aboutsummaryrefslogtreecommitdiffstats
path: root/docs/progGuideDB/examples.xml
blob: 2847f13d29b6ac3e7771677de0655067a9c696db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
<chapter id="examples" xreflabel="Examples">
  <title>Examples</title>

  <sect1 id="examples-intro">
    <title>Introduction</title>

    <para>
      This chapter consists entirely of examples of AspectJ use.
    </para>

    <para>The examples can be grouped into four categories:</para>

    <simplelist columns="2" type="horiz">
      <member><emphasis role="bold">technique</emphasis></member>
      <member>Examples which illustrate how to use one or more features of the
        language. </member>

      <member><emphasis role="bold">development</emphasis></member>
      <member>Examples of using AspectJ during the development phase of a
        project. </member>

      <member><emphasis role="bold">production</emphasis></member>
      <member>Examples of using AspectJ to provide functionality in an
        application. </member>

      <member><emphasis role="bold">reusable</emphasis></member>
      <member>Examples of reuse of aspects and pointcuts.</member>
    </simplelist>

  </sect1>

<!-- ============================== -->

  <sect1 id="examples-howto">
    <title>Obtaining, Compiling and Running the Examples</title>

    <para>
      The examples source code is part of the AspectJ distribution which may be
      downloaded from the AspectJ project page ( <ulink
      url="http://eclipse.org/aspectj" /> ).
    </para>

    <para>
      Compiling most examples is straightforward. Go the
      <filename><replaceable>InstallDir</replaceable>/examples</filename>
      directory, and look for a <filename>.lst</filename> file in one of
      the example subdirectories. Use the <literal>-arglist</literal>
      option to <literal>ajc</literal> to compile the example. For
      instance, to compile the telecom example with billing, type
    </para>

<programlisting>
ajc -argfile telecom/billing.lst
</programlisting>

    <para>
      To run the examples, your classpath must include the AspectJ run-time
      Java archive (<literal>aspectjrt.jar</literal>). You may either set the
      <literal>CLASSPATH</literal> environment variable or use the
      <literal>-classpath</literal> command line option to the Java
      interpreter:
    </para>

<programlisting>
(In Unix use a : in the CLASSPATH)
java -classpath ".:<replaceable>InstallDir</replaceable>/lib/aspectjrt.jar" telecom.billingSimulation
</programlisting>

<programlisting>
(In Windows use a ; in the CLASSPATH)
java -classpath ".;<replaceable>InstallDir</replaceable>/lib/aspectjrt.jar" telecom.billingSimulation
</programlisting>

  </sect1>


<!--  ============================================================ -->

  <sect1 id="examples-basic">
    <title>Basic Techniques</title>

    <para>
      This section presents two basic techniques of using AspectJ, one each
      from the two fundamental ways of capturing crosscutting concerns:
      with dynamic join points and advice, and with static
      introduction. Advice changes an application's behavior. Introduction
      changes both an application's behavior and its structure.
    </para>

    <para>
      The first example, <xref linkend="examples-joinPoints" />, is about
      gathering and using information about the join point that has
      triggered some advice. The second example, <xref
      linkend="examples-roles" />, concerns a crosscutting view of an
      existing class hierarchy. </para>

<!--  ======================================== -->

    <sect2 id="examples-joinPoints">
      <title>Join Points and <literal>thisJoinPoint</literal></title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/tjp</filename>.)
      </para>

      <para>
        A join point is some point in the execution of a program together
        with a view into the execution context when that point occurs. Join
        points are picked out by pointcuts.  When a program reaches a join
        point, advice on that join point may run in addition to (or instead
        of) the join point itself.
      </para>

      <para>
        When using a pointcut that picks out join points of a single kind
        by name, typicaly the the advice will know exactly what kind of
        join point it is associated with.  The pointcut may even publish
        context about the join point.  Here, for example, since the only
        join points picked out by the pointcut are calls of a certain
        method, we can get the target value and one of the argument values
        of the method calls directly.
      </para>

<programlisting><![CDATA[
before(Point p, int x): target(p)
                     && args(x)
                     && call(void setX(int)) {
    if (!p.assertX(x)) {
        System.out.println("Illegal value for x"); return;
    }
}
]]></programlisting>

     <para>
       But sometimes the shape of the join point is not so clear.  For
       instance, suppose a complex application is being debugged, and we
       want to trace when any method of some class is executed.  The
       pointcut
     </para>

<programlisting><![CDATA[
pointcut execsInProblemClass(): within(ProblemClass)
                             && execution(* *(..));
]]></programlisting>

      <para>
        will pick out each execution join point of every method defined
        within <classname>ProblemClass</classname>.  Since advice executes
        at each join point picked out by the pointcut, we can reasonably
        ask which join point was reached.
      </para>

      <para>
        Information about the join point that was matched is available to
        advice through the special variable
        <varname>thisJoinPoint</varname>, of type <ulink
        url="../api/org/aspectj/lang/JoinPoint.html"><classname>org.aspectj.lang.JoinPoint</classname></ulink>.
        Through this object we can access information such as</para>

      <itemizedlist spacing="compact">
        <listitem>
          the kind of join point that was matched
        </listitem>
        <listitem>
          the source location of the code associated with the join point
        </listitem>
        <listitem>
          normal, short and long string representations of the
          current join point
        </listitem>
        <listitem>
          the actual argument values of the join point
        </listitem>
        <listitem>
          the signature of the member associated with the join point
        </listitem>
        <listitem>the currently executing object</listitem>
        <listitem>the target object</listitem>
        <listitem>
          an object encapsulating the static information about the join
          point. This is also available through the special variable
          <varname>thisJoinPointStaticPart</varname>.</listitem>
      </itemizedlist>

      <sect3>
        <title>The <classname>Demo</classname> class</title>

        <para>The class <classname>tjp.Demo</classname> in
          <filename>tjp/Demo.java</filename> defines two methods
          <literal>foo</literal> and <literal>bar</literal> with different
          parameter lists and return types. Both are called, with suitable
          arguments, by <classname>Demo</classname>'s
          <function>go</function> method which was invoked from within its
          <function>main</function> method.
        </para>

<programlisting><![CDATA[
public class Demo {
    static Demo d;

    public static void main(String[] args){
        new Demo().go();
    }

    void go(){
        d = new Demo();
        d.foo(1,d);
        System.out.println(d.bar(new Integer(3)));
    }

    void foo(int i, Object o){
        System.out.println("Demo.foo(" + i + ", " + o + ")\n");
    }

    String bar (Integer j){
        System.out.println("Demo.bar(" + j + ")\n");
        return "Demo.bar(" + j  + ")";
    }
}
]]></programlisting>

      </sect3>

      <sect3>
        <title>The <literal>GetInfo</literal> aspect</title>

        <para>
          This aspect uses around advice to intercept the execution of
          methods <literal>foo</literal> and <literal>bar</literal> in
          <classname>Demo</classname>, and prints out information garnered
          from <literal>thisJoinPoint</literal> to the console.
        </para>

<programlisting><![CDATA[
aspect GetInfo {

   static final void println(String s){ System.out.println(s); }

   pointcut goCut(): cflow(this(Demo) && execution(void go()));

   pointcut demoExecs(): within(Demo) && execution(* *(..));

   Object around(): demoExecs() && !execution(* go()) && goCut() {
      println("Intercepted message: " +
          thisJoinPointStaticPart.getSignature().getName());
      println("in class: " +
          thisJoinPointStaticPart.getSignature().getDeclaringType().getName());
      printParameters(thisJoinPoint);
      println("Running original method: \n" );
      Object result = proceed();
      println("  result: " + result );
      return result;
   }

   static private void printParameters(JoinPoint jp) {
      println("Arguments: " );
      Object[] args = jp.getArgs();
      String[] names = ((CodeSignature)jp.getSignature()).getParameterNames();
      Class[] types = ((CodeSignature)jp.getSignature()).getParameterTypes();
      for (int i = 0; i < args.length; i++) {
         println("  "  + i + ". " + names[i] +
             " : " +            types[i].getName() +
             " = " +            args[i]);
      }
   }
}
]]></programlisting>

        <sect4>
          <title>Defining the scope of a pointcut</title>

          <para>The pointcut <function>goCut</function> is defined as

<programlisting><![CDATA[
cflow(this(Demo)) && execution(void go())
]]></programlisting>

            so that only executions made in the control flow of
            <literal>Demo.go</literal> are intercepted. The control flow
            from the method <literal>go</literal> includes the execution of
            <literal>go</literal> itself, so the definition of the around
            advice includes <literal>!execution(* go())</literal> to
            exclude it from the set of executions advised. </para>
        </sect4>

        <sect4>
          <title>Printing the class and method name</title>

          <para>
            The name of the method and that method's defining class are
            available as parts of the <ulink
            url="../api/org/aspectj/lang/Signature.html">org.aspectj.lang.Signature</ulink>
            object returned by calling <literal>getSignature()</literal> on
            either <literal>thisJoinPoint</literal> or
            <literal>thisJoinPointStaticPart</literal>.
          </para>
        </sect4>

        <sect4>
          <title>Printing the parameters</title>

          <para>
            The static portions of the parameter details, the name and
            types of the parameters, can be accessed through the <ulink
              url="../api/org/aspectj/lang/reflect/CodeSignature.html"><literal>org.aspectj.lang.reflect.CodeSignature</literal></ulink>
            associated with the join point. All execution join points have code
            signatures, so the cast to <literal>CodeSignature</literal>
            cannot fail. </para>

          <para>
            The dynamic portions of the parameter details, the actual
            values of the parameters, are accessed directly from the
            execution join point object.
          </para>
        </sect4>
      </sect3>
    </sect2>

<!-- ============================== -->

    <sect2 id="examples-roles">
      <title>Roles and Views</title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/introduction</filename>.)
      </para>

      <para>
        Like advice, inter-type declarations are members of an aspect. They
        declare members that act as if they were defined on another class.
        Unlike advice, inter-type declarations affect not only the behavior
        of the application, but also the structural relationship between an
        application's classes.
      </para>

      <para>
        This is crucial: Publically affecting the class structure of an
        application makes these modifications available to other components
        of the application.
      </para>

      <para>
        Aspects can declare inter-type

        <itemizedlist spacing="compact">
          <listitem>fields</listitem>
          <listitem>methods</listitem>
          <listitem>constructors</listitem>
        </itemizedlist>

        and can also declare that target types

        <itemizedlist spacing="compact">
          <listitem>implement new interfaces</listitem>
          <listitem>extend new classes</listitem>
        </itemizedlist>
      </para>

      <para>
        This example provides three illustrations of the use of inter-type
        declarations to encapsulate roles or views of a class. The class
        our aspect will be dealing with, <classname>Point</classname>, is a
        simple class with rectangular and polar coordinates. Our inter-type
        declarations will make the class <classname>Point</classname>, in
        turn, cloneable, hashable, and comparable. These facilities are
        provided by AspectJ without having to modify the code for the class
        <classname>Point</classname>.
      </para>

      <sect3>
        <title>The <classname>Point</classname> class</title>

        <para>The <classname>Point</classname> class defines geometric points
          whose interface includes polar and rectangular coordinates, plus some
          simple operations to relocate points. <classname>Point</classname>'s
          implementation has attributes for both its polar and rectangular
          coordinates, plus flags to indicate which currently reflect the
          position of the point. Some operations cause the polar coordinates to
          be updated from the rectangular, and some have the opposite effect.
          This implementation, which is in intended to give the minimum number
          of conversions between coordinate systems, has the property that not
          all the attributes stored in a <classname>Point</classname> object
          are necessary to give a canonical representation such as might be
          used for storing, comparing, cloning or making hash codes from
          points. Thus the aspects, though simple, are not totally trivial.
        </para>

        <para>
          The diagram below gives an overview of the aspects and their
          interaction with the class <classname>Point</classname>.</para>

        <para>
          <inlinemediaobject>
            <imageobject>
              <imagedata fileref="aspects.gif"/>
            </imageobject>
          </inlinemediaobject>
        </para>
        <para></para>

      </sect3>

      <sect3>
        <title>The <classname>CloneablePoint</classname> aspect</title>

        <para>
          This first aspect is responsible for
          <classname>Point</classname>'s implementation of the
          <classname>Cloneable</classname> interface.  It declares that
          <literal>Point implements Cloneable</literal> with a
          <literal>declare parents</literal> form, and also publically
          declares a specialized <literal>Point</literal>'s
          <literal>clone()</literal> method.  In Java, all objects inherit
          the method <literal>clone</literal> from the class
          <classname>Object</classname>, but an object is not cloneable
          unless its class also implements the interface
          <classname>Cloneable</classname>.  In addition, classes
          frequently have requirements over and above the simple
          bit-for-bit copying that <literal>Object.clone</literal> does. In
          our case, we want to update a <classname>Point</classname>'s
          coordinate systems before we actually clone the
          <classname>Point</classname>. So our aspect makes sure that
          <literal>Point</literal> overrides
          <literal>Object.clone</literal> with a new method that does what
          we want.
        </para>

        <para>
          We also define a test <literal>main</literal> method in the
          aspect for convenience.
        </para>

<programlisting><![CDATA[
public aspect CloneablePoint {

   declare parents: Point implements Cloneable;

   public Object Point.clone() throws CloneNotSupportedException {
      // we choose to bring all fields up to date before cloning.
      makeRectangular();
      makePolar();
      return super.clone();
   }

   public static void main(String[] args){
      Point p1 = new Point();
      Point p2 = null;

      p1.setPolar(Math.PI, 1.0);
      try {
         p2 = (Point)p1.clone();
      } catch (CloneNotSupportedException e) {}
      System.out.println("p1 =" + p1 );
      System.out.println("p2 =" + p2 );

      p1.rotate(Math.PI / -2);
      System.out.println("p1 =" + p1 );
      System.out.println("p2 =" + p2 );
   }
}
]]></programlisting>
      </sect3>

      <sect3>
        <title>The <classname>ComparablePoint</classname> aspect</title>

        <para>
          <classname>ComparablePoint</classname> is responsible for
          <literal>Point</literal>'s implementation of the
          <literal>Comparable</literal> interface. </para>

        <para>
          The interface <classname>Comparable</classname> defines the
          single method <literal>compareTo</literal> which can be use to define
          a natural ordering relation among the objects of a class that
          implement it.
        </para>

        <para>
          <classname>ComparablePoint</classname> uses <literal>declare
          parents</literal> to declare that <literal>Point implements
          Comparable</literal>, and also publically declares the
          appropriate <literal>compareTo(Object)</literal> method: A
          <classname>Point</classname> <literal>p1</literal> is said to be
          less than another <classname>Point</classname><literal>
          p2</literal> if <literal>p1</literal> is closer to the
          origin.
        </para>

        <para>
          We also define a test <literal>main</literal> method in the
          aspect for convenience.
        </para>

<programlisting><![CDATA[
public aspect ComparablePoint {

   declare parents: Point implements Comparable;

   public int Point.compareTo(Object o) {
      return (int) (this.getRho() - ((Point)o).getRho());
   }

   public static void main(String[] args){
      Point p1 = new Point();
      Point p2 = new Point();

      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));

      p1.setRectangular(2,5);
      p2.setRectangular(2,5);
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));

      p2.setRectangular(3,6);
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));

      p1.setPolar(Math.PI, 4);
      p2.setPolar(Math.PI, 4);
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));

      p1.rotate(Math.PI / 4.0);
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));

      p1.offset(1,1);
      System.out.println("p1 =?= p2 :" + p1.compareTo(p2));
   }
}
]]></programlisting>
      </sect3>

      <sect3>
        <title>The <classname>HashablePoint</classname> aspect</title>

        <para>
          Our third aspect is responsible for <literal>Point</literal>'s
          overriding of <literal>Object</literal>'s
          <literal>equals</literal> and <literal>hashCode</literal> methods
          in order to make <literal>Point</literal>s hashable.
        </para>

        <para>
          The method <literal>Object.hashCode</literal> returns an 
          integer, suitable for use as a hash table key.  It is not required
          that two objects which are not equal (according to the 
          <literal>equals</literal> method) return different integer
          results from <literal>hashCode</literal> but it can
          improve performance when the integer is used as a key into a 
          data structure.  However, any two objects which are equal 
          must return the same integer value from a call to 
          <literal>hashCode</literal>.  Since the default implementation
          of <literal>Object.equals</literal> returns <literal>true</literal>
          only when two objects are identical, we need to redefine both
          <function>equals</function> and <function>hashCode</function> to work
          correctly with objects of type <classname>Point</classname>. For
          example, we want two <classname>Point</classname> objects to test
          equal when they have the same <literal>x</literal> and
          <literal>y</literal> values, or the same <literal>rho</literal> and
          <literal>theta</literal> values, not just when they refer to the same
          object. We do this by overriding the methods
          <literal>equals</literal> and <literal>hashCode</literal> in the
          class <classname>Point</classname>.
        </para>

        <para>
          So <classname>HashablePoint</classname> declares
          <literal>Point</literal>'s <literal>hashCode</literal> and
          <literal>equals</literal> methods, using
          <classname>Point</classname>'s rectangular coordinates to
          generate a hash code and to test for equality. The
          <literal>x</literal> and <literal>y</literal> coordinates are
          obtained using the appropriate get methods, which ensure the
          rectangular coordinates are up-to-date before returning their
          values.
        </para>

        <para>
          And again, we supply a <literal>main</literal> method in the
          aspect for testing.
        </para>

<programlisting><![CDATA[
public aspect HashablePoint {

   public int Point.hashCode() {
      return (int) (getX() + getY() % Integer.MAX_VALUE);
   }

   public boolean Point.equals(Object o) {
      if (o == this) { return true; }
      if (!(o instanceof Point)) { return false; }
      Point other = (Point)o;
      return (getX() == other.getX()) && (getY() == other.getY());
   }

   public static void main(String[] args) {
      Hashtable h = new Hashtable();
      Point p1 = new Point();

      p1.setRectangular(10, 10);
      Point p2 = new Point();

      p2.setRectangular(10, 10);

      System.out.println("p1 = " + p1);
      System.out.println("p2 = " + p2);
      System.out.println("p1.hashCode() = " + p1.hashCode());
      System.out.println("p2.hashCode() = " + p2.hashCode());

      h.put(p1, "P1");
      System.out.println("Got: " + h.get(p2));
   }
}
]]></programlisting>

      </sect3>
    </sect2>
  </sect1>

<!--  ============================================================ -->
<!--  ============================================================ -->

  <sect1 id="examples-development">
    <title>Development Aspects</title>

    <sect2 id="tracing-using-aspects" xreflabel="tracing-using-aspects">
      <title>Tracing using aspects</title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/tracing</filename>.)
      </para>

      <para>
        Writing a class that provides tracing functionality is easy: a
        couple of functions, a boolean flag for turning tracing on and
        off, a choice for an output stream, maybe some code for
        formatting the output -- these are all elements that
        <classname>Trace</classname> classes have been known to
        have. <classname>Trace</classname> classes may be highly
        sophisticated, too, if the task of tracing the execution of a
        program demands it.
      </para>

      <para>
        But developing the support for tracing is just one part of the
        effort of inserting tracing into a program, and, most likely, not
        the biggest part. The other part of the effort is calling the
        tracing functions at appropriate times. In large systems, this
        interaction with the tracing support can be overwhelming.  Plus,
        tracing is one of those things that slows the system down, so
        these calls should often be pulled out of the system before the
        product is shipped. For these reasons, it is not unusual for
        developers to write ad-hoc scripting programs that rewrite the
        source code by inserting/deleting trace calls before and after
        the method bodies.
      </para>

      <para>
        AspectJ can be used for some of these tracing concerns in a less
        ad-hoc way.  Tracing can be seen as a concern that crosscuts the
        entire system and as such is amenable to encapsulation in an
        aspect.  In addition, it is fairly independent of what the system
        is doing. Therefore tracing is one of those kind of system
        aspects that can potentially be plugged in and unplugged without
        any side-effects in the basic functionality of the system.
      </para>

      <sect3>
        <title>An Example Application</title>

        <para>
          Throughout this example we will use a simple application that
          contains only four classes. The application is about shapes. The
          <classname>TwoDShape</classname> class is the root of the shape
          hierarchy:
        </para>

<programlisting><![CDATA[
public abstract class TwoDShape {
    protected double x, y;
    protected TwoDShape(double x, double y) {
        this.x = x; this.y = y;
    }
    public double getX() { return x; }
    public double getY() { return y; }
    public double distance(TwoDShape s) {
        double dx = Math.abs(s.getX() - x);
        double dy = Math.abs(s.getY() - y);
        return Math.sqrt(dx*dx + dy*dy);
    }
    public abstract double perimeter();
    public abstract double area();
    public String toString() {
        return (" @ (" + String.valueOf(x) + ", " + String.valueOf(y) + ") ");
    }
}
]]></programlisting>

      <para>
        <classname>TwoDShape</classname> has two subclasses,
        <classname>Circle</classname> and <classname>Square</classname>:
      </para>

<programlisting><![CDATA[
public class Circle extends TwoDShape {
    protected double r;
    public Circle(double x, double y, double r) {
        super(x, y); this.r = r;
    }
    public Circle(double x, double y) { this(  x,   y, 1.0); }
    public Circle(double r)           { this(0.0, 0.0,   r); }
    public Circle()                   { this(0.0, 0.0, 1.0); }
    public double perimeter() {
        return 2 * Math.PI * r;
    }
    public double area() {
        return Math.PI * r*r;
    }
    public String toString() {
        return ("Circle radius = " + String.valueOf(r) + super.toString());
    }
}
]]></programlisting>

<programlisting><![CDATA[
public class Square extends TwoDShape {
    protected double s;    // side
    public Square(double x, double y, double s) {
        super(x, y); this.s = s;
    }
    public Square(double x, double y) { this(  x,   y, 1.0); }
    public Square(double s)           { this(0.0, 0.0,   s); }
    public Square()                   { this(0.0, 0.0, 1.0); }
    public double perimeter() {
        return 4 * s;
    }
    public double area() {
        return s*s;
    }
    public String toString() {
        return ("Square side = " + String.valueOf(s) + super.toString());
    }
}
]]></programlisting>

      <para>
        To run this application, compile the classes. You can do it with or
        without ajc, the AspectJ compiler. If you've installed AspectJ, go
        to the directory
        <filename><replaceable>InstallDir</replaceable>/examples</filename>
        and type:
      </para>

<programlisting>
ajc -argfile tracing/notrace.lst
</programlisting>

      <para>To run the program, type</para>

<programlisting>
java tracing.ExampleMain
</programlisting>

      <para>(we don't need anything special on the classpath since this is pure
      Java code).  You should see the following output:</para>

<programlisting><![CDATA[
c1.perimeter() = 12.566370614359172
c1.area() = 12.566370614359172
s1.perimeter() = 4.0
s1.area() = 1.0
c2.distance(c1) = 4.242640687119285
s1.distance(c1) = 2.23606797749979
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>

    </sect3>
    <sect3>
      <title>Tracing&mdash;Version 1</title>

      <para>
        In a first attempt to insert tracing in this application, we will
        start by writing a <classname>Trace</classname> class that is
        exactly what we would write if we didn't have aspects.  The
        implementation is in <filename>version1/Trace.java</filename>.  Its
        public interface is:
      </para>

<programlisting><![CDATA[
public class Trace {
    public static int TRACELEVEL = 0;
    public static void initStream(PrintStream s) {...}
    public static void traceEntry(String str) {...}
    public static void traceExit(String str) {...}
}
]]></programlisting>

      <para>
        If we didn't have AspectJ, we would have to insert calls to
        <literal>traceEntry</literal> and <literal>traceExit</literal> in
        all methods and constructors we wanted to trace, and to initialize
        <literal>TRACELEVEL</literal> and the stream. If we wanted to trace
        all the methods and constructors in our example, that would amount
        to around 40 calls, and we would hope we had not forgotten any
        method. But we can do that more consistently and reliably with the
        following aspect (found in
        <filename>version1/TraceMyClasses.java</filename>):
      </para>

<programlisting><![CDATA[
aspect TraceMyClasses {
    pointcut myClass(): within(TwoDShape) || within(Circle) || within(Square);
    pointcut myConstructor(): myClass() && execution(new(..));
    pointcut myMethod(): myClass() && execution(* *(..));

    before (): myConstructor() {
        Trace.traceEntry("" + thisJoinPointStaticPart.getSignature());
    }
    after(): myConstructor() {
        Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
    }

    before (): myMethod() {
        Trace.traceEntry("" + thisJoinPointStaticPart.getSignature());
    }
    after(): myMethod() {
        Trace.traceExit("" + thisJoinPointStaticPart.getSignature());
    }
}]]></programlisting>

      <para>
        This aspect performs the tracing calls at appropriate
        times. According to this aspect, tracing is performed at the
        entrance and exit of every method and constructor defined within
        the shape hierarchy.
      </para>

      <para>
        What is printed at before and after each of the traced join points
        is the signature of the method executing. Since the signature is
        static information, we can get it through
        <literal>thisJoinPointStaticPart</literal>.
      </para>

      <para>
        To run this version of tracing, go to the directory
        <filename><replaceable>InstallDir</replaceable>/examples</filename>
        and type:
      </para>

<programlisting><![CDATA[
  ajc -argfile tracing/tracev1.lst
]]></programlisting>

      <para>
        Running the main method of
        <classname>tracing.version1.TraceMyClasses</classname> should produce
        the output:
      </para>

<programlisting><![CDATA[
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Circle(double, double, double)
  <-- tracing.Circle(double, double, double)
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Circle(double, double, double)
  <-- tracing.Circle(double, double, double)
  --> tracing.Circle(double)
  <-- tracing.Circle(double)
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Square(double, double, double)
  <-- tracing.Square(double, double, double)
  --> tracing.Square(double, double)
  <-- tracing.Square(double, double)
  --> double tracing.Circle.perimeter()
  <-- double tracing.Circle.perimeter()
c1.perimeter() = 12.566370614359172
  --> double tracing.Circle.area()
  <-- double tracing.Circle.area()
c1.area() = 12.566370614359172
  --> double tracing.Square.perimeter()
  <-- double tracing.Square.perimeter()
s1.perimeter() = 4.0
  --> double tracing.Square.area()
  <-- double tracing.Square.area()
s1.area() = 1.0
  --> double tracing.TwoDShape.distance(TwoDShape)
    --> double tracing.TwoDShape.getX()
    <-- double tracing.TwoDShape.getX()
    --> double tracing.TwoDShape.getY()
    <-- double tracing.TwoDShape.getY()
  <-- double tracing.TwoDShape.distance(TwoDShape)
c2.distance(c1) = 4.242640687119285
  --> double tracing.TwoDShape.distance(TwoDShape)
    --> double tracing.TwoDShape.getX()
    <-- double tracing.TwoDShape.getX()
    --> double tracing.TwoDShape.getY()
    <-- double tracing.TwoDShape.getY()
  <-- double tracing.TwoDShape.distance(TwoDShape)
s1.distance(c1) = 2.23606797749979
  --> String tracing.Square.toString()
    --> String tracing.TwoDShape.toString()
    <-- String tracing.TwoDShape.toString()
  <-- String tracing.Square.toString()
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>

      <para>
        When <filename>TraceMyClasses.java</filename> is not provided to
        <command>ajc</command>, the aspect does not have any affect on the
        system and the tracing is unplugged.
      </para>
    </sect3>

    <sect3>
      <title>Tracing&mdash;Version 2</title>

      <para>
        Another way to accomplish the same thing would be to write a
        reusable tracing aspect that can be used not only for these
        application classes, but for any class. One way to do this is to
        merge the tracing functionality of
        <literal>Trace&mdash;version1</literal> with the crosscutting
        support of <literal>TraceMyClasses&mdash;version1</literal>. We end
        up with a <literal>Trace</literal> aspect (found in
        <filename>version2/Trace.java</filename>) with the following public
        interface
      </para>

<programlisting><![CDATA[
abstract aspect Trace {

    public static int TRACELEVEL = 2;
    public static void initStream(PrintStream s) {...}
    protected static void traceEntry(String str) {...}
    protected static void traceExit(String str) {...}
    abstract pointcut myClass();
}
]]></programlisting>

      <para>
        In order to use it, we need to define our own subclass that knows
        about our application classes, in
        <filename>version2/TraceMyClasses.java</filename>:
      </para>

<programlisting><![CDATA[
public aspect TraceMyClasses extends Trace {
    pointcut myClass(): within(TwoDShape) || within(Circle) || within(Square);

    public static void main(String[] args) {
        Trace.TRACELEVEL = 2;
        Trace.initStream(System.err);
        ExampleMain.main(args);
    }
}
]]></programlisting>

      <para>
        Notice that we've simply made the pointcut
        <literal>classes</literal>, that was an abstract pointcut in the
        super-aspect, concrete. To run this version of tracing, go to the
        directory <filename>examples</filename> and type:
      </para>

<programlisting><![CDATA[
  ajc -argfile tracing/tracev2.lst
]]></programlisting>

      <para>
        The file tracev2.lst lists the application classes as well as this
        version of the files Trace.java and TraceMyClasses.java. Running
        the main method of
        <classname>tracing.version2.TraceMyClasses</classname> should
        output exactly the same trace information as that from version 1.
      </para>

      <para>
        The entire implementation of the new <classname>Trace</classname>
        class is:
      </para>

<programlisting><![CDATA[
abstract aspect Trace {

    // implementation part

    public static int TRACELEVEL = 2;
    protected static PrintStream stream = System.err;
    protected static int callDepth = 0;

    public static void initStream(PrintStream s) {
        stream = s;
    }
    protected static void traceEntry(String str) {
        if (TRACELEVEL == 0) return;
        if (TRACELEVEL == 2) callDepth++;
        printEntering(str);
    }
    protected static void traceExit(String str) {
        if (TRACELEVEL == 0) return;
        printExiting(str);
        if (TRACELEVEL == 2) callDepth--;
    }
    private static void printEntering(String str) {
        printIndent();
        stream.println("--> " + str);
    }
    private static void printExiting(String str) {
        printIndent();
        stream.println("<-- " + str);
    }
    private static void printIndent() {
        for (int i = 0; i < callDepth; i++)
            stream.print("  ");
    }

    // protocol part

    abstract pointcut myClass();

    pointcut myConstructor(): myClass() && execution(new(..));
    pointcut myMethod(): myClass() && execution(* *(..));

    before(): myConstructor() {
        traceEntry("" + thisJoinPointStaticPart.getSignature());
    }
    after(): myConstructor() {
        traceExit("" + thisJoinPointStaticPart.getSignature());
    }

    before(): myMethod() {
        traceEntry("" + thisJoinPointStaticPart.getSignature());
    }
    after(): myMethod() {
        traceExit("" + thisJoinPointStaticPart.getSignature());
    }
}
]]></programlisting>

      <para>
        This version differs from version 1 in several subtle ways. The
        first thing to notice is that this <classname>Trace</classname>
        class merges the functional part of tracing with the crosscutting
        of the tracing calls. That is, in version 1, there was a sharp
        separation between the tracing support (the class
        <classname>Trace</classname>) and the crosscutting usage of it (by
        the class <classname>TraceMyClasses</classname>). In this version
        those two things are merged. That's why the description of this
        class explicitly says that "Trace messages are printed before and
        after constructors and methods are," which is what we wanted in the
        first place. That is, the placement of the calls, in this version,
        is established by the aspect class itself, leaving less opportunity
        for misplacing calls.</para>

      <para>
        A consequence of this is that there is no need for providing
        <literal>traceEntry</literal> and <literal>traceExit</literal> as
        public operations of this class. You can see that they were
        classified as protected. They are supposed to be internal
        implementation details of the advice.
      </para>

      <para>
        The key piece of this aspect is the abstract pointcut classes that
        serves as the base for the definition of the pointcuts constructors
        and methods. Even though <classname>classes</classname> is
        abstract, and therefore no concrete classes are mentioned, we can
        put advice on it, as well as on the pointcuts that are based on
        it. The idea is "we don't know exactly what the pointcut will be,
        but when we do, here's what we want to do with it." In some ways,
        abstract pointcuts are similar to abstract methods. Abstract
        methods don't provide the implementation, but you know that the
        concrete subclasses will, so you can invoke those methods.
      </para>
    </sect3>
    </sect2>
  </sect1>

<!--  ============================================================ -->
<!--  ============================================================ -->

  <sect1 id="examples-production">
    <title>Production Aspects</title>

    <!--  ==================== -->

    <sect2 id="a-bean-aspect" xreflabel="a-bean-aspect"><!-- A Bean Aspect -->
      <title>A Bean Aspect</title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/bean</filename>.)
      </para>

      <para>
        This example examines an aspect that makes Point objects into 
        Java beans with bound properties.
      </para>

      <para>
        Java beans are reusable software components that can be visually
        manipulated in a builder tool. The requirements for an object to be
        a bean are few. Beans must define a no-argument constructor and
        must be either <classname>Serializable</classname> or
        <classname>Externalizable</classname>. Any properties of the object
        that are to be treated as bean properties should be indicated by
        the presence of appropriate <literal>get</literal> and
        <literal>set</literal> methods whose names are
        <literal>get</literal><emphasis>property</emphasis> and
        <literal>set </literal><emphasis>property</emphasis> where
        <emphasis>property</emphasis> is the name of a field in the bean
        class. Some bean properties, known as bound properties, fire events
        whenever their values change so that any registered listeners (such
        as, other beans) will be informed of those changes. Making a bound
        property involves keeping a list of registered listeners, and
        creating and dispatching event objects in methods that change the
        property values, such as set<emphasis>property</emphasis>
        methods.
      </para>

      <para>
        <classname>Point</classname> is a simple class representing points
        with rectangular coordinates. <classname>Point</classname> does not
        know anything about being a bean: there are set methods for
        <literal>x</literal> and <literal>y</literal> but they do not fire
        events, and the class is not serializable. Bound is an aspect that
        makes <classname>Point</classname> a serializable class and makes
        its <literal>get</literal> and <literal>set</literal> methods
        support the bound property protocol.
      </para>

    <sect3>
      <title>The <classname>Point</classname> class</title>

      <para>
        The <classname>Point</classname> class is a very simple class with
        trivial getters and setters, and a simple vector offset method.
      </para>

<programlisting><![CDATA[
class Point {

  protected int x = 0;
  protected int y = 0;

  public int getX() {
    return x;
  }

  public int getY() {
    return y;
  }

  public void setRectangular(int newX, int newY) {
    setX(newX);
    setY(newY);
  }

  public void setX(int newX) {
    x = newX;
  }

  public void setY(int newY) {
    y = newY;
  }

  public void offset(int deltaX, int deltaY) {
    setRectangular(x + deltaX, y + deltaY);
  }

  public String toString() {
    return "(" + getX() + ", " + getY() + ")" ;
  }
}
]]></programlisting>

    </sect3>

    <sect3>
      <title>The <classname>BoundPoint</classname> aspect</title>

      <para>
        The <classname>BoundPoint</classname> aspect is responsible for
        <literal>Point</literal>'s "beanness". The first thing it does is
        privately declare that each <literal>Point</literal> has a
        <literal>support</literal> field that holds reference to an
        instance of <classname>PropertyChangeSupport</classname>.  

<programlisting><![CDATA[
  private PropertyChangeSupport Point.support = new PropertyChangeSupport(this);
]]></programlisting>

        The property change support object must be constructed with a
        reference to the bean for which it is providing support, so it is
        initialized by passing it <literal>this</literal>, an instance of
        <classname>Point</classname>.  Since the <literal>support</literal>
        field is private declared in the aspect, only the code in the
        aspect can refer to it.
      </para>

      <para>
        The aspect also declares <literal>Point</literal>'s methods for
        registering and managing listeners for property change events,
        which delegate the work to the property change support object:

<programlisting><![CDATA[
  public void Point.addPropertyChangeListener(PropertyChangeListener listener){
    support.addPropertyChangeListener(listener);
  }
  public void Point.addPropertyChangeListener(String propertyName,
                                              PropertyChangeListener listener){

    support.addPropertyChangeListener(propertyName, listener);
  }
  public void Point.removePropertyChangeListener(String propertyName,
                                                 PropertyChangeListener listener) {
    support.removePropertyChangeListener(propertyName, listener);
  }
  public void Point.removePropertyChangeListener(PropertyChangeListener listener) {
    support.removePropertyChangeListener(listener);
  }
  public void Point.hasListeners(String propertyName) {
    support.hasListeners(propertyName);
  }
]]></programlisting>
      </para>

      <para>
        The aspect is also responsible for making sure
        <classname>Point</classname> implements the
        <classname>Serializable</classname> interface:

<programlisting><![CDATA[
  declare parents: Point implements Serializable;
]]></programlisting>

        Implementing this interface in Java does not require any methods to
        be implemented. Serialization for <classname>Point</classname>
        objects is provided by the default serialization method.
      </para>

      <para>
        The <function>setters</function> pointcut picks out calls to the
        <literal>Point</literal>'s <literal>set</literal> methods: any
        method whose name begins with "<literal>set</literal>" and takes
        one parameter. The around advice on <literal>setters()</literal>
        stores the values of the <literal>X</literal> and
        <literal>Y</literal> properties, calls the original
        <literal>set</literal> method and then fires the appropriate
        property change event according to which set method was
        called. 
      </para>

<programlisting><![CDATA[
aspect BoundPoint {
  private PropertyChangeSupport Point.support = new PropertyChangeSupport(this);

  public void Point.addPropertyChangeListener(PropertyChangeListener listener){
    support.addPropertyChangeListener(listener);
  }
  public void Point.addPropertyChangeListener(String propertyName,
                                              PropertyChangeListener listener){

    support.addPropertyChangeListener(propertyName, listener);
  }
  public void Point.removePropertyChangeListener(String propertyName,
                                                 PropertyChangeListener listener) {
    support.removePropertyChangeListener(propertyName, listener);
  }
  public void Point.removePropertyChangeListener(PropertyChangeListener listener) {
    support.removePropertyChangeListener(listener);
  }
  public void Point.hasListeners(String propertyName) {
    support.hasListeners(propertyName);
  }

  declare parents: Point implements Serializable;

  pointcut setter(Point p): call(void Point.set*(*)) && target(p);

  void around(Point p): setter(p) {
        String propertyName =
      thisJoinPointStaticPart.getSignature().getName().substring("set".length());
        int oldX = p.getX();
        int oldY = p.getY();
        proceed(p);
        if (propertyName.equals("X")){
      firePropertyChange(p, propertyName, oldX, p.getX());
        } else {
      firePropertyChange(p, propertyName, oldY, p.getY());
        }
  }

  void firePropertyChange(Point p,
                          String property,
                          double oldval,
                          double newval) {
        p.support.firePropertyChange(property,
                                 new Double(oldval),
                                 new Double(newval));
  }
}
]]></programlisting>

    </sect3>

    <sect3>
      <title>The Test Program</title>

      <para>
        The test program registers itself as a property change listener to
        a <literal>Point</literal> object that it creates and then performs
        simple manipulation of that point: calling its set methods and the
        offset method. Then it serializes the point and writes it to a file
        and then reads it back. The result of saving and restoring the
        point is that a new point is created.
      </para>

<programlisting><![CDATA[
  class Demo implements PropertyChangeListener {

    static final String fileName = "test.tmp";

    public void propertyChange(PropertyChangeEvent e){
      System.out.println("Property " + e.getPropertyName() + " changed from " +
         e.getOldValue() + " to " + e.getNewValue() );
    }

    public static void main(String[] args){
      Point p1 = new Point();
      p1.addPropertyChangeListener(new Demo());
      System.out.println("p1 =" + p1);
      p1.setRectangular(5,2);
      System.out.println("p1 =" + p1);
      p1.setX( 6 );
      p1.setY( 3 );
      System.out.println("p1 =" + p1);
      p1.offset(6,4);
      System.out.println("p1 =" + p1);
      save(p1, fileName);
      Point p2 = (Point) restore(fileName);
      System.out.println("Had: " + p1);
      System.out.println("Got: " + p2);
      }
    ...
  }
]]></programlisting>

    </sect3>

    <sect3>
      <title>Compiling and Running the Example</title>

      <para>
        To compile and run this example, go to the examples directory and type:
      </para>

<programlisting><![CDATA[
ajc -argfile bean/files.lst
java bean.Demo
]]></programlisting>

      </sect3>
    </sect2>

    <!--  ==================== -->

    <sect2 id="the-subject-observer-protocol" xreflabel="the-subject-observer-protocol">
      <title>The Subject/Observer Protocol</title>

      <para>
        (The code for this example is in
	<filename><replaceable>InstallDir</replaceable>/examples/observer</filename>.)
      </para>

      <para>
        This demo illustrates how the Subject/Observer design pattern can be
        coded with aspects. 
      </para>

      <para>
         The demo consists of the following: A colored label is a
         renderable object that has a color that cycles through a set of
         colors, and a number that records the number of cycles it has been
         through. A button is an action item that records when it is
         clicked.
      </para>

      <para>
        With these two kinds of objects, we can build up a Subject/Observer
        relationship in which colored labels observe the clicks of buttons;
        that is, where colored labels are the observers and buttons are the
        subjects.
      </para>

      <para>
        The demo is designed and implemented using the Subject/Observer
        design pattern. The remainder of this example explains the classes
        and aspects of this demo, and tells you how to run it.
      </para>

    <sect3>
      <title>Generic Components</title>

      <para>
        The generic parts of the protocol are the interfaces
        <classname>Subject</classname> and <classname>Observer</classname>,
        and the abstract aspect
        <classname>SubjectObserverProtocol</classname>. The
        <classname>Subject</classname> interface is simple, containing
        methods to add, remove, and view <classname>Observer</classname>
        objects, and a method for getting data about state changes:
      </para>

<programlisting><![CDATA[
    interface Subject {
      void addObserver(Observer obs);
      void removeObserver(Observer obs);
      Vector getObservers();
      Object getData();
  }
]]></programlisting>

      <para> 
        The <classname>Observer</classname> interface is just as simple,
        with methods to set and get <classname>Subject</classname> objects,
        and a method to call when the subject gets updated.
      </para>

<programlisting><![CDATA[
  interface Observer {
      void setSubject(Subject s);
      Subject getSubject();
      void update();
  }
]]></programlisting>

      <para>
        The <classname>SubjectObserverProtocol</classname> aspect contains
        within it all of the generic parts of the protocol, namely, how to
        fire the <classname>Observer</classname> objects' update methods
        when some state changes in a subject.
      </para>

<programlisting><![CDATA[
  abstract aspect SubjectObserverProtocol {

      abstract pointcut stateChanges(Subject s);

      after(Subject s): stateChanges(s) {
          for (int i = 0; i < s.getObservers().size(); i++) {
              ((Observer)s.getObservers().elementAt(i)).update();
          }
      }

      private Vector Subject.observers = new Vector();
      public void   Subject.addObserver(Observer obs) {
          observers.addElement(obs);
          obs.setSubject(this);
      }
      public void   Subject.removeObserver(Observer obs) {
          observers.removeElement(obs);
          obs.setSubject(null);
      }
      public Vector Subject.getObservers() { return observers; }

      private Subject Observer.subject = null;
      public void     Observer.setSubject(Subject s) { subject = s; }
      public Subject  Observer.getSubject() { return subject; }

  }
]]></programlisting>

      <para>
        Note that this aspect does three things. It define an abstract
        pointcut that extending aspects can override. It defines advice
        that should run after the join points of the pointcut. And it
        declares an inter-tpye field and two inter-type methods so that
        each <literal>Observer</literal> can hold onto its <literal>Subject</literal>. 
      </para>
    </sect3>

    <sect3>
      <title>Application Classes</title>

      <para>
        <classname>Button</classname> objects extend
        <classname>java.awt.Button</classname>, and all they do is make
        sure the <literal>void click()</literal> method is called whenever
        a button is clicked.
      </para>

<programlisting><![CDATA[
  class Button extends java.awt.Button {

      static final Color  defaultBackgroundColor = Color.gray;
      static final Color  defaultForegroundColor = Color.black;
      static final String defaultText = "cycle color";

      Button(Display display) {
          super();
          setLabel(defaultText);
          setBackground(defaultBackgroundColor);
          setForeground(defaultForegroundColor);
          addActionListener(new ActionListener() {
                  public void actionPerformed(ActionEvent e) {
                      Button.this.click();
                  }
              });
          display.addToFrame(this);
      }

      public void click() {}

  }
]]></programlisting>

      <para>
        Note that this class knows nothing about being a Subject.
      </para>

      <para>
        ColorLabel objects are labels that support the void colorCycle()
        method. Again, they know nothing about being an observer.
      </para>

<programlisting><![CDATA[
  class ColorLabel extends Label {

      ColorLabel(Display display) {
          super();
          display.addToFrame(this);
      }

      final static Color[] colors = {Color.red, Color.blue,
                                     Color.green, Color.magenta};
      private int colorIndex = 0;
      private int cycleCount = 0;
      void colorCycle() {
          cycleCount++;
          colorIndex = (colorIndex + 1) % colors.length;
          setBackground(colors[colorIndex]);
          setText("" + cycleCount);
      }
  }
]]></programlisting>

      <para>
        Finally, the <classname>SubjectObserverProtocolImpl</classname>
        implements the subject/observer protocol, with
        <classname>Button</classname> objects as subjects and
        <classname>ColorLabel</classname> objects as observers:
      </para>

<programlisting><![CDATA[
package observer;

import java.util.Vector;

aspect SubjectObserverProtocolImpl extends SubjectObserverProtocol {

    declare parents: Button implements Subject;
    public Object Button.getData() { return this; }

    declare parents: ColorLabel implements Observer;
    public void    ColorLabel.update() {
        colorCycle();
    }

    pointcut stateChanges(Subject s):
        target(s) &&
        call(void Button.click());

}]]></programlisting>

      <para>
        It does this by assuring that <classname>Button</classname> and
        <classname>ColorLabel</classname> implement the appropriate
        interfaces, declaring that they implement the methods required by
        those interfaces, and providing a definition for the abstract
        <literal>stateChanges</literal> pointcut. Now, every time a
        <classname>Button</classname> is clicked, all
        <classname>ColorLabel</classname> objects observing that button
        will <literal>colorCycle</literal>.
      </para>
    </sect3>

    <sect3>
      <title>Compiling and Running</title>

      <para> 
        <classname>Demo</classname> is the top class that starts this
        demo. It instantiates a two buttons and three observers and links
        them together as subjects and observers. So to run the demo, go to
        the <filename>examples</filename> directory and type:
      </para>

<programlisting><![CDATA[
  ajc -argfile observer/files.lst
  java observer.Demo
]]></programlisting>

      </sect3>
    </sect2>

    <!--  ==================== -->

    <sect2 id="a-simple-telecom-simulation" xreflabel="a-simple-telecom-simulation">
      <title>A Simple Telecom Simulation</title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/telecom</filename>.)
      </para>

      <para>
	This example illustrates some ways that dependent concerns can be
	encoded with aspects. It uses an example system comprising a simple
	model of telephone connections to which timing and billing features
	are added using aspects, where the billing feature depends upon the
	timing feature.
      </para>

      <sect3>
	<title>The Application</title>

	<para>
	  The example application is a simple simulation of a telephony
	  system in which customers make, accept, merge and hang-up both
	  local and long distance calls. The application architecture is in
	  three layers.
	</para>

	<itemizedlist>
	  <listitem>
	    <para>
	      The basic objects provide basic functionality to simulate
	      customers, calls and connections (regular calls have one
	      connection, conference calls have more than one).
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      The timing feature is concerned with timing the connections
	      and keeping the total connection time per customer. Aspects
	      are used to add a timer to each connection and to manage the
	      total time per customer.
	    </para>
	  </listitem>

	  <listitem>
	    <para>
	      The billing feature is concerned with charging customers for
	      the calls they make. Aspects are used to calculate a charge
	      per connection and, upon termination of a connection, to add
	      the charge to the appropriate customer's bill. The billing
	      aspect builds upon the timing aspect: it uses a pointcut
	      defined in Timing and it uses the timers that are associated
	      with connections.
	    </para>
	  </listitem>
	</itemizedlist>

        <para>
          The simulation of system has three configurations: basic, timing
          and billing. Programs for the three configurations are in classes
          <classname>BasicSimulation</classname>,
          <classname>TimingSimulation</classname> and
          <classname>BillingSimulation</classname>. These share a common
          superclass <classname>AbstractSimulation</classname>, which
          defines the method run with the simulation itself and the method
          wait used to simulate elapsed time.
        </para>
      </sect3>

      <sect3>
        <title>The Basic Objects</title>

        <para>
          The telecom simulation comprises the classes
          <classname>Customer</classname>, <classname>Call</classname> and
          the abstract class <classname>Connection</classname> with its two
          concrete subclasses <classname>Local</classname> and
          <classname>LongDistance</classname>. Customers have a name and a
          numeric area code. They also have methods for managing
          calls. Simple calls are made between one customer (the caller)
          and another (the receiver), a <classname>Connection</classname>
          object is used to connect them. Conference calls between more
          than two customers will involve more than one connection. A
          customer may be involved in many calls at one time.

          <inlinemediaobject>
            <imageobject>
              <imagedata fileref="telecom.gif"/>
            </imageobject>
          </inlinemediaobject>
        </para>

      </sect3>

      <sect3>
        <title>The <classname>Customer</classname> class</title>

        <para>
          <classname>Customer</classname> has methods
          <literal>call</literal>, <literal>pickup</literal>,
          <literal>hangup</literal> and <literal>merge</literal> for
          managing calls.
        </para>

<programlisting><![CDATA[
public class Customer {

      private String name;
      private int areacode;
      private Vector calls = new Vector();

      protected void removeCall(Call c){
          calls.removeElement(c);
      }

      protected void addCall(Call c){
          calls.addElement(c);
      }

      public Customer(String name, int areacode) {
          this.name = name;
          this.areacode = areacode;
      }

      public String toString() {
          return name + "(" + areacode + ")";
      }

      public int getAreacode(){
          return areacode;
      }

      public boolean localTo(Customer other){
          return areacode == other.areacode;
      }

      public Call call(Customer receiver) {
          Call call = new Call(this, receiver);
          addCall(call);
          return call;
      }

      public void pickup(Call call) {
          call.pickup();
          addCall(call);
      }

      public void hangup(Call call) {
          call.hangup(this);
          removeCall(call);
      }

      public void merge(Call call1, Call call2){
          call1.merge(call2);
          removeCall(call2);
      }
  }
]]></programlisting>

    </sect3>

    <sect3>
      <title>The <classname>Call</classname> class</title>

      <para>
        Calls are created with a caller and receiver who are customers. If
        the caller and receiver have the same area code then the call can
        be established with a <classname>Local</classname> connection (see
        below), otherwise a <classname>LongDistance</classname> connection
        is required.  A call comprises a number of connections between
        customers. Initially there is only the connection between the
        caller and receiver but additional connections can be added if
        calls are merged to form conference calls.
      </para>
    </sect3>

    <sect3>
      <title>The <classname>Connection</classname> class</title>

      <para>
        The class <classname>Connection</classname> models the physical
        details of establishing a connection between customers. It does
        this with a simple state machine (connections are initially
        <literal>PENDING</literal>, then <literal>COMPLETED</literal> and
        finally <literal>DROPPED</literal>). Messages are printed to the
        console so that the state of connections can be
        observed. Connection is an abstract class with two concrete
        subclasses: <classname>Local</classname> and
        <classname>LongDistance</classname>.
      </para>

<programlisting><![CDATA[
  abstract class Connection {

      public static final int PENDING = 0;
      public static final int COMPLETE = 1;
      public static final int DROPPED = 2;

      Customer caller, receiver;
      private int state = PENDING;

      Connection(Customer a, Customer b) {
          this.caller = a;
          this.receiver = b;
      }

      public int getState(){
          return state;
      }

      public Customer getCaller() { return caller; }

      public Customer getReceiver() { return receiver; }

      void complete() {
          state = COMPLETE;
          System.out.println("connection completed");
      }

      void drop() {
          state = DROPPED;
          System.out.println("connection dropped");
      }

      public boolean connects(Customer c){
          return (caller == c || receiver == c);
      }

  }
]]></programlisting>

    </sect3>

    <sect3>
      <title>The <literal>Local</literal> and <literal>LongDistance</literal> classes</title>

      <para>
        The two kinds of connections supported by our simulation are
        <literal>Local</literal> and <literal>LongDistance</literal>
        connections.
      </para>

<programlisting><![CDATA[
  class Local extends Connection {
      Local(Customer a, Customer b) {
          super(a, b);
          System.out.println("[new local connection from " +
             a + " to " + b + "]");
      }
  }
]]></programlisting>

<programlisting><![CDATA[
  class LongDistance extends Connection {
      LongDistance(Customer a, Customer b) {
          super(a, b);
          System.out.println("[new long distance connection from " +
              a + " to " + b + "]");
      }
  }
]]></programlisting>

      </sect3>

    <sect3>
      <title>Compiling and Running the Basic Simulation</title>

      <para>
        The source files for the basic system are listed in the file
        <filename>basic.lst</filename>. To build and run the basic system,
        in a shell window, type these commands:
      </para>

<programlisting><![CDATA[
ajc -argfile telecom/basic.lst
java telecom.BasicSimulation
]]></programlisting>

      </sect3>

    <sect3>
      <title>The Timing aspect</title>

      <para>
        The <classname>Timing</classname> aspect keeps track of total
        connection time for each <classname>Customer</classname> by
        starting and stopping a timer associated with each connection. It
        uses some helper classes:
      </para>

      <sect4>
        <title>The <classname>Timer</classname> class</title>

        <para>
          A <classname>Timer</classname> object simply records the current
          time when it is started and stopped, and returns their difference
          when asked for the elapsed time. The aspect
          <classname>TimerLog</classname> (below) can be used to cause the
          start and stop times to be printed to standard output.
        </para>

<programlisting><![CDATA[
  class Timer {
      long startTime, stopTime;

      public void start() {
          startTime = System.currentTimeMillis();
          stopTime = startTime;
      }

      public void stop() {
          stopTime = System.currentTimeMillis();
      }

      public long getTime() {
          return stopTime - startTime;
      }
  }
]]></programlisting>

        </sect4>
      </sect3>

      <sect3>
        <title>The <classname>TimerLog</classname> aspect</title>

        <para>
          The <classname>TimerLog</classname> aspect can be included in a
          build to get the timer to announce when it is started and
          stopped.
        </para>

<programlisting><![CDATA[
public aspect TimerLog {

    after(Timer t): target(t) && call(* Timer.start())  {
      System.err.println("Timer started: " + t.startTime);
    }

    after(Timer t): target(t) && call(* Timer.stop()) {
      System.err.println("Timer stopped: " + t.stopTime);
    }
}
]]></programlisting>

      </sect3>

      <sect3>
        <title>The <classname>Timing</classname> aspect</title>

        <para>
          The <classname>Timing</classname> aspect is declares an
          inter-type field <literal>totalConnectTime</literal> for 
          <classname>Customer</classname> to store the accumulated connection
          time per <classname>Customer</classname>.  It also declares that
          each <classname>Connection</classname> object has a timer. 

<programlisting><![CDATA[
    public long Customer.totalConnectTime = 0;
    private Timer Connection.timer = new Timer();
]]></programlisting>

          Two pieces of after advice ensure that the timer is started when
          a connection is completed and and stopped when it is dropped. The
          pointcut <literal>endTiming</literal> is defined so that it can
          be used by the <classname>Billing</classname> aspect.
        </para>

<programlisting><![CDATA[
public aspect Timing {

    public long Customer.totalConnectTime = 0;

    public long getTotalConnectTime(Customer cust) {
        return cust.totalConnectTime;
    }
    private Timer Connection.timer = new Timer();
    public Timer getTimer(Connection conn) { return conn.timer; }

    after (Connection c): target(c) && call(void Connection.complete()) {
        getTimer(c).start();
    }

    pointcut endTiming(Connection c): target(c) &&
        call(void Connection.drop());

    after(Connection c): endTiming(c) {
        getTimer(c).stop();
        c.getCaller().totalConnectTime += getTimer(c).getTime();
        c.getReceiver().totalConnectTime += getTimer(c).getTime();
    }
}]]></programlisting>

    </sect3>

    <sect3>
      <title>The <literal>Billing</literal> aspect</title>

      <para>
        The Billing system adds billing functionality to the telecom
        application on top of timing.
      </para>

      <para>
        The <classname>Billing</classname> aspect declares that each
        <classname>Connection</classname> has a <literal>payer</literal>
        inter-type field to indicate who initiated the call and therefore
        who is responsible to pay for it. It also declares the inter-type
        method <literal>callRate</literal> of
        <classname>Connection</classname> so that local and long distance
        calls can be charged differently. The call charge must be
        calculated after the timer is stopped; the after advice on pointcut
        <literal>Timing.endTiming</literal> does this, and
        <classname>Billing</classname> is declared to be more precedent
        than <classname>Timing</classname> to make sure that this advice
        runs after <classname>Timing</classname>'s advice on the same join
        point.  Finally, it declares inter-type methods and fields for
        <classname>Customer</classname> to handle the
        <literal>totalCharge</literal>. 
      </para>

<programlisting><![CDATA[
public aspect Billing {
    // precedence required to get advice on endtiming in the right order
    declare precedence: Billing, Timing;

    public static final long LOCAL_RATE = 3;
    public static final long LONG_DISTANCE_RATE = 10;

    public Customer Connection.payer;
    public Customer getPayer(Connection conn) { return conn.payer; }

    after(Customer cust) returning (Connection conn):
        args(cust, ..) && call(Connection+.new(..)) {
        conn.payer = cust;
    }

    public abstract long Connection.callRate();

    public long LongDistance.callRate() { return LONG_DISTANCE_RATE; }
    public long Local.callRate() { return LOCAL_RATE; }

    after(Connection conn): Timing.endTiming(conn) {
        long time = Timing.aspectOf().getTimer(conn).getTime();
        long rate = conn.callRate();
        long cost = rate * time;
        getPayer(conn).addCharge(cost);
    }

    public long Customer.totalCharge = 0;
    public long getTotalCharge(Customer cust) { return cust.totalCharge; }

    public void Customer.addCharge(long charge){
        totalCharge += charge;
    }
}
]]></programlisting>

    </sect3>

    <sect3>
      <title>Accessing the inter-type state</title>

      <para>
        Both the aspects <classname>Timing</classname> and
        <classname>Billing</classname> contain the definition of operations
        that the rest of the system may want to access. For example, when
        running the simulation with one or both aspects, we want to find
        out how much time each customer spent on the telephone and how big
        their bill is. That information is also stored in the classes, but
        they are accessed through static methods of the aspects, since the
        state they refer to is private to the aspect.
      </para>

      <para>
        Take a look at the file
        <filename>TimingSimulation.java</filename>. The most important
        method of this class is the method
        <filename>report(Customer)</filename>, which is used in the method
        run of the superclass
        <classname>AbstractSimulation</classname>. This method is intended
        to print out the status of the customer, with respect to the
        <classname>Timing</classname> feature.
      </para>

<programlisting><![CDATA[
  protected void report(Customer c){
      Timing t = Timing.aspectOf();
      System.out.println(c + " spent " + t.getTotalConnectTime(c));
  }
]]></programlisting>
      </sect3>

    <sect3>
      <title>Compiling and Running</title>

      <para>
        The files timing.lst and billing.lst contain file lists for the
        timing and billing configurations. To build and run the application
        with only the timing feature, go to the directory examples and
        type:
      </para>

<programlisting><![CDATA[
  ajc -argfile telecom/timing.lst
  java telecom.TimingSimulation
]]></programlisting>

      <para>
        To build and run the application with the timing and billing
        features, go to the directory examples and type:
      </para>

<programlisting><![CDATA[
  ajc -argfile telecom/billing.lst
  java telecom.BillingSimulation
]]></programlisting>

      </sect3>

    <sect3>
      <title>Discussion</title>

      <para>
        There are some explicit dependencies between the aspects Billing
        and Timing:

        <itemizedlist>
          <listitem>
            <para>
              Billing is declared more precedent than Timing so that Billing's
              after advice runs after that of Timing when they are on the
              same join point.
            </para>
          </listitem>

          <listitem>
            <para>
              Billing uses the pointcut Timing.endTiming.
            </para>
          </listitem>

          <listitem>
            <para>
              Billing needs access to the timer associated with a connection.
            </para>
          </listitem>
        </itemizedlist>
      </para>
    </sect3>
    </sect2>
  </sect1>

<!--  ============================================================ -->
<!--  ============================================================ -->

  <sect1 id="examples-reusable">
    <title>Reusable Aspects</title>

    <sect2 id="tracing-using-aspects-revisited" xreflabel="tracing-using-aspects-revisited">
      <title>Tracing using Aspects, Revisited</title>

      <para>
        (The code for this example is in
        <filename><replaceable>InstallDir</replaceable>/examples/tracing</filename>.)
      </para>

      <sect3>
        <title>Tracing&mdash;Version 3</title>

        <para>
          One advantage of not exposing the methods traceEntry and
          traceExit as public operations is that we can easily change their
          interface without any dramatic consequences in the rest of the
          code.
        </para>

	<para>
	  Consider, again, the program without AspectJ. Suppose, for
	  example, that at some point later the requirements for tracing
	  change, stating that the trace messages should always include the
	  string representation of the object whose methods are being
	  traced. This can be achieved in at least two ways. One way is
	  keep the interface of the methods <literal>traceEntry</literal>
	  and <literal>traceExit</literal> as it was before,
	</para>

<programlisting><![CDATA[
  public static void traceEntry(String str);
  public static void traceExit(String str);
]]></programlisting>

	<para>
	  In this case, the caller is responsible for ensuring that the
	  string representation of the object is part of the string given
	  as argument.  So, calls must look like:
	</para>

<programlisting><![CDATA[
  Trace.traceEntry("Square.distance in " + toString());
]]></programlisting>

	<para>
	  Another way is to enforce the requirement with a second argument
	  in the trace operations, e.g.
	</para>

<programlisting><![CDATA[
  public static void traceEntry(String str, Object obj);
  public static void traceExit(String str, Object obj);
]]></programlisting>

	<para>
	  In this case, the caller is still responsible for sending the
	  right object, but at least there is some guarantees that some
	  object will be passed. The calls will look like:
	</para>

<programlisting><![CDATA[
  Trace.traceEntry("Square.distance", this);
]]></programlisting>

	<para>
	  In either case, this change to the requirements of tracing will
	  have dramatic consequences in the rest of the code -- every call
	  to the trace operations traceEntry and traceExit must be changed!
	</para>

	<para>
	  Here's another advantage of doing tracing with an aspect. We've
	  already seen that in version 2 <literal>traceEntry</literal> and
	  <literal>traceExit</literal> are not publicly exposed. So
	  changing their interfaces, or the way they are used, has only a
	  small effect inside the <classname>Trace</classname>
	  class. Here's a partial view at the implementation of
	  <classname>Trace</classname>, version 3. The differences with
	  respect to version 2 are stressed in the comments:
	</para>

<programlisting><![CDATA[
abstract aspect Trace {

    public static int TRACELEVEL = 0;
    protected static PrintStream stream = null;
    protected static int callDepth = 0;

    public static void initStream(PrintStream s) {
        stream = s;
    }

    protected static void traceEntry(String str, Object o) {
        if (TRACELEVEL == 0) return;
        if (TRACELEVEL == 2) callDepth++;
        printEntering(str + ": " + o.toString());
    }

    protected static void traceExit(String str, Object o) {
        if (TRACELEVEL == 0) return;
        printExiting(str + ": " + o.toString());
        if (TRACELEVEL == 2) callDepth--;
    }

    private static void printEntering(String str) {
        printIndent();
        stream.println("Entering " + str);
    }

    private static void printExiting(String str) {
        printIndent();
        stream.println("Exiting " + str);
    }

    private static void printIndent() {
        for (int i = 0; i < callDepth; i++)
            stream.print("  ");
    }

    abstract pointcut myClass(Object obj);

    pointcut myConstructor(Object obj): myClass(obj) && execution(new(..));
    pointcut myMethod(Object obj): myClass(obj) &&
        execution(* *(..)) && !execution(String toString());

    before(Object obj): myConstructor(obj) {
        traceEntry("" + thisJoinPointStaticPart.getSignature(), obj);
    }
    after(Object obj): myConstructor(obj) {
        traceExit("" + thisJoinPointStaticPart.getSignature(), obj);
    }

    before(Object obj): myMethod(obj) {
        traceEntry("" + thisJoinPointStaticPart.getSignature(), obj);
    }
    after(Object obj): myMethod(obj) {
        traceExit("" + thisJoinPointStaticPart.getSignature(), obj);
    }
}
]]></programlisting>

      <para>
        As you can see, we decided to apply the first design by preserving
        the interface of the methods <literal>traceEntry</literal> and
        <literal>traceExit</literal>. But it doesn't matter&mdash;we could
        as easily have applied the second design (the code in the directory
        <filename>examples/tracing/version3</filename> has the second
        design).  The point is that the effects of this change in the
        tracing requirements are limited to the
        <classname>Trace</classname> aspect class.
      </para>

      <para>
        One implementation change worth noticing is the specification of
        the pointcuts. They now expose the object. To maintain full
        consistency with the behavior of version 2, we should have included
        tracing for static methods, by defining another pointcut for static
        methods and advising it. We leave that as an exercise.
      </para>

      <para>
        Moreover, we had to exclude the execution join point of the method
        <filename>toString</filename> from the <literal>methods</literal>
        pointcut. The problem here is that <literal>toString</literal> is
        being called from inside the advice.  Therefore if we trace it, we
        will end up in an infinite recursion of calls. This is a subtle
        point, and one that you must be aware when writing advice. If the
        advice calls back to the objects, there is always the possibility
        of recursion. Keep that in mind!
      </para>

      <para>
        In fact, esimply excluding the execution join point may not be
        enough, if there are calls to other traced methods within it -- in
        which case, the restriction should be
      </para>

<programlisting><![CDATA[
&& !cflow(execution(String toString()))
]]></programlisting>

      <para>
        excluding both the execution of toString methods and all join
        points under that execution.
      </para>

      <para>
        In summary, to implement the change in the tracing requirements we
        had to make a couple of changes in the implementation of the
        <classname>Trace</classname> aspect class, including changing the
        specification of the pointcuts. That's only natural. But the
        implementation changes were limited to this aspect. Without
        aspects, we would have to change the implementation of every
        application class.
      </para>

      <para>
        Finally, to run this version of tracing, go to the directory
        <filename>examples</filename> and type:
      </para>

<programlisting><![CDATA[
ajc -argfile tracing/tracev3.lst
]]></programlisting>

      <para>
        The file tracev3.lst lists the application classes as well as this
        version of the files <filename>Trace.java</filename> and
        <filename>TraceMyClasses.java</filename>. To run the program, type
      </para>

<programlisting><![CDATA[
java tracing.version3.TraceMyClasses
]]></programlisting>

      <para>The output should be:</para>

<programlisting><![CDATA[
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Circle(double, double, double)
  <-- tracing.Circle(double, double, double)
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Circle(double, double, double)
  <-- tracing.Circle(double, double, double)
  --> tracing.Circle(double)
  <-- tracing.Circle(double)
  --> tracing.TwoDShape(double, double)
  <-- tracing.TwoDShape(double, double)
  --> tracing.Square(double, double, double)
  <-- tracing.Square(double, double, double)
  --> tracing.Square(double, double)
  <-- tracing.Square(double, double)
  --> double tracing.Circle.perimeter()
  <-- double tracing.Circle.perimeter()
c1.perimeter() = 12.566370614359172
  --> double tracing.Circle.area()
  <-- double tracing.Circle.area()
c1.area() = 12.566370614359172
  --> double tracing.Square.perimeter()
  <-- double tracing.Square.perimeter()
s1.perimeter() = 4.0
  --> double tracing.Square.area()
  <-- double tracing.Square.area()
s1.area() = 1.0
  --> double tracing.TwoDShape.distance(TwoDShape)
    --> double tracing.TwoDShape.getX()
    <-- double tracing.TwoDShape.getX()
    --> double tracing.TwoDShape.getY()
    <-- double tracing.TwoDShape.getY()
  <-- double tracing.TwoDShape.distance(TwoDShape)
c2.distance(c1) = 4.242640687119285
  --> double tracing.TwoDShape.distance(TwoDShape)
    --> double tracing.TwoDShape.getX()
    <-- double tracing.TwoDShape.getX()
    --> double tracing.TwoDShape.getY()
    <-- double tracing.TwoDShape.getY()
  <-- double tracing.TwoDShape.distance(TwoDShape)
s1.distance(c1) = 2.23606797749979
  --> String tracing.Square.toString()
    --> String tracing.TwoDShape.toString()
    <-- String tracing.TwoDShape.toString()
  <-- String tracing.Square.toString()
s1.toString(): Square side = 1.0 @ (1.0, 2.0)
]]></programlisting>

      </sect3>
    </sect2>
  </sect1>
</chapter>