aboutsummaryrefslogtreecommitdiffstats
path: root/docs/adk15notebook/generics.adoc
blob: 404da551479eec2ae87ce27da832faf554cee6b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
= Generics

[[generics-inJava5]]
== Generics in Java 5

This section provides the essential information about generics in Java 5
needed to understand how generics are treated in AspectJ 5. For a full
introduction to generics in Java, please see the documentation for the
Java 5 SDK.

=== Declaring Generic Types

A generic type is declared with one or more type parameters following
the type name. By convention formal type parameters are named using a
single letter, though this is not required. A simple generic list type
(that can contain elements of any type `E`) could be declared:

[source, java]
....
interface List<E> {
   Iterator<E> iterator();
   void add(E anItem);
   E remove(E anItem);
}
....

It is important to understand that unlike template mechanisms there will
only be one type, and one class file, corresponding to the `List`
interface, regardless of how many different instantiations of the `List`
interface a program has (each potentially providing a different value
for the type parameter `E`). A consequence of this is that you cannot
refer to the type parameters of a type declaration in a static method or
initializer, or in the declaration or initializer of a static variable.

A _parameterized type_ is an invocation of a generic type with concrete
values supplied for all of its type parameters (for example,
`List<String>` or `List<Food>`).

A generic type may be declared with multiple type parameters. In
addition to simple type parameter names, type parameter declarations can
also constrain the set of types allowed by using the `extends` keyword.
Some examples follow:

`class Foo<T> {...}`::
  A class `Foo` with one type parameter, `T`.
`class Foo<T,S> {...}`::
  A class `Foo` with two type parameters, `T` and `S`.
`class Foo<T extends Number> {...}`::
  A class `Foo` with one type parameter `T`, where `T` must be
  instantiated as the type `Number` or a subtype of `Number`.
`class Foo<T, S extends T> {...}`::
  A class `Foo` with two type parameters, `T` and `S`. `Foo` must be
  instantiated with a type `S` that is a subtype of the type specified
  for parameter `T`.
`class Foo<T extends Number & Comparable> {...}`::
  A class `Foo` with one type parameter, `T`. `Foo` must be instantiated
  with a type that is a subtype of `Number` and that implements
  `Comparable`.

=== Using Generic and Parameterized Types

You declare a variable (or a method/constructor argument) of a
parameterized type by specifying a concrete type specfication for each
type parameter in the generic type. The following example declares a
list of strings and a list of numbers:

[source, java]
....
List<String> strings;
List<Number> numbers;
....

It is also possible to declare a variable of a generic type without
specifying any values for the type parameters (a _raw_ type). For
example, `List strings`. In this case, unchecked warnings may be issued
by the compiler when the referenced object is passed as a parameter to a
method expecting a parameterized type such as a `List<String>`. New code
written in the Java 5 language would not be expected to use raw types.

Parameterized types are instantiated by specifying type parameter values
in the constructor call expression as in the following examples:

[source, java]
....
List<String> strings = new MyListImpl<String>();
List<Number> numbers = new MyListImpl<Number>();
....

When declaring parameterized types, the `?` wildcard may be used, which
stands for "some type". The `extends` and `super` keywords may be used
in conjunction with the wildcard to provide upper and lower bounds on
the types that may satisfy the type constraints. For example:

`List<?>`::
  A list containing elements of some type, the type of the elements in
  the list is unknown.
`List<? extends Number>`::
  A list containing elements of some type that extends Number, the exact
  type of the elements in the list is unknown.
`List<? super Double>`::
  A list containing elements of some type that is a super-type of
  Double, the exact type of the elements in the list is unknown.

A generic type may be extended as any other type. Given a generic type
`Foo<T>` then a subtype `Goo` may be declared in one of the following
ways:

`class Goo extends Foo`::
  Here `Foo` is used as a raw type, and the appropriate warning messages
  will be issued by the compiler on attempting to invoke methods in
  `Foo`.
`class Goo<E> extends Foo`::
  `Goo` is a generic type, but the super-type `Foo` is used as a raw
  type and the appropriate warning messages will be issued by the
  compiler on attempting to invoke methods defined by `Foo`.
`class Goo<E> extends Foo<E>`::
  This is the most usual form. `Goo` is a generic type with one
  parameter that extends the generic type `Foo` with that same
  parameter. So `Goo<String<` is a subclass of `Foo<String>`.
`class Goo<E,F> extends Foo<E>`::
  `Goo` is a generic type with two parameters that extends the generic
  type `Foo` with the first type parameter of `Goo` being used to
  parameterize `Foo`. So `Goo<String,Integer<` is a subclass of
  `Foo<String>`.
`class Goo extends Foo<String>`::
  `Goo` is a type that extends the parameterized type `Foo<String>`.

A generic type may implement one or more generic interfaces, following
the type binding rules given above. A type may also implement one or
more parameterized interfaces (for example,
`class X implements List<String>`, however a type may not at the same
time be a subtype of two interface types which are different
parameterizations of the same interface.

=== Subtypes, Supertypes, and Assignability

The supertype of a generic type `C` is the type given in the extends
clause of `C`, or `Object` if no extends clause is present. Given the
type declaration

[source, java]
....
public interface List<E> extends Collection<E> {... }
....

then the supertype of `List<E>` is `Collection<E>`.

The supertype of a parameterized type `P` is the type given in the
extends clause of `P`, or `Object` if no extends clause is present. Any
type parameters in the supertype are substituted in accordance with the
parameterization of `P`. An example will make this much clearer: Given
the type `List<Double>` and the definition of the `List` given above,
the direct supertype is `Collection<Double>`. `List<Double>` is _not_
considered to be a subtype of `List<Number>`.

An instance of a parameterized type `P<T1,T2,...Tn>`may be assigned to a
variable of the same type or a supertype without casting. In addition it
may be assigned to a variable `R<S1,S2,...Sm>` where `R` is a supertype
of `P` (the supertype relationship is reflexive), `m <= n`, and for all
type parameters `S1..m`, `Tm` equals `Sm` _or_ `Sm` is a wildcard type
specification and `Tm` falls within the bounds of the wildcard. For
example, `List<String>` can be assigned to a variable of type
`Collection<?>`, and `List<Double>` can be assigned to a variable of
type `List<? extends Number>`.

=== Generic Methods and Constructors

A static method may be declared with one or more type parameters as in
the following declaration:

[source, java]
....
static <T> T first(List<T> ts) { ... }
....

Such a definition can appear in any type, the type parameter `T` does
not need to be declared as a type parameter of the enclosing type.

Non-static methods may also be declared with one or more type parameters
in a similar fashion:

[source, java]
....
<T extends Number> T max(T t1, T t2) { ... }
....

The same technique can be used to declare a generic constructor.

=== Erasure

Generics in Java are implemented using a technique called _erasure_. All
type parameter information is erased from the run-time type system.
Asking an object of a parameterized type for its class will return the
class object for the raw type (eg. `List` for an object declared to be
of type `List<String>`. A consequence of this is that you cannot at
runtime ask if an object is an `instanceof` a parameterized type.

[[generics-inAspectJ5]]
== Generics in AspectJ 5

AspectJ 5 provides full support for all of the Java 5 language features,
including generics. Any legal Java 5 program is a legal AspectJ 5
progam. In addition, AspectJ 5 provides support for generic and
parameterized types in pointcuts, inter-type declarations, and declare
statements. Parameterized types may freely be used within aspect
members, and support is also provided for generic _abstract_ aspects.

=== Matching generic and parameterized types in pointcut expressions

The simplest way to work with generic and parameterized types in
pointcut expressions and type patterns is simply to use the raw type
name. For example, the type pattern `List` will match the generic type
`List<E>` and any parameterization of that type
(`List<String>, List<?>, List<? extends Number>` and so on. This ensures
that pointcuts written in existing code that is not generics-aware will
continue to work as expected in AspectJ 5. It is also the recommended
way to match against generic and parameterized types in AspectJ 5 unless
you explicitly wish to narrow matches to certain parameterizations of a
generic type.

Generic methods and constructors, and members defined in generic types,
may use type variables as part of their signature. For example:

[source, java]
....
public class Utils {

  /** static generic method */
  static <T> T first(List<T> ts) { ... }

  /** instance generic method */
  <T extends Number> T max(T t1, T t2) { ... }

}

public class G<T> {

   // field with parameterized type
   T myData;

   // method with parameterized return type
   public List<T> getAllDataItems() {...}

}
....

AspectJ 5 does not allow the use of type variables in pointcut
expressions and type patterns. Instead, members that use type parameters
as part of their signature are matched by their _erasure_. Java 5
defines the rules for determing the erasure of a type as follows.

Let `|T|` represent the erasure of some type `T`. Then:

* The erasure of a parameterized type `T<T1,...,Tn>` is `|T|`.
  For example, the erasure of `List<String>` is `List`.

* The erasure of a nested type `T.C` is `|T|.C`.
  For example, the erasure of the nested type `Foo<T>.Bar` is `Foo.Bar`.

* The erasure of an array type `T[]` is `|T|[]`.
  For example, the erasure of `List<String>[]` is `List[]`.

* The erasure of a type variable is its leftmost bound.
  For example, the erasure of a type variable `P` is `Object`,
  and the erasure of a type variable `N extends Number` is `Number`.

* The erasure of every other type is the type itself.

Applying these rules to the earlier examples, we find that the methods
defined in `Utils` can be matched by a signature pattern matching
`static Object Utils.first(List)` and `Number Utils.max(Number, Number)`
respectively. The members of the generic type `G` can be matched by a
signature pattern matching `Object G.myData` and
`public List G.getAllDataItems()` respectively.

==== Restricting matching using parameterized types

Pointcut matching can be further restricted to match only given
parameterizations of parameter types (methods and constructors), return
types (methods) and field types (fields). This is achieved by specifying
a parameterized type pattern at the appropriate point in the signature
pattern. For example, given the class `Foo`:

[source, java]
....
public class Foo {

  List<String> myStrings;
  List<Float>  myFloats;

  public List<String> getStrings() { return myStrings; }
  public List<Float> getFloats() { return myFloats; }

  public void addStrings(List<String> evenMoreStrings) {
     myStrings.addAll(evenMoreStrings);
  }

}
....

Then a `get` join point for the field `myStrings` can be matched by the
pointcut `get(List Foo.myStrings)` and by the pointcut
`get(List<String> Foo.myStrings)`, but _not_ by the pointcut
`get(List<Number> *)`.

A `get` join point for the field `myFloats` can be matched by the
pointcut `get(List Foo.myFloats)`, the pointcut `get(List<Float> *)`,
and the pointcut `get(List<Number+> *)`. This last example shows how
AspectJ type patterns can be used to match type parameters types just
like any other type. The pointcut `get(List<Double> *)` does _not_
match.

The execution of the methods `getStrings` and `getFloats` can be matched
by the pointcut expression `execution(List get*(..))`, and the pointcut
expression `execution(List<*> get*(..))`, but only `getStrings` is
matched by `execution(List<String> get*(..))` and only `getFloats` is
matched by `execution(List<Number+> get*(..))`

A call to the method `addStrings` can be matched by the pointcut
expression `call(* addStrings(List))` and by the expression
`call(* addStrings(List<String>))`, but _not_ by the expression
`call(* addStrings(List<Number>))`.

Remember that any type variable reference in a generic member is
_always_ matched by its erasure. Thus given the following example:

[source, java]
....
class G<T> {
    List<T> foo(List<String> ls) { return null; }
}
....

The execution of `foo` can be matched by `execution(List foo(List))`,
`execution(List foo(List<String>>))`, and
`execution(* foo(List<String<))`but _not_ by
`execution(List<Object> foo(List<String>>)` since the erasure of
`List<T>` is `List` and not `List<Object>`.

==== Generic wildcards and signature matching

When it comes to signature matching, a type parameterized using a
generic wildcard is a distinct type. For example, `List<?>` is a very
different type to `List<String>`, even though a variable of type
`List<String>` can be assigned to a variable of type `List<?>`. Given
the methods:

[source, java]
....
class C {
  public void foo(List<? extends Number> listOfSomeNumberType) {}
  public void bar(List<?> listOfSomeType) {}
  public void goo(List<Double> listOfDoubles) {}
}
....

`execution(* C.*(List))`::
  Matches an execution join point for any of the three methods.
`execution(* C.*(List<? extends Number>))`::
  matches only the execution of `foo`, and _not_ the execution of `goo`
  since `List<? extends Number>` and `List<Double>` are distinct types.
`execution(* C.*(List<?>))`::
  matches only the execution of `bar`.
`execution(* C.*(List<? extends Object+>))`::
  matches both the execution of `foo` and the execution of `bar` since
  the upper bound of `List<?>` is implicitly `Object`.

==== Treatment of bridge methods

Under certain circumstances a Java 5 compiler is required to create
_bridge methods_ that support the compilation of programs using raw
types. Consider the types

[source, java]
....
class Generic<T> {
  public T foo(T someObject) {
    return someObject;
  }
}

class SubGeneric<N extends Number> extends Generic<N> {
  public N foo(N someNumber) {
    return someNumber;
  }
}
....

The class `SubGeneric` extends `Generic` and overrides the method `foo`.
Since the upper bound of the type variable `N` in `SubGeneric` is
different to the upper bound of the type variable `T` in `Generic`, the
method `foo` in `SubGeneric` has a different erasure to the method `foo`
in `Generic`. This is an example of a case where a Java 5 compiler will
create a _bridge method_ in `SubGeneric`. Although you never see it, the
bridge method will look something like this:

[source, java]
....
public Object foo(Object arg) {
  Number n = (Number) arg; // "bridge" to the signature defined in this type
return foo(n);
}
....

Bridge methods are synthetic artefacts generated as a result of a
particular compilation strategy and have no execution join points in
AspectJ 5. So the pointcut `execution(Object SubGeneric.foo(Object))`
does not match anything. (The pointcut
`execution(Object Generic.foo(Object))` matches the execution of `foo`
in both `Generic` and `SubGeneric` since both are implementations of
`Generic.foo`).

It _is_ possible to _call_ a bridge method as the following short code
snippet demonstrates. Such a call _does_ result in a call join point for
the call to the method.

[source, java]
....
SubGeneric rawType = new SubGeneric();
rawType.foo("hi");  // call to bridge method (will result in a runtime failure in this case)
Object n = new Integer(5);
rawType.foo(n);     // call to bridge method that would succeed at runtime
....

==== Runtime type matching with this(), target() and args()

The `this()`, `target()`, and `args()` pointcut expressions all match
based on the runtime type of their arguments. Because Java 5 implements
generics using erasure, it is not possible to ask at runtime whether an
object is an instance of a given parameterization of a type (only
whether or not it is an instance of the erasure of that parameterized
type). Therefore AspectJ 5 does not support the use of parameterized
types with the `this()` and `target()` pointcuts. Parameterized types
may however be used in conjunction with `args()`. Consider the following
class

[source, java]
....
public class C {
  public void foo(List<String> listOfStrings) {}

  public void bar(List<Double> listOfDoubles) {}

  public void goo(List<? extends Number> listOfSomeNumberType) {}
}
....

`args(List)`::
will match an execution or call join point for any of these methods

`args(List<String>)`::
will match an execution or call join point for `foo`.

`args(List<Double>)`::
matches an execution or call join point for `bar`, and _may_ match at
an execution or call join point for `goo` since it is legitimate to
pass an object of type `List<Double>` to a method expecting a
`List<? extends Number>`.
+
In this situation, a runtime test would normally be applied to
ascertain whether or not the argument was indeed an instance of the
required type. However, in the case of parameterized types such a test
is not possible and therefore AspectJ 5 considers this a match, but
issues an _unchecked_ warning. For example, compiling the aspect `A`
below with the class `C` produces the compilation warning: `unchecked
match of List<Double> with List<? extends Number> when argument is an
instance of List at join point method-execution(void C.goo(List<?
extends Number>)) [Xlint:uncheckedArgument]`;

[source, java]
....
public aspect A {
   before(List<Double> listOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {
      for (Double d : listOfDoubles) {
         // do something
      }
   }
}
....

Like all Lint messages, the `uncheckedArgument` warning can be
configured in severity from the default warning level to error or even
ignore if preferred. In addition, AspectJ 5 offers the annotation
`@SuppressAjWarnings` which is the AspectJ equivalent of Java's
`@SuppressWarnings` annotation. If the advice is annotated with
`@SuppressWarnings` then _all_ lint warnings issued during matching of
pointcut associated with the advice will be suppressed. To suppress just
an `uncheckedArgument` warning, use the annotation
`@SuppressWarnings("uncheckedArgument")` as in the following examples:

[source, java]
....
import org.aspectj.lang.annotation.SuppressAjWarnings
public aspect A {
   @SuppressAjWarnings   // will not see *any* lint warnings for this advice
   before(List<Double> listOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {
      for (Double d : listOfDoubles) {
         // do something
      }
   }

   @SuppressAjWarnings("uncheckedArgument")   // will not see *any* lint warnings for this advice
   before(List<Double> listOfDoubles) : execution(* C.*(..)) && args(listOfDoubles) {
      for (Double d : listOfDoubles) {
         // do something
      }
   }
}
....

The safest way to deal with `uncheckedArgument` warnings however is to
restrict the pointcut to match only at those join points where the
argument is guaranteed to match. This is achieved by combining `args`
with a `call` or `execution` signature matching pointcut. In the
following example the advice will match the execution of `bar` but not
of `goo` since the signature of `goo` is not matched by the execution
pointcut expression.

[source, java]
....
public aspect A {
   before(List<Double> listOfDoubles) : execution(* C.*(List<Double>)) && args(listOfDoubles) {
      for (Double d : listOfDoubles) {
         // do something
      }
   }
}
....

Generic wildcards can be used in args type patterns, and matching
follows regular Java 5 assignability rules. For example, `args(List<?>)`
will match a list argument of any type, and
`args(List<? extends Number>)` will match an argument of type
`List<Number>, List<Double>, List<Float>` and so on. Where a match
cannot be fully statically determined, the compiler will once more issue
an `uncheckedArgument` warning.

Consider the following program:

[source, java]
....
public class C {
   public static void main(String[] args) {
      C c = new C();
      List<String> ls = new ArrayList<String>();
      List<Double> ld = new ArrayList<Double>();
      c.foo("hi");
      c.foo(ls);
      c.foo(ld);
   }

   public void foo(Object anObject) {}
}

aspect A {
    before(List<? extends Number> aListOfSomeNumberType)
      : call(* foo(..)) && args(aListOfSomeNumberType) {
       // process list...
    }
}
....

From the signature of `foo` all we know is that the runtime argument
will be an instance of `Object`.Compiling this program gives the
unchecked argument warning: `unchecked match of List<? extends Number>
with List when argument is an instance of List at join point
method-execution(void C.foo(Object)) [Xlint:uncheckedArgument]`. The
advice will not execute at the call join point for `c.foo("hi")` since
`String` is not an instance of `List`. The advice _will_ execute at the
call join points for `c.foo(ls)` and `c.foo(ld)` since in both cases the
argument is an instance of `List`.

Combine a wildcard argument type with a signature pattern to avoid
unchecked argument matches. In the example below we use the signature
pattern `List<Number+>` to match a call to any method taking a
`List<Number>, List<Double>, List<Float>` and so on. In addition the
signature pattern `List<? extends Number+>` can be used to match a call
to a method declared to take a `List<? extends Number>`,
`List<? extends Double>` and so on. Taken together, these restrict
matching to only those join points at which the argument is guaranteed
to be an instance of `List<? extends Number>`.

[source, java]
....
aspect A {
    before(List<? extends Number> aListOfSomeNumberType)
      : (call(* foo(List<Number+>)) || call(* foo(List<? extends Number+>)))
        && args(aListOfSomeNumberType) {
        // process list...
    }
}
....

==== Binding return values in after returning advice

After returning advice can be used to bind the return value from a
matched join point. AspectJ 5 supports the use of a parameterized type
in the returning clause, with matching following the same rules as
described for args. For example, the following aspect matches the
execution of any method returning a `List`, and makes the returned list
available to the body of the advice.

[source, java]
....
public aspect A {
  pointcut executionOfAnyMethodReturningAList() : execution(List *(..));

  after() returning(List<?> listOfSomeType) : executionOfAnyMethodReturningAList() {
    for (Object element : listOfSomeType) {
       // process element...
    }
  }
}
....

The pointcut uses the raw type pattern `List`, and hence it matches
methods returning any kind of list (`List<String>, List<Double>`, and so
on). We've chosen to bind the returned list as the parameterized type
`List<?>` in the advice since Java's type checking will now ensure that
we only perform safe operations on the list.

Given the class

[source, java]
....
public class C {
  public List<String> foo(List<String> listOfStrings) {...}
  public List<Double> bar(List<Double> listOfDoubles) {...}
  public List<? extends Number> goo(List<? extends Number> listOfSomeNumberType) {...}
}
....

The advice in the aspect below will run after the execution of `bar` and
bind the return value. It will also run after the execution of `goo` and
bind the return value, but gives an `uncheckedArgument` warning during
compilation. It does _not_ run after the execution of `foo`.

[source, java]
....
public aspect Returning {
  after() returning(List<Double> listOfDoubles) : execution(* C.*(..)) {
     for(Double d : listOfDoubles) {
        // process double...
     }
  }
}
....

As with `args` you can guarantee that after returning advice only
executes on lists _statically determinable_ to be of the right type by
specifying a return type pattern in the associated pointcut. The
`@SuppressAjWarnings` annotation can also be used if desired.

==== Declaring pointcuts inside generic types

Pointcuts can be declared in both classes and aspects. A pointcut
declared in a generic type may use the type variables of the type in
which it is declared. All references to a pointcut declared in a generic
type from outside of that type must be via a parameterized type
reference, and not a raw type reference.

Consider the generic type `Generic` with a pointcut `foo`:

[source, java]
....
public class Generic<T> {
   /**
    * matches the execution of any implementation of a method defined for T
    */
   public pointcut foo() : execution(* T.*(..));
}
....

Such a pointcut must be refered to using a parameterized reference as
shown below.

[source, java]
....
public aspect A {
  // runs before the execution of any implementation of a method defined for MyClass
  before() : Generic<MyClass>.foo() {
     // ...
  }

  // runs before the execution of any implementation of a method defined for YourClass
  before() : Generic<YourClass>.foo() {
      // ...
  }

  // results in a compilation error - raw type reference
  before() : Generic.foo() { }
}
....

=== Inter-type Declarations

AspectJ 5 supports the inter-type declaration of generic methods, and of
members on generic types. For generic methods, the syntax is exactly as
for a regular method declaration, with the addition of the target type
specification:

`<T extends Number> T Utils.max(T first, T second) {...}`::
  Declares a generic instance method `max` on the class `Util`. The
  `max` method takes two arguments, `first` and `second` which must both
  be of the same type (and that type must be `Number` or a subtype of
  `Number`) and returns an instance of that type.
`static <E> E Utils.first(List<E> elements) {...}`::
  Declares a static generic method `first` on the class `Util`. The
  `first` method takes a list of elements of some type, and returns an
  instance of that type.
<T> Sorter.new(List<T> elements,Comparator<? super T> comparator) `{...}`::
  Declares a constructor on the class `Sorter`. The constructor takes a
  list of elements of some type, and a comparator that can compare
  instances of the element type.

A generic type may be the target of an inter-type declaration, used
either in its raw form or with type parameters specified. If type
parameters are specified, then the number of type parameters given must
match the number of type parameters in the generic type declaration.
Type parameter _names_ do not have to match. For example, given the
generic type `Foo<T,S extends Number>` then:

`String Foo.getName() {...}`::
  Declares a `getName` method on behalf of the type `Foo`. It is not
  possible to refer to the type parameters of Foo in such a declaration.
`public R Foo<Q, R>.getMagnitude() {...}`::
  Declares a method `getMagnitude` on the generic class `Foo`. The
  method returns an instance of the type substituted for the second type
  parameter in an invocation of `Foo` If `Foo` is declared as
  `Foo<T,N extends Number> {...}` then this inter-type declaration is
  equivalent to the declaration of a method `public N getMagnitude()`
  within the body of `Foo`.
`R Foo<Q, R extends Number>.getMagnitude() {...}`::
  Results in a compilation error since a bounds specification is not
  allowed in this form of an inter-type declaration (the bounds are
  determined from the declaration of the target type).

A parameterized type may not be the target of an inter-type declaration.
This is because there is only one type (the generic type) regardless of
how many different invocations (parameterizations) of that generic type
are made in a program. Therefore it does not make sense to try and
declare a member on behalf of (say) `Bar<String>`, you can only declare
members on the generic type `Bar<T>`.

[[declare-parents-java5]]
=== Declare Parents

Both generic and parameterized types can be used as the parent type in a
`declare parents` statement (as long as the resulting type hierarchy
would be well-formed in accordance with Java's sub-typing rules).
Generic types may also be used as the target type of a `declare parents`
statement.

`declare parents: Foo implements List<String>`::
  The `Foo` type implements the `List<String>` interface. If `Foo`
  already implements some other parameterization of the `List` interface
  (for example, `List<Integer>` then a compilation error will result
  since a type cannot implement multiple parameterizations of the same
  generic interface type.

=== Declare Soft

It is an error to use a generic or parameterized type as the softened
exception type in a declare soft statement. Java 5 does not permit a
generic class to be a direct or indirect subtype of `Throwable` (JLS
8.1.2).

=== Generic Aspects

AspectJ 5 allows an _abstract_ aspect to be declared as a generic type.
Any concrete aspect extending a generic abstract aspect must extend a
parameterized version of the abstract aspect. Wildcards are not
permitted in this parameterization.

Given the aspect declaration:

[source, java]
....
public abstract aspect ParentChildRelationship<P,C> {
    // ...
}
....

then

`public aspect FilesInFolders extends ParentChildRelationship<Folder,File> {...`::
  declares a concrete sub-aspect, `FilesInFolders` which extends the
  parameterized abstract aspect `ParentChildRelationship<Folder,File>`.
`public aspect FilesInFolders extends ParentChildRelationship {...`::
  results in a compilation error since the `ParentChildRelationship`
  aspect must be fully parameterized.
`public aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T>`::
  results in a compilation error since concrete aspects may not have
  type parameters.
`public abstract aspect ThingsInFolders<T> extends ParentChildRelationship<Folder,T>`::
  declares a sub-aspect of `ParentChildRelationship` in which `Folder`
  plays the role of parent (is bound to the type variable `P`).

The type parameter variables from a generic aspect declaration may be
used in place of a type within any member of the aspect, _except for
within inter-type declarations_. For example, we can declare a
`ParentChildRelationship` aspect to manage the bi-directional
relationship between parent and child nodes as follows:

[source, java]
....
/**
 * a generic aspect, we've used descriptive role names for the type variables
 * (Parent and Child) but you could use anything of course
 */
public abstract aspect ParentChildRelationship<Parent,Child> {

  /** generic interface implemented by parents */
  interface ParentHasChildren<C extends ChildHasParent>{
    List<C> getChildren();
    void addChild(C child);
    void removeChild(C child);
  }

  /** generic interface implemented by children */
  interface ChildHasParent<P extends ParentHasChildren>{
    P getParent();
    void setParent(P parent);
  }

  /** ensure the parent type implements ParentHasChildren<child type> */
  declare parents: Parent implements ParentHasChildren<Child>;

  /** ensure the child type implements ChildHasParent<parent type> */
  declare parents: Child implements ChildHasParent<Parent>;

  // Inter-type declarations made on the *generic* interface types to provide
  // default implementations.

  /** list of children maintained by parent */
  private List<C> ParentHasChildren<C>.children = new ArrayList<C>();

  /** reference to parent maintained by child */
  private P ChildHasParent<P>.parent;

  /** Default implementation of getChildren for the generic type ParentHasChildren */
  public List<C> ParentHasChildren<C>.getChildren() {
        return Collections.unmodifiableList(children);
  }

  /** Default implementation of getParent for the generic type ChildHasParent */
  public P ChildHasParent<P>.getParent() {
       return parent;
  }

  /**
    * Default implementation of addChild, ensures that parent of child is
    * also updated.
    */
  public void ParentHasChildren<C>.addChild(C child) {
       if (child.parent != null) {
         child.parent.removeChild(child);
       }
       children.add(child);
       child.parent = this;
    }

   /**
     * Default implementation of removeChild, ensures that parent of
     * child is also updated.
     */
   public void ParentHasChildren<C>.removeChild(C child) {
       if (children.remove(child)) {
         child.parent = null;
       }
    }

    /**
      * Default implementation of setParent for the generic type ChildHasParent.
      * Ensures that this child is added to the children of the parent too.
      */
    public void ChildHasParent<P>.setParent(P parent) {
       parent.addChild(this);
    }

    /**
      * Matches at an addChild join point for the parent type P and child type C
      */
    public pointcut addingChild(Parent p, Child c) :
      execution(* ParentHasChildren.addChild(ChildHasParent)) && this(p) && args(c);

    /**
      * Matches at a removeChild join point for the parent type P and child type C
      */
    public pointcut removingChild(Parent p, Child c) :
      execution(* ParentHasChildren.removeChild(ChildHasParent)) && this(p) && args(c);

}
....

The example aspect captures the protocol for managing a bi-directional
parent-child relationship between any two types playing the role of
parent and child. In a compiler implementation managing an abstract
syntax tree (AST) in which AST nodes may contain other AST nodes we
could declare the concrete aspect:

[source, java]
....
public aspect ASTNodeContainment extends ParentChildRelationship<ASTNode,ASTNode> {
    before(ASTNode parent, ASTNode child) : addingChild(parent, child) {
      // ...
    }
}
....

As a result of this declaration, `ASTNode` gains members:

* `List<ASTNode> children`
* `ASTNode parent`
* `List<ASTNode>getChildren()`
* `ASTNode getParent()`
* `void addChild(ASTNode child)`
* `void removeChild(ASTNode child)`
* `void setParent(ASTNode parent)`

In a system managing orders, we could declare the concrete aspect:

[source, java]
....
public aspect OrderItemsInOrders extends ParentChildRelationship<Order, OrderItem> {}
....

As a result of this declaration, `Order` gains members:

* `List<OrderItem> children`
* `List<OrderItem> getChildren()`
* `void addChild(OrderItem child)`
* `void removeChild(OrderItem child)`

and `OrderItem` gains members:

* `Order parent`
* `Order getParent()`
* `void setParent(Order parent)`

A second example of an abstract aspect, this time for handling
exceptions in a uniform manner, is shown below:

[source, java]
....
abstract aspect ExceptionHandling<T extends Throwable> {

  /**
   * method to be implemented by sub-aspects to handle thrown exceptions
   */
  protected abstract void onException(T anException);

  /**
   * to be defined by sub-aspects to specify the scope of exception handling
   */
  protected abstract pointcut inExceptionHandlingScope();

  /**
   * soften T within the scope of the aspect
   */
  declare soft: T : inExceptionHandlingScope();

  /**
   * bind an exception thrown in scope and pass it to the handler
   */
  after() throwing (T anException) : inExceptionHandlingScope() {
    onException(anException);
  }

}
....

Notice how the type variable `T extends Throwable` allows the components
of the aspect to be designed to work together in a type-safe manner. The
following concrete sub-aspect shows how the abstract aspect might be
extended to handle `IOExceptions`.

[source, java]
....
public aspect IOExceptionHandling extends ExceptionHandling<IOException>{

  protected pointcut inExceptionHandlingScope() :
    call(* doIO*(..)) && within(org.xyz..*);

  /**
   * called whenever an IOException is thrown in scope.
   */
  protected void onException(IOException ex) {
    System.err.println("handled exception: " + ex.getMessage());
    throw new MyDomainException(ex);
  }
}
....