number of items, bad stuff
// happens.
this.domain = theDomain;
this.range = theRange;
}
/**
* create an complete Function object of Type 2, an Exponential Interpolation function.
*
* Use null for an optional object parameter if you choose not to use it.
* For optional int parameters, pass the default.
*
* @param theNumber the object's number
* @param theDomain List objects of Double objects.
* This is the domain of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theRange List of Doubles that is the Range of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theCZero This is a vector of Double objects which defines the function result
* when x=0.
*
* This attribute is optional.
* It's described on page 268 of the PDF 1.3 spec.
* @param theCOne This is a vector of Double objects which defines the function result
* when x=1.
*
* This attribute is optional.
* It's described on page 268 of the PDF 1.3 spec.
* @param theInterpolationExponentN This is the inerpolation exponent.
*
* This attribute is required.
* PDF Spec page 268
* @param theFunctionType The type of the function, which should be 2.
*/
public PDFFunction(int theNumber, int theFunctionType, List theDomain,
List theRange, List theCZero, List theCOne,
double theInterpolationExponentN) {
super(theNumber);
this.functionType = 2; // dang well better be 2;
this.cZero = theCZero;
this.cOne = theCOne;
this.interpolationExponentN = theInterpolationExponentN;
this.domain = theDomain;
this.range = theRange;
}
/**
* create an complete Function object of Type 3, a Stitching function.
*
* Use null for an optional object parameter if you choose not to use it.
* For optional int parameters, pass the default.
*
* @param theNumber the object's number
* @param theDomain List objects of Double objects.
* This is the domain of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theRange List objects of Double objects.
* This is the Range of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theFunctions A List of the PDFFunction objects that the stitching function stitches.
*
* This attributed is required.
* It is described on page 269 of the PDF spec.
* @param theBounds This is a vector of Doubles representing the numbers that,
* in conjunction with Domain define the intervals to which each function from
* the 'functions' object applies. It must be in order of increasing magnitude,
* and each must be within Domain.
*
* It basically sets how much of the gradient each function handles.
*
* This attributed is required.
* It's described on page 269 of the PDF 1.3 spec.
* @param theEncode List objects of Double objects.
* This is the linear mapping of input values intop the domain
* of the function's sample table. Default is hard to represent in
* ascii, but basically [0 (Size0 1) 0 (Size1 1)...].
* This attribute is required.
*
* See page 270 in the PDF 1.3 spec.
* @param theFunctionType This is the function type. It should be 3,
* for a stitching function.
*/
public PDFFunction(int theNumber, int theFunctionType, List theDomain,
List theRange, List theFunctions,
List theBounds, List theEncode) {
super(theNumber);
this.functionType = 3; // dang well better be 3;
this.functions = theFunctions;
this.bounds = theBounds;
this.encode = theEncode;
this.domain = theDomain;
this.range = theRange;
}
/**
* create an complete Function object of Type 4, a postscript calculator function.
*
* Use null for an optional object parameter if you choose not to use it.
* For optional int parameters, pass the default.
*
* @param theDomain List object of Double objects.
* This is the domain of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theRange List object of Double objects.
* This is the Range of the function.
* See page 264 of the PDF 1.3 Spec.
* @param theFunctionDataStream This is a stream of arithmetic, boolean, and stack operators and boolean constants.
* I end up enclosing it in the '{' and '}' braces for you, so don't do it
* yourself.
*
* This attribute is required.
* It's described on page 269 of the PDF 1.3 spec.
* @param theNumber The object number of this PDF object.
* @param theFunctionType The type of function which should be 4, as this is
* a Postscript calculator function
*/
public PDFFunction(int theNumber, int theFunctionType, List theDomain,
List theRange, StringBuffer theFunctionDataStream) {
super(theNumber);
this.functionType = 4; // dang well better be 4;
this.functionDataStream = theFunctionDataStream;
this.domain = theDomain;
this.range = theRange;
}
/**
* represent as PDF. Whatever the FunctionType is, the correct
* representation spits out. The sets of required and optional
* attributes are different for each type, but if a required
* attribute's object was constructed as null, then no error
* is raised. Instead, the malformed PDF that was requested
* by the construction is dutifully output.
* This policy should be reviewed.
*
* @return the PDF string.
*/
public byte[] toPDF() {
int vectorSize = 0;
int numberOfFunctions = 0;
int tempInt = 0;
StringBuffer p = new StringBuffer();
p.append(this.number + " " + this.generation
+ " obj\n<< \n/FunctionType " + this.functionType + " \n");
// FunctionType 0
if (this.functionType == 0) {
if (this.domain != null) {
// DOMAIN
p.append("/Domain [ ");
vectorSize = this.domain.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.domain.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Domain [ 0 1 ] \n");
}
// SIZE
if (this.size != null) {
p.append("/Size [ ");
vectorSize = this.size.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.size.get(tempInt))
+ " ");
}
p.append("] \n");
}
// ENCODE
if (this.encode != null) {
p.append("/Encode [ ");
vectorSize = this.encode.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.encode.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Encode [ ");
vectorSize = this.functions.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append("0 1 ");
}
p.append("] \n");
}
// BITSPERSAMPLE
p.append("/BitsPerSample " + this.bitsPerSample);
// ORDER (optional)
if (this.order == 1 || this.order == 3) {
p.append(" \n/Order " + this.order + " \n");
}
// RANGE
if (this.range != null) {
p.append("/Range [ ");
vectorSize = this.range.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.range.get(tempInt))
+ " ");
}
p.append("] \n");
}
// DECODE
if (this.decode != null) {
p.append("/Decode [ ");
vectorSize = this.decode.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.decode.get(tempInt))
+ " ");
}
p.append("] \n");
}
// LENGTH
if (this.functionDataStream != null) {
p.append("/Length " + (this.functionDataStream.length() + 1)
+ " \n");
}
// FILTER?
if (this.filter != null) { // if there's a filter
vectorSize = this.filter.size();
p.append("/Filter ");
if (vectorSize == 1) {
p.append("/" + ((String)this.filter.get(0))
+ " \n");
} else {
p.append("[ ");
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append("/" + ((String)this.filter.get(0))
+ " ");
}
p.append("] \n");
}
}
p.append(">> \n");
// stream representing the function
if (this.functionDataStream != null) {
p.append("stream\n" + this.functionDataStream
+ "\nendstream\n");
}
p.append("endobj\n");
// end of if FunctionType 0
} else if (this.functionType == 2) {
// DOMAIN
if (this.domain != null) {
p.append("/Domain [ ");
vectorSize = this.domain.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.domain.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Domain [ 0 1 ] \n");
}
// RANGE
if (this.range != null) {
p.append("/Range [ ");
vectorSize = this.range.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.range.get(tempInt))
+ " ");
}
p.append("] \n");
}
// FunctionType, C0, C1, N are required in PDF
// C0
if (this.cZero != null) {
p.append("/C0 [ ");
vectorSize = this.cZero.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.cZero.get(tempInt))
+ " ");
}
p.append("] \n");
}
// C1
if (this.cOne != null) {
p.append("/C1 [ ");
vectorSize = this.cOne.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.cOne.get(tempInt))
+ " ");
}
p.append("] \n");
}
// N: The interpolation Exponent
p.append("/N "
+ PDFNumber.doubleOut(new Double(this.interpolationExponentN))
+ " \n");
p.append(">> \nendobj\n");
} else if (this.functionType
== 3) { // fix this up when my eyes uncross
// DOMAIN
if (this.domain != null) {
p.append("/Domain [ ");
vectorSize = this.domain.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.domain.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Domain [ 0 1 ] \n");
}
// RANGE
if (this.range != null) {
p.append("/Range [ ");
vectorSize = this.range.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.range.get(tempInt))
+ " ");
}
p.append("] \n");
}
// FUNCTIONS
if (this.functions != null) {
p.append("/Functions [ ");
numberOfFunctions = this.functions.size();
for (tempInt = 0; tempInt < numberOfFunctions; tempInt++) {
p.append(((PDFFunction)this.functions.get(tempInt)).referencePDF()
+ " ");
}
p.append("] \n");
}
// ENCODE
if (this.encode != null) {
p.append("/Encode [ ");
vectorSize = this.encode.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.encode.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Encode [ ");
vectorSize = this.functions.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append("0 1 ");
}
p.append("] \n");
}
// BOUNDS, required, but can be empty
p.append("/Bounds [ ");
if (this.bounds != null) {
vectorSize = this.bounds.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.bounds.get(tempInt))
+ " ");
}
} else {
if (this.functions != null) {
// if there are n functions,
// there must be n-1 bounds.
// so let each function handle an equal portion
// of the whole. e.g. if there are 4, then [ 0.25 0.25 0.25 ]
String functionsFraction = PDFNumber.doubleOut(new Double(1.0
/ ((double)numberOfFunctions)));
for (tempInt = 0; tempInt + 1 < numberOfFunctions;
tempInt++) {
p.append(functionsFraction + " ");
}
functionsFraction = null; // clean reference.
}
}
p.append("] \n");
p.append(">> \nendobj\n");
} else if (this.functionType
== 4) { // fix this up when my eyes uncross
// DOMAIN
if (this.domain != null) {
p.append("/Domain [ ");
vectorSize = this.domain.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.domain.get(tempInt))
+ " ");
}
p.append("] \n");
} else {
p.append("/Domain [ 0 1 ] \n");
}
// RANGE
if (this.range != null) {
p.append("/Range [ ");
vectorSize = this.range.size();
for (tempInt = 0; tempInt < vectorSize; tempInt++) {
p.append(PDFNumber.doubleOut((Double)this.range.get(tempInt))
+ " ");
}
p.append("] \n");
}
// LENGTH
if (this.functionDataStream != null) {
p.append("/Length " + (this.functionDataStream.length() + 1)
+ " \n");
}
p.append(">> \n");
// stream representing the function
if (this.functionDataStream != null) {
p.append("stream\n{ " + this.functionDataStream
+ " } \nendstream\n");
}
p.append("endobj\n");
}
return (p.toString().getBytes());
}
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (obj == this) {
return true;
}
if (!(obj instanceof PDFFunction)) {
return false;
}
PDFFunction func = (PDFFunction)obj;
if (functionType != func.functionType) {
return false;
}
if (bitsPerSample != func.bitsPerSample) {
return false;
}
if (order != func.order) {
return false;
}
if (interpolationExponentN != func.interpolationExponentN) {
return false;
}
if (domain != null) {
if (!domain.equals(func.domain)) {
return false;
}
} else if (func.domain != null) {
return false;
}
if (range != null) {
if (!range.equals(func.range)) {
return false;
}
} else if (func.range != null) {
return false;
}
if (size != null) {
if (!size.equals(func.size)) {
return false;
}
} else if (func.size != null) {
return false;
}
if (encode != null) {
if (!encode.equals(func.encode)) {
return false;
}
} else if (func.encode != null) {
return false;
}
if (decode != null) {
if (!decode.equals(func.decode)) {
return false;
}
} else if (func.decode != null) {
return false;
}
if (functionDataStream != null) {
if (!functionDataStream.equals(func.functionDataStream)) {
return false;
}
} else if (func.functionDataStream != null) {
return false;
}
if (filter != null) {
if (!filter.equals(func.filter)) {
return false;
}
} else if (func.filter != null) {
return false;
}
if (cZero != null) {
if (!cZero.equals(func.cZero)) {
return false;
}
} else if (func.cZero != null) {
return false;
}
if (cOne != null) {
if (!cOne.equals(func.cOne)) {
return false;
}
} else if (func.cOne != null) {
return false;
}
if (functions != null) {
if (!functions.equals(func.functions)) {
return false;
}
} else if (func.functions != null) {
return false;
}
if (bounds != null) {
if (!bounds.equals(func.bounds)) {
return false;
}
} else if (func.bounds != null) {
return false;
}
return true;
}
}
|