1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
/*
* Copyright (C) 2008-2009, Johannes E. Schindelin <johannes.schindelin@gmx.de>
* Copyright (C) 2009, Johannes Schindelin <johannes.schindelin@gmx.de>
* and other copyright owners as documented in the project's IP log.
*
* This program and the accompanying materials are made available
* under the terms of the Eclipse Distribution License v1.0 which
* accompanies this distribution, is reproduced below, and is
* available at http://www.eclipse.org/org/documents/edl-v10.php
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* - Neither the name of the Eclipse Foundation, Inc. nor the
* names of its contributors may be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.eclipse.jgit.diff;
import java.text.MessageFormat;
import org.eclipse.jgit.errors.DiffInterruptedException;
import org.eclipse.jgit.internal.JGitText;
import org.eclipse.jgit.util.IntList;
import org.eclipse.jgit.util.LongList;
/**
* Diff algorithm, based on "An O(ND) Difference Algorithm and its Variations",
* by Eugene Myers.
* <p>
* The basic idea is to put the line numbers of text A as columns ("x") and the
* lines of text B as rows ("y"). Now you try to find the shortest "edit path"
* from the upper left corner to the lower right corner, where you can always go
* horizontally or vertically, but diagonally from (x,y) to (x+1,y+1) only if
* line x in text A is identical to line y in text B.
* <p>
* Myers' fundamental concept is the "furthest reaching D-path on diagonal k": a
* D-path is an edit path starting at the upper left corner and containing
* exactly D non-diagonal elements ("differences"). The furthest reaching D-path
* on diagonal k is the one that contains the most (diagonal) elements which
* ends on diagonal k (where k = y - x).
* <p>
* Example:
*
* <pre>
* H E L L O W O R L D
* ____
* L \___
* O \___
* W \________
* </pre>
* <p>
* Since every D-path has exactly D horizontal or vertical elements, it can only
* end on the diagonals -D, -D+2, ..., D-2, D.
* <p>
* Since every furthest reaching D-path contains at least one furthest reaching
* (D-1)-path (except for D=0), we can construct them recursively.
* <p>
* Since we are really interested in the shortest edit path, we can start
* looking for a 0-path, then a 1-path, and so on, until we find a path that
* ends in the lower right corner.
* <p>
* To save space, we do not need to store all paths (which has quadratic space
* requirements), but generate the D-paths simultaneously from both sides. When
* the ends meet, we will have found "the middle" of the path. From the end
* points of that diagonal part, we can generate the rest recursively.
* <p>
* This only requires linear space.
* <p>
* The overall (runtime) complexity is:
*
* <pre>
* O(N * D^2 + 2 * N/2 * (D/2)^2 + 4 * N/4 * (D/4)^2 + ...)
* = O(N * D^2 * 5 / 4) = O(N * D^2),
* </pre>
* <p>
* (With each step, we have to find the middle parts of twice as many regions as
* before, but the regions (as well as the D) are halved.)
* <p>
* So the overall runtime complexity stays the same with linear space, albeit
* with a larger constant factor.
*
* @param <S>
* type of sequence.
*/
@SuppressWarnings("hiding")
public class MyersDiff<S extends Sequence> {
/** Singleton instance of MyersDiff. */
public static final DiffAlgorithm INSTANCE = new LowLevelDiffAlgorithm() {
@SuppressWarnings("unused")
@Override
public <S extends Sequence> void diffNonCommon(EditList edits,
HashedSequenceComparator<S> cmp, HashedSequence<S> a,
HashedSequence<S> b, Edit region) {
new MyersDiff<S>(edits, cmp, a, b, region);
}
};
/**
* The list of edits found during the last call to
* {@link #calculateEdits(Edit)}
*/
protected EditList edits;
/** Comparison function for sequences. */
protected HashedSequenceComparator<S> cmp;
/**
* The first text to be compared. Referred to as "Text A" in the comments
*/
protected HashedSequence<S> a;
/**
* The second text to be compared. Referred to as "Text B" in the comments
*/
protected HashedSequence<S> b;
private MyersDiff(EditList edits, HashedSequenceComparator<S> cmp,
HashedSequence<S> a, HashedSequence<S> b, Edit region) {
this.edits = edits;
this.cmp = cmp;
this.a = a;
this.b = b;
calculateEdits(region);
}
// TODO: use ThreadLocal for future multi-threaded operations
MiddleEdit middle = new MiddleEdit();
/**
* Entrypoint into the algorithm this class is all about. This method triggers that the
* differences between A and B are calculated in form of a list of edits.
* @param r portion of the sequences to examine.
*/
private void calculateEdits(Edit r) {
middle.initialize(r.beginA, r.endA, r.beginB, r.endB);
if (middle.beginA >= middle.endA &&
middle.beginB >= middle.endB)
return;
calculateEdits(middle.beginA, middle.endA,
middle.beginB, middle.endB);
}
/**
* Calculates the differences between a given part of A against another
* given part of B
*
* @param beginA
* start of the part of A which should be compared
* (0<=beginA<sizeof(A))
* @param endA
* end of the part of A which should be compared
* (beginA<=endA<sizeof(A))
* @param beginB
* start of the part of B which should be compared
* (0<=beginB<sizeof(B))
* @param endB
* end of the part of B which should be compared
* (beginB<=endB<sizeof(B))
*/
protected void calculateEdits(int beginA, int endA,
int beginB, int endB) {
Edit edit = middle.calculate(beginA, endA, beginB, endB);
if (beginA < edit.beginA || beginB < edit.beginB) {
int k = edit.beginB - edit.beginA;
int x = middle.backward.snake(k, edit.beginA);
calculateEdits(beginA, x, beginB, k + x);
}
if (edit.getType() != Edit.Type.EMPTY)
edits.add(edits.size(), edit);
// after middle
if (endA > edit.endA || endB > edit.endB) {
int k = edit.endB - edit.endA;
int x = middle.forward.snake(k, edit.endA);
calculateEdits(x, endA, k + x, endB);
}
}
/**
* A class to help bisecting the sequences a and b to find minimal
* edit paths.
*
* As the arrays are reused for space efficiency, you will need one
* instance per thread.
*
* The entry function is the calculate() method.
*/
class MiddleEdit {
void initialize(int beginA, int endA, int beginB, int endB) {
this.beginA = beginA; this.endA = endA;
this.beginB = beginB; this.endB = endB;
// strip common parts on either end
int k = beginB - beginA;
this.beginA = forward.snake(k, beginA);
this.beginB = k + this.beginA;
k = endB - endA;
this.endA = backward.snake(k, endA);
this.endB = k + this.endA;
}
/*
* This function calculates the "middle" Edit of the shortest
* edit path between the given subsequences of a and b.
*
* Once a forward path and a backward path meet, we found the
* middle part. From the last snake end point on both of them,
* we construct the Edit.
*
* It is assumed that there is at least one edit in the range.
*/
// TODO: measure speed impact when this is synchronized
Edit calculate(int beginA, int endA, int beginB, int endB) {
if (beginA == endA || beginB == endB)
return new Edit(beginA, endA, beginB, endB);
this.beginA = beginA; this.endA = endA;
this.beginB = beginB; this.endB = endB;
/*
* Following the conventions in Myers' paper, "k" is
* the difference between the index into "b" and the
* index into "a".
*/
int minK = beginB - endA;
int maxK = endB - beginA;
forward.initialize(beginB - beginA, beginA, minK, maxK);
backward.initialize(endB - endA, endA, minK, maxK);
for (int d = 1; ; d++)
if (forward.calculate(d) ||
backward.calculate(d))
return edit;
}
/*
* For each d, we need to hold the d-paths for the diagonals
* k = -d, -d + 2, ..., d - 2, d. These are stored in the
* forward (and backward) array.
*
* As we allow subsequences, too, this needs some refinement:
* the forward paths start on the diagonal forwardK =
* beginB - beginA, and backward paths start on the diagonal
* backwardK = endB - endA.
*
* So, we need to hold the forward d-paths for the diagonals
* k = forwardK - d, forwardK - d + 2, ..., forwardK + d and
* the analogue for the backward d-paths. This means that
* we can turn (k, d) into the forward array index using this
* formula:
*
* i = (d + k - forwardK) / 2
*
* There is a further complication: the edit paths should not
* leave the specified subsequences, so k is bounded by
* minK = beginB - endA and maxK = endB - beginA. However,
* (k - forwardK) _must_ be odd whenever d is odd, and it
* _must_ be even when d is even.
*
* The values in the "forward" and "backward" arrays are
* positions ("x") in the sequence a, to get the corresponding
* positions ("y") in the sequence b, you have to calculate
* the appropriate k and then y:
*
* k = forwardK - d + i * 2
* y = k + x
*
* (substitute backwardK for forwardK if you want to get the
* y position for an entry in the "backward" array.
*/
EditPaths forward = new ForwardEditPaths();
EditPaths backward = new BackwardEditPaths();
/* Some variables which are shared between methods */
protected int beginA, endA, beginB, endB;
protected Edit edit;
abstract class EditPaths {
private IntList x = new IntList();
private LongList snake = new LongList();
int beginK, endK, middleK;
int prevBeginK, prevEndK;
/* if we hit one end early, no need to look further */
int minK, maxK; // TODO: better explanation
final int getIndex(int d, int k) {
// TODO: remove
if (((d + k - middleK) % 2) != 0)
throw new RuntimeException(MessageFormat.format(JGitText.get().unexpectedOddResult, Integer.valueOf(d), Integer.valueOf(k), Integer.valueOf(middleK)));
return (d + k - middleK) / 2;
}
final int getX(int d, int k) {
// TODO: remove
if (k < beginK || k > endK)
throw new RuntimeException(MessageFormat.format(JGitText.get().kNotInRange, Integer.valueOf(k), Integer.valueOf(beginK), Integer.valueOf(endK)));
return x.get(getIndex(d, k));
}
final long getSnake(int d, int k) {
// TODO: remove
if (k < beginK || k > endK)
throw new RuntimeException(MessageFormat.format(JGitText.get().kNotInRange, Integer.valueOf(k), Integer.valueOf(beginK), Integer.valueOf(endK)));
return snake.get(getIndex(d, k));
}
private int forceKIntoRange(int k) {
/* if k is odd, so must be the result */
if (k < minK)
return minK + ((k ^ minK) & 1);
else if (k > maxK)
return maxK - ((k ^ maxK) & 1);
return k;
}
void initialize(int k, int x, int minK, int maxK) {
this.minK = minK;
this.maxK = maxK;
beginK = endK = middleK = k;
this.x.clear();
this.x.add(x);
snake.clear();
snake.add(newSnake(k, x));
}
abstract int snake(int k, int x);
abstract int getLeft(int x);
abstract int getRight(int x);
abstract boolean isBetter(int left, int right);
abstract void adjustMinMaxK(final int k, final int x);
abstract boolean meets(int d, int k, int x, long snake);
final long newSnake(int k, int x) {
long y = k + x;
long ret = ((long) x) << 32;
return ret | y;
}
final int snake2x(long snake) {
return (int) (snake >>> 32);
}
final int snake2y(long snake) {
return (int) snake;
}
final boolean makeEdit(long snake1, long snake2) {
int x1 = snake2x(snake1), x2 = snake2x(snake2);
int y1 = snake2y(snake1), y2 = snake2y(snake2);
/*
* Check for incompatible partial edit paths:
* when there are ambiguities, we might have
* hit incompatible (i.e. non-overlapping)
* forward/backward paths.
*
* In that case, just pretend that we have
* an empty edit at the end of one snake; this
* will force a decision which path to take
* in the next recursion step.
*/
if (x1 > x2 || y1 > y2) {
x1 = x2;
y1 = y2;
}
edit = new Edit(x1, x2, y1, y2);
return true;
}
boolean calculate(int d) {
prevBeginK = beginK;
prevEndK = endK;
beginK = forceKIntoRange(middleK - d);
endK = forceKIntoRange(middleK + d);
// TODO: handle i more efficiently
// TODO: walk snake(k, getX(d, k)) only once per (d, k)
// TODO: move end points out of the loop to avoid conditionals inside the loop
// go backwards so that we can avoid temp vars
for (int k = endK; k >= beginK; k -= 2) {
if (Thread.interrupted()) {
throw new DiffInterruptedException();
}
int left = -1, right = -1;
long leftSnake = -1L, rightSnake = -1L;
// TODO: refactor into its own function
if (k > prevBeginK) {
int i = getIndex(d - 1, k - 1);
left = x.get(i);
int end = snake(k - 1, left);
leftSnake = left != end ?
newSnake(k - 1, end) :
snake.get(i);
if (meets(d, k - 1, end, leftSnake))
return true;
left = getLeft(end);
}
if (k < prevEndK) {
int i = getIndex(d - 1, k + 1);
right = x.get(i);
int end = snake(k + 1, right);
rightSnake = right != end ?
newSnake(k + 1, end) :
snake.get(i);
if (meets(d, k + 1, end, rightSnake))
return true;
right = getRight(end);
}
int newX;
long newSnake;
if (k >= prevEndK ||
(k > prevBeginK &&
isBetter(left, right))) {
newX = left;
newSnake = leftSnake;
}
else {
newX = right;
newSnake = rightSnake;
}
if (meets(d, k, newX, newSnake))
return true;
adjustMinMaxK(k, newX);
int i = getIndex(d, k);
x.set(i, newX);
snake.set(i, newSnake);
}
return false;
}
}
class ForwardEditPaths extends EditPaths {
final int snake(int k, int x) {
for (; x < endA && k + x < endB; x++)
if (!cmp.equals(a, x, b, k + x))
break;
return x;
}
final int getLeft(final int x) {
return x;
}
final int getRight(final int x) {
return x + 1;
}
final boolean isBetter(final int left, final int right) {
return left > right;
}
final void adjustMinMaxK(final int k, final int x) {
if (x >= endA || k + x >= endB) {
if (k > backward.middleK)
maxK = k;
else
minK = k;
}
}
final boolean meets(int d, int k, int x, long snake) {
if (k < backward.beginK || k > backward.endK)
return false;
// TODO: move out of loop
if (((d - 1 + k - backward.middleK) % 2) != 0)
return false;
if (x < backward.getX(d - 1, k))
return false;
makeEdit(snake, backward.getSnake(d - 1, k));
return true;
}
}
class BackwardEditPaths extends EditPaths {
final int snake(int k, int x) {
for (; x > beginA && k + x > beginB; x--)
if (!cmp.equals(a, x - 1, b, k + x - 1))
break;
return x;
}
final int getLeft(final int x) {
return x - 1;
}
final int getRight(final int x) {
return x;
}
final boolean isBetter(final int left, final int right) {
return left < right;
}
final void adjustMinMaxK(final int k, final int x) {
if (x <= beginA || k + x <= beginB) {
if (k > forward.middleK)
maxK = k;
else
minK = k;
}
}
final boolean meets(int d, int k, int x, long snake) {
if (k < forward.beginK || k > forward.endK)
return false;
// TODO: move out of loop
if (((d + k - forward.middleK) % 2) != 0)
return false;
if (x > forward.getX(d, k))
return false;
makeEdit(forward.getSnake(d, k), snake);
return true;
}
}
}
/**
* @param args two filenames specifying the contents to be diffed
*/
public static void main(String[] args) {
if (args.length != 2) {
System.err.println(JGitText.get().need2Arguments);
System.exit(1);
}
try {
RawText a = new RawText(new java.io.File(args[0]));
RawText b = new RawText(new java.io.File(args[1]));
EditList r = INSTANCE.diff(RawTextComparator.DEFAULT, a, b);
System.out.println(r.toString());
} catch (Exception e) {
e.printStackTrace();
}
}
}
|