You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

kautodiff.c 73KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460
  1. #include "config.h"
  2. #include <stdlib.h>
  3. #include <assert.h>
  4. #include <stdarg.h>
  5. #include <string.h>
  6. #include <float.h>
  7. #include <math.h>
  8. #include "kautodiff.h"
  9. #include "blas-config.h"
  10. typedef struct {
  11. uint64_t s[2];
  12. double n_gset;
  13. int n_iset;
  14. volatile int lock;
  15. } kad_rng_t;
  16. /**********************
  17. * Graph construction *
  18. **********************/
  19. static inline kad_node_t *kad_new_core(int n_d, int op, int n_child)
  20. {
  21. kad_node_t *s;
  22. if (n_d >= KAD_MAX_DIM) return 0;
  23. s = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  24. s->n_d = n_d, s->op = op, s->n_child = n_child;
  25. if (s->n_child) s->child = (kad_node_t**)calloc(s->n_child, sizeof(kad_node_t*));
  26. return s;
  27. }
  28. static inline kad_node_t *kad_vleaf(uint8_t flag, float *x, float *g, int n_d, va_list ap)
  29. {
  30. int i;
  31. kad_node_t *p;
  32. if (n_d > KAD_MAX_DIM) return 0;
  33. p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  34. p->n_d = n_d;
  35. for (i = 0; i < n_d; ++i)
  36. p->d[i] = va_arg(ap, int32_t);
  37. p->x = x, p->g = g, p->flag = flag;
  38. return p;
  39. }
  40. kad_node_t *kad_const(float *x, int n_d, ...)
  41. {
  42. kad_node_t *p;
  43. va_list ap;
  44. va_start(ap, n_d); p = kad_vleaf(KAD_CONST, x, 0, n_d, ap); va_end(ap);
  45. return p;
  46. }
  47. kad_node_t *kad_feed(int n_d, ...)
  48. {
  49. kad_node_t *p;
  50. va_list ap;
  51. va_start(ap, n_d); p = kad_vleaf(0, 0, 0, n_d, ap); va_end(ap);
  52. return p;
  53. }
  54. kad_node_t *kad_var(float *x, float *g, int n_d, ...)
  55. {
  56. kad_node_t *p;
  57. va_list ap;
  58. va_start(ap, n_d); p = kad_vleaf(KAD_VAR, x, g, n_d, ap); va_end(ap);
  59. return p;
  60. }
  61. static inline kad_node_t *kad_finalize_node(kad_node_t *s) /* a helper function */
  62. {
  63. int i;
  64. if (kad_op_list[s->op](s, KAD_SYNC_DIM) < 0) { /* check dimension */
  65. if (s->ptr) free(s->ptr);
  66. free(s->child); free(s);
  67. return 0;
  68. }
  69. for (i = 0; i < s->n_child; ++i)
  70. if (kad_is_back(s->child[i]))
  71. break;
  72. if (i < s->n_child) s->flag |= KAD_VAR;
  73. return s;
  74. }
  75. /********** Simple arithmetic **********/
  76. static inline kad_node_t *kad_op2_core(int op, kad_node_t *x, kad_node_t *y)
  77. {
  78. kad_node_t *s;
  79. s = kad_new_core(0, op, 2);
  80. s->child[0] = x, s->child[1] = y;
  81. return kad_finalize_node(s);
  82. }
  83. static inline kad_node_t *kad_op1_core(int op, kad_node_t *x)
  84. {
  85. kad_node_t *s;
  86. s = kad_new_core(0, op, 1);
  87. s->child[0] = x;
  88. return kad_finalize_node(s);
  89. }
  90. #define KAD_FUNC_OP2(fname, op) kad_node_t *fname(kad_node_t *x, kad_node_t *y) { return kad_op2_core((op), x, y); }
  91. KAD_FUNC_OP2(kad_add, 1)
  92. KAD_FUNC_OP2(kad_sub, 23)
  93. KAD_FUNC_OP2(kad_mul, 2)
  94. KAD_FUNC_OP2(kad_cmul, 3)
  95. KAD_FUNC_OP2(kad_matmul, 9)
  96. KAD_FUNC_OP2(kad_ce_multi, 13)
  97. KAD_FUNC_OP2(kad_ce_bin, 22)
  98. KAD_FUNC_OP2(kad_ce_bin_neg, 4)
  99. KAD_FUNC_OP2(kad_mse, 29)
  100. #define KAD_FUNC_OP1(fname, op) kad_node_t *fname(kad_node_t *x) { return kad_op1_core((op), x); }
  101. KAD_FUNC_OP1(kad_log, 27)
  102. KAD_FUNC_OP1(kad_exp, 33)
  103. KAD_FUNC_OP1(kad_sin, 34)
  104. KAD_FUNC_OP1(kad_square, 5)
  105. KAD_FUNC_OP1(kad_sigm, 6)
  106. KAD_FUNC_OP1(kad_tanh, 7)
  107. KAD_FUNC_OP1(kad_relu, 8)
  108. KAD_FUNC_OP1(kad_1minus, 11)
  109. KAD_FUNC_OP1(kad_softmax, 14)
  110. KAD_FUNC_OP1(kad_stdnorm, 32)
  111. kad_node_t *kad_ce_multi_weighted(kad_node_t *pred, kad_node_t *truth, kad_node_t *weight)
  112. {
  113. kad_node_t *s;
  114. s = kad_new_core(0, 13, 3);
  115. s->child[0] = pred, s->child[1] = truth, s->child[2] = weight;
  116. return kad_finalize_node(s);
  117. }
  118. /********** Convolution **********/
  119. /* compute output dimension and padding sizes on both sides */
  120. static inline int conv_find_par(int in_size, int kernel_size, int stride, int pad0, int *new_pad0, int *new_pad1)
  121. {
  122. int out_size, pad_both;
  123. /* key equation: out_size = (in_size - kernel_size + pad_both) / stride + 1 */
  124. if (pad0 == KAD_PAD_SAME && stride == 1) out_size = in_size;
  125. else out_size = (in_size - kernel_size + (pad0 > 0? pad0 : 0) + stride - 1) / stride + 1;
  126. pad_both = (out_size - 1) * stride + kernel_size - in_size;
  127. *new_pad0 = pad_both / 2;
  128. *new_pad1 = pad_both - *new_pad0;
  129. return out_size;
  130. }
  131. typedef struct {
  132. int kernel_size, stride, pad[2];
  133. } conv_conf_t;
  134. static inline conv_conf_t *conv2d_gen_aux(int in_row, int in_col, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  135. {
  136. conv_conf_t *cnn;
  137. cnn = (conv_conf_t*)calloc(2, sizeof(conv_conf_t));
  138. cnn[0].kernel_size = kernel_r, cnn[0].stride = stride_r;
  139. cnn[1].kernel_size = kernel_c, cnn[1].stride = stride_c;
  140. conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]);
  141. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn[1].pad[0], &cnn[1].pad[1]);
  142. return cnn;
  143. }
  144. kad_node_t *kad_conv2d(kad_node_t *x, kad_node_t *w, int stride_r, int stride_c, int top_pad, int left_pad)
  145. {
  146. kad_node_t *s;
  147. if (x->n_d != 4 || w->n_d != 4) return 0;
  148. s = kad_new_core(0, 16, 2);
  149. s->child[0] = x, s->child[1] = w;
  150. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], w->d[2], w->d[3], stride_r, stride_c, top_pad, left_pad);
  151. s->ptr_size = sizeof(conv_conf_t) * 2;
  152. return kad_finalize_node(s);
  153. }
  154. kad_node_t *kad_max2d(kad_node_t *x, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
  155. {
  156. kad_node_t *s;
  157. if (x->n_d != 4) return 0;
  158. s = kad_new_core(0, 17, 1);
  159. s->child[0] = x;
  160. s->ptr = conv2d_gen_aux(x->d[2], x->d[3], kernel_r, kernel_c, stride_r, stride_c, top_pad, left_pad);
  161. s->ptr_size = sizeof(conv_conf_t) * 2;
  162. return kad_finalize_node(s);
  163. }
  164. static inline conv_conf_t *conv1d_gen_aux(int in_col, int kernel_c, int stride_c, int left_pad)
  165. {
  166. conv_conf_t *cnn;
  167. cnn = (conv_conf_t*)calloc(1, sizeof(conv_conf_t));
  168. cnn->kernel_size = kernel_c, cnn->stride = stride_c;
  169. conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn->pad[0], &cnn->pad[1]);
  170. return cnn;
  171. }
  172. kad_node_t *kad_conv1d(kad_node_t *x, kad_node_t *w, int stride, int left_pad)
  173. {
  174. kad_node_t *s;
  175. if (x->n_d != 3 || w->n_d != 3) return 0;
  176. s = kad_new_core(0, 18, 2);
  177. s->child[0] = x, s->child[1] = w;
  178. s->ptr = conv1d_gen_aux(x->d[2], w->d[2], stride, left_pad);
  179. s->ptr_size = sizeof(conv_conf_t);
  180. return kad_finalize_node(s);
  181. }
  182. kad_node_t *kad_max1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  183. {
  184. kad_node_t *s;
  185. if (x->n_d != 3) return 0;
  186. s = kad_new_core(0, 19, 1);
  187. s->child[0] = x;
  188. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  189. s->ptr_size = sizeof(conv_conf_t);
  190. return kad_finalize_node(s);
  191. }
  192. kad_node_t *kad_avg1d(kad_node_t *x, int kernel_size, int stride, int left_pad)
  193. {
  194. kad_node_t *s;
  195. if (x->n_d != 3) return 0;
  196. s = kad_new_core(0, 28, 1);
  197. s->child[0] = x;
  198. s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad);
  199. s->ptr_size = sizeof(conv_conf_t);
  200. return kad_finalize_node(s);
  201. }
  202. /********** Multi-node pooling **********/
  203. static kad_node_t *kad_pooling_general(int op, int n, kad_node_t **x)
  204. {
  205. int i;
  206. kad_node_t *s;
  207. s = kad_new_core(0, op, n);
  208. s->flag |= KAD_POOL;
  209. for (i = 0; i < n; ++i)
  210. s->child[i] = x[i];
  211. return kad_finalize_node(s);
  212. }
  213. kad_node_t *kad_avg(int n, kad_node_t **x) { return kad_pooling_general(10, n, x); }
  214. kad_node_t *kad_max(int n, kad_node_t **x) { return kad_pooling_general(21, n, x); }
  215. kad_node_t *kad_stack(int n, kad_node_t **x) { return kad_pooling_general(35, n, x); }
  216. kad_node_t *kad_select(int n, kad_node_t **x, int which)
  217. {
  218. kad_node_t *s;
  219. int32_t i, *aux;
  220. aux = (int32_t*)calloc(1, 4);
  221. *aux = which;
  222. s = kad_new_core(0, 12, n);
  223. for (i = 0; i < n; ++i) s->child[i] = x[i];
  224. s->flag |= KAD_POOL, s->ptr = aux, s->ptr_size = 4;
  225. return kad_finalize_node(s);
  226. }
  227. /********** Dimension reduction **********/
  228. static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis)
  229. {
  230. kad_node_t *s;
  231. int32_t *aux;
  232. aux = (int32_t*)malloc(4);
  233. aux[0] = axis;
  234. s = kad_new_core(0, op, 1);
  235. s->child[0] = x;
  236. s->ptr = aux, s->ptr_size = 4;
  237. return kad_finalize_node(s);
  238. }
  239. kad_node_t *kad_reduce_sum(kad_node_t *x, int axis) { return kad_reduce_general(25, x, axis); }
  240. kad_node_t *kad_reduce_mean(kad_node_t *x, int axis) { return kad_reduce_general(26, x, axis); }
  241. /********** Sampling related **********/
  242. kad_node_t *kad_dropout(kad_node_t *x, kad_node_t *y)
  243. {
  244. kad_node_t *z;
  245. z = kad_op2_core(15, x, y);
  246. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  247. return z;
  248. }
  249. kad_node_t *kad_sample_normal(kad_node_t *x)
  250. {
  251. kad_node_t *z;
  252. z = kad_op1_core(24, x);
  253. z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t);
  254. return z;
  255. }
  256. /********** Miscellaneous **********/
  257. kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end)
  258. {
  259. kad_node_t *s;
  260. int32_t *aux;
  261. if (end < start || start < 0) return 0;
  262. aux = (int32_t*)malloc(3 * 4);
  263. aux[0] = axis, aux[1] = start, aux[2] = end;
  264. s = kad_new_core(0, 20, 1);
  265. s->child[0] = x;
  266. s->ptr = aux, s->ptr_size = 3 * 4;
  267. return kad_finalize_node(s);
  268. }
  269. kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p)
  270. {
  271. kad_node_t *s;
  272. int32_t i, *aux;
  273. aux = (int32_t*)malloc(4);
  274. aux[0] = axis;
  275. s = kad_new_core(0, 31, n);
  276. for (i = 0; i < n; ++i)
  277. s->child[i] = p[i];
  278. s->ptr = aux, s->ptr_size = 4;
  279. return kad_finalize_node(s);
  280. }
  281. kad_node_t *kad_concat(int axis, int n, ...)
  282. {
  283. int i;
  284. kad_node_t **p, *s;
  285. va_list ap;
  286. p = (kad_node_t**)malloc(n * sizeof(kad_node_t*));
  287. va_start(ap, n);
  288. for (i = 0; i < n; ++i) p[i] = va_arg(ap, kad_node_p);
  289. va_end(ap);
  290. s = kad_concat_array(axis, n, p);
  291. free(p);
  292. return s;
  293. }
  294. kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d)
  295. {
  296. kad_node_t *s;
  297. int32_t i, *aux = 0;
  298. if (n_d > 0) {
  299. aux = (int32_t*)malloc(n_d * 4);
  300. for (i = 0; i < n_d; ++i) aux[i] = d? d[i] : -1;
  301. }
  302. s = kad_new_core(0, 30, 1);
  303. s->child[0] = x, s->ptr = aux, s->ptr_size = n_d * 4;
  304. return kad_finalize_node(s);
  305. }
  306. kad_node_t *kad_reverse(kad_node_t *x, int axis)
  307. {
  308. kad_node_t *s;
  309. int32_t *aux;
  310. aux = (int32_t*)malloc(4);
  311. *aux = axis;
  312. s = kad_new_core(0, 36, 1);
  313. s->child[0] = x, s->ptr = aux, s->ptr_size = 4;
  314. return kad_finalize_node(s);
  315. }
  316. kad_node_t *kad_switch(int n, kad_node_t **p)
  317. {
  318. kad_node_t *s;
  319. int32_t i, *aux;
  320. aux = (int32_t*)calloc(1, 4);
  321. s = kad_new_core(0, 12, n);
  322. for (i = 0; i < n; ++i)
  323. s->child[i] = p[i];
  324. s->ptr = aux, s->ptr_size = 4;
  325. return kad_finalize_node(s);
  326. }
  327. /***********************
  328. * Graph linearization *
  329. ***********************/
  330. static void kad_mark_back(int n, kad_node_t **v)
  331. {
  332. int i, j;
  333. for (i = 0; i < n; ++i) {
  334. if (v[i]->n_child == 0) continue;
  335. for (j = 0; j < v[i]->n_child; ++j)
  336. if (kad_is_back(v[i]->child[j]))
  337. break;
  338. if (j < v[i]->n_child) v[i]->flag |= KAD_VAR;
  339. else v[i]->flag &= ~KAD_VAR;
  340. }
  341. }
  342. static void kad_allocate_internal(int n, kad_node_t **v)
  343. {
  344. int i;
  345. kad_mark_back(n, v);
  346. for (i = 0; i < n; ++i) {
  347. kad_node_t *p = v[i];
  348. if (p->n_child == 0) continue;
  349. p->x = (float*)realloc(p->x, kad_len(p) * sizeof(float));
  350. if (kad_is_back(p)) {
  351. p->g = (float*)realloc(p->g, kad_len(p) * sizeof(float));
  352. kad_op_list[p->op](p, KAD_ALLOC);
  353. }
  354. }
  355. }
  356. int kad_sync_dim(int n, kad_node_t **v, int batch_size)
  357. {
  358. int i, req_alloc = 0, req_sync = 0, old_size = 0;
  359. for (i = 0; i < n; ++i) {
  360. if (kad_is_feed(v[i])) {
  361. old_size = v[i]->d[0]; /* TODO: check if all feeds have the same batch size */
  362. if (batch_size > 0 && v[i]->d[0] != batch_size)
  363. v[i]->d[0] = batch_size, req_sync = 1;
  364. } else if (v[i]->n_child > 0 && req_sync)
  365. kad_op_list[v[i]->op](v[i], KAD_SYNC_DIM);
  366. }
  367. if (old_size < batch_size) req_alloc = 1;
  368. for (i = 0; i < n; ++i)
  369. if (v[i]->n_child > 0 && v[i]->x == 0) req_alloc = 1;
  370. if (req_alloc) kad_allocate_internal(n, v);
  371. return batch_size > 0? batch_size : old_size;
  372. }
  373. #define kvec_t(type) struct { size_t n, m; type *a; }
  374. #define kv_pop(v) ((v).a[--(v).n])
  375. #define kv_push(type, v, x) do { \
  376. if ((v).n == (v).m) { \
  377. (v).m = (v).m? (v).m<<1 : 2; \
  378. (v).a = (type*)realloc((v).a, sizeof(type) * (v).m); \
  379. } \
  380. (v).a[(v).n++] = (x); \
  381. } while (0)
  382. /* IMPORTANT: kad_node_t::tmp MUST BE set to zero before calling this function */
  383. kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots)
  384. {
  385. int i;
  386. kvec_t(kad_node_p) stack = {0,0,0}, a = {0,0,0};
  387. /* generate kad_node_t::tmp, the count of the parent nodes; shifted by 1; lowest bit to detect fake roots */
  388. for (i = 0; i < n_roots; ++i) {
  389. roots[i]->tmp = 1; /* mark the root */
  390. kv_push(kad_node_p, stack, roots[i]);
  391. }
  392. while (stack.n) {
  393. kad_node_t *p = kv_pop(stack);
  394. for (i = 0; i < p->n_child; ++i) {
  395. kad_node_t *q = p->child[i];
  396. if (q->tmp == 0) kv_push(kad_node_p, stack, q);
  397. q->tmp += 1<<1;
  398. }
  399. }
  400. /* topological sorting (Kahn's algorithm) */
  401. for (i = 0; i < n_roots; ++i)
  402. if (roots[i]->tmp>>1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */
  403. kv_push(kad_node_p, stack, roots[i]);
  404. while (stack.n) {
  405. kad_node_t *p = kv_pop(stack);
  406. kv_push(kad_node_p, a, p);
  407. for (i = 0; i < p->n_child; ++i) {
  408. p->child[i]->tmp -= 1<<1;
  409. if (p->child[i]->tmp>>1 == 0)
  410. kv_push(kad_node_p, stack, p->child[i]);
  411. }
  412. }
  413. free(stack.a);
  414. for (i = 0; i < (int)a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */
  415. assert(a.a[i]->tmp>>1 == 0);
  416. a.a[i]->tmp = 0;
  417. }
  418. /* reverse */
  419. for (i = 0; i < (int)a.n>>1; ++i) { /* reverse a.a[] */
  420. kad_node_p t;
  421. t = a.a[i], a.a[i] = a.a[a.n-1-i], a.a[a.n-1-i] = t;
  422. }
  423. kad_allocate_internal(a.n, a.a);
  424. *n_node = a.n;
  425. return a.a;
  426. }
  427. kad_node_t **kad_compile(int *n_node, int n_roots, ...)
  428. {
  429. int i;
  430. kad_node_t **roots, **ret;
  431. va_list ap;
  432. roots = (kad_node_t**)malloc(n_roots * sizeof(kad_node_t*));
  433. va_start(ap, n_roots);
  434. for (i = 0; i < n_roots; ++i) roots[i] = va_arg(ap, kad_node_p);
  435. va_end(ap);
  436. ret = kad_compile_array(n_node, n_roots, roots);
  437. free(roots);
  438. return ret;
  439. }
  440. /************************************
  441. * Miscellaneous on compiled graphs *
  442. ************************************/
  443. void kad_delete(int n, kad_node_t **a)
  444. {
  445. int i;
  446. for (i = 0; i < n; ++i) {
  447. kad_node_t *p = a[i];
  448. if (p->n_child) {
  449. free(p->x); free(p->g);
  450. }
  451. free(p->child); free(p->ptr); free(p->gtmp); free(p);
  452. }
  453. free(a);
  454. }
  455. int kad_size_var(int n, kad_node_t *const* v)
  456. {
  457. int c, i;
  458. for (i = c = 0; i < n; ++i)
  459. if (kad_is_var(v[i]))
  460. c += kad_len(v[i]);
  461. return c;
  462. }
  463. int kad_size_const(int n, kad_node_t *const* v)
  464. {
  465. int c, i;
  466. for (i = c = 0; i < n; ++i)
  467. if (kad_is_const(v[i]))
  468. c += kad_len(v[i]);
  469. return c;
  470. }
  471. /**********************************
  472. * Computate values and gradients *
  473. **********************************/
  474. static void kad_propagate_marks(int n, kad_node_t **a)
  475. {
  476. int i, j;
  477. for (i = n - 1; i >= 0; --i) {
  478. kad_node_t *p = a[i];
  479. if (p->tmp > 0) {
  480. if (kad_is_switch(p)) {
  481. int32_t *aux = (int32_t*)p->ptr;
  482. if (p->child[*aux]->tmp == 0)
  483. p->child[*aux]->tmp = 1;
  484. } else {
  485. for (j = 0; j < p->n_child; ++j)
  486. if (p->child[j]->tmp == 0)
  487. p->child[j]->tmp = 1;
  488. }
  489. }
  490. }
  491. }
  492. void kad_eval_marked(int n, kad_node_t **a)
  493. {
  494. int i;
  495. kad_propagate_marks(n, a);
  496. for (i = 0; i < n; ++i)
  497. if (a[i]->n_child && a[i]->tmp > 0)
  498. kad_op_list[a[i]->op](a[i], KAD_FORWARD);
  499. for (i = 0; i < n; ++i) a[i]->tmp = 0;
  500. }
  501. const float *kad_eval_at(int n, kad_node_t **a, int from)
  502. {
  503. int i;
  504. if (from < 0 || from >= n) from = n - 1;
  505. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  506. kad_eval_marked(n, a);
  507. return a[from]->x;
  508. }
  509. void kad_grad(int n, kad_node_t **a, int from)
  510. {
  511. int i;
  512. if (from < 0 || from >= n) from = n - 1;
  513. assert(a[from]->n_d == 0);
  514. for (i = 0; i < n; ++i) a[i]->tmp = (i == from);
  515. kad_propagate_marks(n, a);
  516. for (i = 0; i <= from; ++i) /* set all grandients to zero */
  517. if (a[i]->g && a[i]->tmp > 0)
  518. memset(a[i]->g, 0, kad_len(a[i]) * sizeof(float));
  519. for (i = from, a[i]->g[0] = 1.0f; i >= 0; --i) /* backprop */
  520. if (a[i]->n_child && a[i]->tmp > 0)
  521. kad_op_list[a[i]->op](a[i], KAD_BACKWARD);
  522. for (i = 0; i <= from; ++i) a[i]->tmp = 0;
  523. }
  524. /***********************
  525. * Load and save graph *
  526. ***********************/
  527. static void kad_save1(FILE *fp, const kad_node_t *p)
  528. {
  529. fwrite(&p->ext_label, 4, 1, fp);
  530. fwrite(&p->ext_flag, 4, 1, fp);
  531. fwrite(&p->flag, 1, 1, fp);
  532. fwrite(&p->n_child, 4, 1, fp);
  533. if (p->n_child) {
  534. int32_t j, pre = p->pre? p->pre->tmp : -1;
  535. fwrite(&p->op, 2, 1, fp);
  536. for (j = 0; j < p->n_child; ++j)
  537. fwrite(&p->child[j]->tmp, 4, 1, fp);
  538. fwrite(&pre, 4, 1, fp);
  539. fwrite(&p->ptr_size, 4, 1, fp);
  540. if (p->ptr_size > 0 && p->ptr)
  541. fwrite(p->ptr, p->ptr_size, 1, fp);
  542. } else {
  543. fwrite(&p->n_d, 1, 1, fp);
  544. if (p->n_d) fwrite(p->d, 4, p->n_d, fp);
  545. }
  546. }
  547. static kad_node_t *kad_load1(FILE *fp, kad_node_t **node)
  548. {
  549. kad_node_t *p;
  550. p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
  551. (void) !fread(&p->ext_label, 4, 1, fp);
  552. (void) !fread(&p->ext_flag, 4, 1, fp);
  553. (void) !fread(&p->flag, 1, 1, fp);
  554. (void) !fread(&p->n_child, 4, 1, fp);
  555. if (p->n_child) {
  556. int32_t j, k;
  557. p->child = (kad_node_t**)calloc(p->n_child, sizeof(kad_node_t*));
  558. (void) !fread(&p->op, 2, 1, fp);
  559. for (j = 0; j < p->n_child; ++j) {
  560. (void) !fread(&k, 4, 1, fp);
  561. p->child[j] = node? node[k] : 0;
  562. }
  563. (void) !fread(&k, 4, 1, fp);
  564. if (k >= 0) p->pre = node[k];
  565. (void) !fread(&p->ptr_size, 4, 1, fp);
  566. if (p->ptr_size > 0) {
  567. p->ptr = malloc(p->ptr_size);
  568. (void) !fread(p->ptr, p->ptr_size, 1, fp);
  569. }
  570. } else {
  571. (void) !fread(&p->n_d, 1, 1, fp);
  572. if (p->n_d) (void) !fread(p->d, 4, p->n_d, fp);
  573. }
  574. return p;
  575. }
  576. int kad_save(FILE *fp, int n_node, kad_node_t **node)
  577. {
  578. int32_t i, k = n_node;
  579. fwrite(&k, 4, 1, fp);
  580. for (i = 0; i < n_node; ++i) node[i]->tmp = i;
  581. for (i = 0; i < n_node; ++i) kad_save1(fp, node[i]);
  582. for (i = 0; i < n_node; ++i) node[i]->tmp = 0;
  583. return 0;
  584. }
  585. kad_node_t **kad_load(FILE *fp, int *_n_node)
  586. {
  587. int32_t i, n_node;
  588. kad_node_t **node;
  589. (void) !fread(&n_node, 4, 1, fp);
  590. node = (kad_node_t**)malloc(n_node * sizeof(kad_node_t*));
  591. for (i = 0; i < n_node; ++i) {
  592. kad_node_t *p;
  593. p = node[i] = kad_load1(fp, node);
  594. if (p->n_child) {
  595. kad_op_list[p->op](p, KAD_ALLOC);
  596. kad_op_list[p->op](p, KAD_SYNC_DIM);
  597. }
  598. }
  599. *_n_node = n_node;
  600. kad_mark_back(n_node, node);
  601. return node;
  602. }
  603. /***************
  604. * Graph clone *
  605. ***************/
  606. static inline kad_node_t *kad_dup1(const kad_node_t *p)
  607. {
  608. kad_node_t *q;
  609. q = (kad_node_t*)malloc(sizeof(kad_node_t));
  610. memcpy(q, p, sizeof(kad_node_t));
  611. q->pre = 0, q->tmp = 0, q->gtmp = 0;
  612. if (p->ptr && p->ptr_size > 0) {
  613. if (kad_use_rng(p) && !(p->flag & KAD_SHARE_RNG) && p->ptr_size == sizeof(kad_rng_t)) {
  614. q->ptr = kad_rng(); /* each time step uses a different RNG */
  615. } else {
  616. q->ptr = malloc(p->ptr_size);
  617. memcpy(q->ptr, p->ptr, p->ptr_size);
  618. }
  619. }
  620. if (q->n_child) {
  621. q->x = q->g = 0;
  622. q->child = (kad_node_t**)calloc(q->n_child, sizeof(kad_node_t*));
  623. }
  624. return q;
  625. }
  626. kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)
  627. {
  628. int i, j;
  629. kad_node_t **u;
  630. u = (kad_node_t**)calloc(n, sizeof(kad_node_t*));
  631. for (i = 0; i < n; ++i) v[i]->tmp = i;
  632. for (i = 0; i < n; ++i) {
  633. kad_node_t *p = v[i], *q;
  634. q = u[i] = kad_dup1(p);
  635. if (p->pre) q->pre = u[p->pre->tmp];
  636. if (p->n_child) {
  637. for (j = 0; j < p->n_child; ++j)
  638. q->child[j] = u[p->child[j]->tmp];
  639. } else if (!kad_is_feed(p)) {
  640. q->x = (float*)malloc(kad_len(p) * sizeof(float));
  641. memcpy(q->x, p->x, kad_len(p) * sizeof(float));
  642. q->g = 0;
  643. }
  644. }
  645. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  646. kad_sync_dim(n, u, batch_size); /* this will allocate x[] and g[] at internal nodes */
  647. return u;
  648. }
  649. /**************
  650. * Unroll RNN *
  651. **************/
  652. typedef struct {
  653. int32_t n, m;
  654. kad_node_t **v;
  655. } nodes_t;
  656. static inline void push_nodes(nodes_t *w, kad_node_t *p)
  657. {
  658. if (w->n == w->m) {
  659. w->m = w->m? w->m<<1 : 16;
  660. w->v = (kad_node_t**)realloc(w->v, w->m * sizeof(kad_node_t*));
  661. }
  662. w->v[w->n++] = p;
  663. }
  664. static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t **t, int len, nodes_t *w)
  665. {
  666. int i, j, l;
  667. uint8_t *flag;
  668. kad_node_t **aux;
  669. assert(kad_is_pivot(v[i_pivot]) && t[i_pivot] == 0);
  670. t[i_pivot] = kad_dup1(v[i_pivot]);
  671. t[i_pivot]->n_child = len;
  672. t[i_pivot]->child = (kad_node_t**)realloc(t[i_pivot]->child, len * sizeof(kad_node_t*));
  673. flag = (uint8_t*)calloc(n_v, 1);
  674. for (i = i_pivot, flag[i] = 16; i >= 0; --i) {
  675. if (i < i_pivot && kad_is_pivot(v[i])) continue; /* don't trespass other pivots */
  676. if (flag[i]&16) /* flag 16: nodes to unroll */
  677. for (j = 0; j < v[i]->n_child; ++j)
  678. flag[v[i]->child[j]->tmp] = 16;
  679. }
  680. for (i = 0; i < i_pivot; ++i) {
  681. if (!(flag[i]&16)) continue;
  682. if (kad_is_var(v[i]) || kad_is_const(v[i]) || kad_is_pivot(v[i])) flag[i] |= 1; /* external nodes that should not be duplicated */
  683. if (v[i]->pre) flag[v[i]->pre->tmp] |= 2;
  684. }
  685. flag[v[i_pivot]->child[0]->tmp] |= 4;
  686. aux = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
  687. for (l = 0; l < len; ++l) {
  688. for (i = 0; i < i_pivot; ++i) {
  689. if (!(flag[i]&16) || ((flag[i]&3) && t[i])) continue;
  690. t[i] = kad_dup1(v[i]);
  691. if (v[i]->n_child)
  692. for (j = 0; j < v[i]->n_child; ++j)
  693. t[i]->child[j] = t[v[i]->child[j]->tmp];
  694. if (flag[i]&4) t[i_pivot]->child[l] = t[i];
  695. if (l == 0 && (flag[i]&2)) aux[i] = t[i];
  696. if (v[i]->pre) {
  697. t[v[i]->pre->tmp] = t[i];
  698. if (l == len - 1) t[i]->pre = aux[v[i]->pre->tmp]; /* this forms a cycle! */
  699. }
  700. push_nodes(w, t[i]);
  701. }
  702. }
  703. push_nodes(w, t[i_pivot]);
  704. free(aux); free(flag);
  705. }
  706. int kad_n_pivots(int n_v, kad_node_t **v)
  707. {
  708. int i, n_pivots = 0;
  709. for (i = 0; i < n_v; ++i)
  710. if (kad_is_pivot(v[i])) ++n_pivots;
  711. return n_pivots;
  712. }
  713. kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
  714. {
  715. int i, j, n_pivots = 0;
  716. kad_node_t **t;
  717. nodes_t w = {0,0,0};
  718. t = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
  719. n_pivots = kad_n_pivots(n_v, v);
  720. for (i = 0; i < n_v; ++i) v[i]->tmp = i;
  721. if (n_pivots) {
  722. int k, *i_pivots;
  723. i_pivots = (int*)calloc(n_pivots, sizeof(int));
  724. for (i = k = 0; i < n_v; ++i) /* collect pivots */
  725. if (kad_is_pivot(v[i])) i_pivots[k++] = i;
  726. for (i = 0; i < n_pivots; ++i) /* unroll each pivot, from the lowest to the highest */
  727. kad_unroll_helper(n_v, v, i_pivots[i], t, len[i], &w);
  728. free(i_pivots);
  729. }
  730. for (i = 0; i < n_v; ++i) { /* copy over the rest of nodes */
  731. if (t[i]) continue;
  732. t[i] = kad_dup1(v[i]);
  733. if (v[i]->n_child)
  734. for (j = 0; j < v[i]->n_child; ++j)
  735. t[i]->child[j] = t[v[i]->child[j]->tmp];
  736. push_nodes(&w, t[i]);
  737. }
  738. free(t);
  739. for (i = 0; i < n_v; ++i) v[i]->tmp = 0;
  740. for (i = 0; i < w.n; ++i) /* stack may change the output dimension */
  741. if (w.v[i]->n_child > 0)
  742. kad_op_list[w.v[i]->op](w.v[i], KAD_SYNC_DIM);
  743. kad_allocate_internal(w.n, w.v);
  744. *new_n = w.n;
  745. return w.v;
  746. }
  747. /********************************
  748. * Vector and matrix operations *
  749. ********************************/
  750. #ifdef __SSE__
  751. #include <xmmintrin.h>
  752. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot using SSE */
  753. {
  754. int i, n8 = n>>3<<3;
  755. __m128 vs1, vs2;
  756. float s, t[4];
  757. vs1 = _mm_setzero_ps();
  758. vs2 = _mm_setzero_ps();
  759. for (i = 0; i < n8; i += 8) {
  760. __m128 vx1, vx2, vy1, vy2;
  761. vx1 = _mm_loadu_ps(&x[i]);
  762. vx2 = _mm_loadu_ps(&x[i+4]);
  763. vy1 = _mm_loadu_ps(&y[i]);
  764. vy2 = _mm_loadu_ps(&y[i+4]);
  765. vs1 = _mm_add_ps(vs1, _mm_mul_ps(vx1, vy1));
  766. vs2 = _mm_add_ps(vs2, _mm_mul_ps(vx2, vy2));
  767. }
  768. for (s = 0.; i < n; ++i) s += x[i] * y[i];
  769. _mm_storeu_ps(t, vs1);
  770. s += t[0] + t[1] + t[2] + t[3];
  771. _mm_storeu_ps(t, vs2);
  772. s += t[0] + t[1] + t[2] + t[3];
  773. return s;
  774. }
  775. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) /* BLAS saxpy using SSE */
  776. {
  777. int i, n8 = n>>3<<3;
  778. __m128 va;
  779. va = _mm_set1_ps(a);
  780. for (i = 0; i < n8; i += 8) {
  781. __m128 vx1, vx2, vy1, vy2, vt1, vt2;
  782. vx1 = _mm_loadu_ps(&x[i]);
  783. vx2 = _mm_loadu_ps(&x[i+4]);
  784. vy1 = _mm_loadu_ps(&y[i]);
  785. vy2 = _mm_loadu_ps(&y[i+4]);
  786. vt1 = _mm_add_ps(_mm_mul_ps(va, vx1), vy1);
  787. vt2 = _mm_add_ps(_mm_mul_ps(va, vx2), vy2);
  788. _mm_storeu_ps(&y[i], vt1);
  789. _mm_storeu_ps(&y[i+4], vt2);
  790. }
  791. for (; i < n; ++i) y[i] += a * x[i];
  792. }
  793. #else
  794. static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot */
  795. {
  796. int i;
  797. float s = 0.;
  798. for (i = 0; i < n; ++i) s += x[i] * y[i];
  799. return s;
  800. }
  801. static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) // BLAS saxpy
  802. {
  803. int i;
  804. for (i = 0; i < n; ++i) y[i] += a * x[i];
  805. }
  806. #endif
  807. void kad_vec_mul_sum(int n, float *a, const float *b, const float *c)
  808. {
  809. int i;
  810. for (i = 0; i < n; ++i) a[i] += b[i] * c[i];
  811. }
  812. /* This is actually lapack not cblas, but this definition is used */
  813. #ifdef HAVE_CBLAS
  814. #ifndef __APPLE__
  815. /* As gfortran mangles names */
  816. #define ssyev ssyev_
  817. #endif
  818. extern void ssyev(const char* jobz, const char* uplo, int* n, float* a, int* lda, float* w, float* work, int* lwork, int* info);
  819. #endif
  820. #ifdef HAVE_CBLAS_SGEMM
  821. #ifdef HAVE_CBLAS_H
  822. #include "cblas.h"
  823. #else
  824. /* Poor man approach, thanks for that Apple */
  825. enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102 };
  826. enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112 };
  827. extern void cblas_sgemm(const enum CBLAS_ORDER Order,
  828. const enum CBLAS_TRANSPOSE TA,
  829. const enum CBLAS_TRANSPOSE TB,
  830. const int M, const int N, const int K,
  831. const float alpha, const float *A, const int lda,
  832. const float *B, const int ldb, const float beta,
  833. float *C, const int ldc);
  834. #endif
  835. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)
  836. {
  837. cblas_sgemm(CblasRowMajor, trans_A? CblasTrans : CblasNoTrans, trans_B? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A? M : K, B, trans_B? K : N, 1.0f, C, N);
  838. }
  839. #else
  840. void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) /* simplified BLAS sgemm */
  841. {
  842. static const int x = 16;
  843. int i, j, k;
  844. if (!trans_A && trans_B) {
  845. for (i = 0; i < M; i += x)
  846. for (j = 0; j < N; j += x) {
  847. int ii, ie = M < i + x? M : i + x;
  848. int jj, je = N < j + x? N : j + x;
  849. for (ii = i; ii < ie; ++ii) { /* loop tiling */
  850. const float *aii = A + ii * K, *bjj;
  851. float *cii = C + ii * N;
  852. for (jj = j, bjj = B + j * K; jj < je; ++jj, bjj += K)
  853. cii[jj] += kad_sdot(K, aii, bjj);
  854. }
  855. }
  856. } else if (!trans_A && !trans_B) {
  857. for (i = 0; i < M; ++i)
  858. for (k = 0; k < K; ++k)
  859. kad_saxpy_inlined(N, A[i*K+k], &B[k*N], &C[i*N]);
  860. } else if (trans_A && !trans_B) {
  861. for (k = 0; k < K; ++k)
  862. for (i = 0; i < M; ++i)
  863. kad_saxpy_inlined(N, A[k*M+i], &B[k*N], &C[i*N]);
  864. } else abort(); /* not implemented for (trans_A && trans_B) */
  865. }
  866. #endif
  867. #ifdef HAVE_CBLAS_SAXPY
  868. #ifndef HAVE_CBLAS_H
  869. extern void cblas_saxpy(const int __N,
  870. const float __alpha, const float *__X, const int __incX, float *__Y, const int __incY);
  871. #endif
  872. void kad_saxpy(int n, float a, const float *x, float *y) { cblas_saxpy(n, a, x, 1, y, 1); }
  873. #else
  874. void kad_saxpy(int n, float a, const float *x, float *y) { kad_saxpy_inlined(n, a, x, y); }
  875. #endif
  876. bool kad_ssyev_simple(int N, float *A, float *eigenvals)
  877. {
  878. #ifndef HAVE_CBLAS
  879. return false;
  880. #else
  881. int n = N, lda = N, info, lwork;
  882. float wkopt;
  883. float *work;
  884. /* Query and allocate the optimal workspace */
  885. lwork = -1;
  886. ssyev ("Vectors", "Upper", &n, A, &lda, eigenvals, &wkopt, &lwork, &info);
  887. lwork = wkopt;
  888. work = (float*) g_malloc(lwork * sizeof(double));
  889. ssyev ("Vectors", "Upper", &n, A, &lda, eigenvals, work, &lwork, &info);
  890. /* Check for convergence */
  891. if (info > 0) {
  892. g_free (work);
  893. return false;
  894. }
  895. g_free (work);
  896. return true;
  897. #endif
  898. }
  899. /***************************
  900. * Random number generator *
  901. ***************************/
  902. static kad_rng_t kad_rng_dat = { {0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0 };
  903. static inline uint64_t kad_splitmix64(uint64_t x)
  904. {
  905. uint64_t z = (x += 0x9E3779B97F4A7C15ULL);
  906. z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ULL;
  907. z = (z ^ (z >> 27)) * 0x94D049BB133111EBULL;
  908. return z ^ (z >> 31);
  909. }
  910. static inline uint64_t kad_xoroshiro128plus_next(kad_rng_t *r)
  911. {
  912. const uint64_t s0 = r->s[0];
  913. uint64_t s1 = r->s[1];
  914. const uint64_t result = s0 + s1;
  915. s1 ^= s0;
  916. r->s[0] = (s0 << 55 | s0 >> 9) ^ s1 ^ (s1 << 14);
  917. r->s[1] = s0 << 36 | s0 >> 28;
  918. return result;
  919. }
  920. static inline void kad_xoroshiro128plus_jump(kad_rng_t *r)
  921. {
  922. static const uint64_t JUMP[] = { 0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL };
  923. uint64_t s0 = 0, s1 = 0;
  924. int i, b;
  925. for (i = 0; i < 2; ++i)
  926. for (b = 0; b < 64; b++) {
  927. if (JUMP[i] & 1ULL << b)
  928. s0 ^= r->s[0], s1 ^= r->s[1];
  929. kad_xoroshiro128plus_next(r);
  930. }
  931. r->s[0] = s0, r->s[1] = s1;
  932. }
  933. void kad_srand(void *d, uint64_t seed)
  934. {
  935. kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
  936. r->n_gset = 0.0, r->n_iset = 0;
  937. r->s[0] = kad_splitmix64(seed);
  938. r->s[1] = kad_splitmix64(r->s[0]);
  939. }
  940. void *kad_rng(void)
  941. {
  942. kad_rng_t *r;
  943. r = (kad_rng_t*)calloc(1, sizeof(kad_rng_t));
  944. kad_xoroshiro128plus_jump(&kad_rng_dat);
  945. r->s[0] = kad_rng_dat.s[0], r->s[1] = kad_rng_dat.s[1];
  946. return r;
  947. }
  948. uint64_t kad_rand(void *d) { return kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat); }
  949. double kad_drand(void *d)
  950. {
  951. union { uint64_t i; double d; } u;
  952. u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat) >> 12;
  953. return u.d - 1.0;
  954. }
  955. double kad_drand_normal(void *d)
  956. {
  957. kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
  958. if (r->n_iset == 0) {
  959. double fac, rsq, v1, v2;
  960. do {
  961. v1 = 2.0 * kad_drand(d) - 1.0;
  962. v2 = 2.0 * kad_drand(d) - 1.0;
  963. rsq = v1 * v1 + v2 * v2;
  964. } while (rsq >= 1.0 || rsq == 0.0);
  965. fac = sqrt(-2.0 * log(rsq) / rsq);
  966. r->n_gset = v1 * fac;
  967. r->n_iset = 1;
  968. return v2 * fac;
  969. } else {
  970. r->n_iset = 0;
  971. return r->n_gset;
  972. }
  973. }
  974. /*************
  975. * Operators *
  976. *************/
  977. static inline void kad_copy_dim1(kad_node_t *dst, const kad_node_t *src) /* set the dimension/shape of dst to src */
  978. {
  979. dst->n_d = src->n_d;
  980. if (src->n_d) memcpy(dst->d, src->d, src->n_d * sizeof(int));
  981. }
  982. /********** Arithmetic operations **********/
  983. int kad_op_add(kad_node_t *p, int action)
  984. {
  985. int i, n0, n1;
  986. kad_node_t *q[2];
  987. q[0] = p->child[0], n0 = kad_len(q[0]);
  988. q[1] = p->child[1], n1 = kad_len(q[1]);
  989. if (action == KAD_SYNC_DIM) {
  990. if (n0 % n1 != 0) return -1;
  991. kad_copy_dim1(p, q[0]);
  992. } else if (action == KAD_FORWARD) {
  993. assert(n0 >= n1);
  994. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  995. for (i = 0; i < n0; i += n1)
  996. kad_saxpy(n1, 1.0f, q[1]->x, p->x + i);
  997. } else if (action == KAD_BACKWARD) {
  998. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  999. if (kad_is_back(q[1]))
  1000. for (i = 0; i < n0; i += n1)
  1001. kad_saxpy(n1, 1.0f, p->g + i, q[1]->g);
  1002. }
  1003. return 0;
  1004. }
  1005. int kad_op_sub(kad_node_t *p, int action)
  1006. {
  1007. int i, n0, n1;
  1008. kad_node_t *q[2];
  1009. q[0] = p->child[0], n0 = kad_len(q[0]);
  1010. q[1] = p->child[1], n1 = kad_len(q[1]);
  1011. if (action == KAD_SYNC_DIM) {
  1012. if (n0 % n1 != 0) return -1;
  1013. kad_copy_dim1(p, q[0]);
  1014. } else if (action == KAD_FORWARD) {
  1015. assert(n0 >= n1);
  1016. memcpy(p->x, q[0]->x, n0 * sizeof(float));
  1017. for (i = 0; i < n0; i += n1)
  1018. kad_saxpy(n1, -1.0f, q[1]->x, p->x + i);
  1019. } else if (action == KAD_BACKWARD) {
  1020. if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
  1021. if (kad_is_back(q[1]))
  1022. for (i = 0; i < n0; i += n1)
  1023. kad_saxpy(n1, -1.0f, p->g + i, q[1]->g);
  1024. }
  1025. return 0;
  1026. }
  1027. int kad_op_mul(kad_node_t *p, int action)
  1028. {
  1029. int i, n0, n1;
  1030. kad_node_t *q[2];
  1031. q[0] = p->child[0], n0 = kad_len(q[0]);
  1032. q[1] = p->child[1], n1 = kad_len(q[1]);
  1033. if (action == KAD_SYNC_DIM) {
  1034. if (n0 % n1 != 0) return -1;
  1035. kad_copy_dim1(p, q[0]);
  1036. } else if (action == KAD_FORWARD) {
  1037. assert(n0 >= n1);
  1038. memset(p->x, 0, n0 * sizeof(float));
  1039. if (q[0]->x != 0 && q[1]->x != 0)
  1040. for (i = 0; i < n0; i += n1) /* TODO: optimize when n1==1 */
  1041. kad_vec_mul_sum(n1, p->x + i, q[0]->x + i, q[1]->x);
  1042. } else if (action == KAD_BACKWARD) {
  1043. if (kad_is_back(q[0]) && q[1]->x)
  1044. for (i = 0; i < n0; i += n1)
  1045. kad_vec_mul_sum(n1, q[0]->g + i, p->g + i, q[1]->x);
  1046. if (kad_is_back(q[1]) && q[0]->x)
  1047. for (i = 0; i < n0; i += n1)
  1048. kad_vec_mul_sum(n1, q[1]->g, p->g + i, q[0]->x + i);
  1049. }
  1050. return 0;
  1051. }
  1052. int kad_op_cmul(kad_node_t *p, int action)
  1053. {
  1054. int i, n_a_row, n_b_row, n_col, n_a_col = 1, n_b_col = 1;
  1055. kad_node_t *q[2];
  1056. q[0] = p->child[0], q[1] = p->child[1];
  1057. n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1]? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1];
  1058. for (i = q[0]->n_d - 1; i >= 0; --i) if (n_a_col < n_col) n_a_col *= q[0]->d[i];
  1059. for (i = q[1]->n_d - 1; i >= 0; --i) if (n_b_col < n_col) n_b_col *= q[1]->d[i];
  1060. n_a_row = kad_len(q[0]) / n_a_col, n_b_row = kad_len(q[1]) / n_b_col;
  1061. if (action == KAD_SYNC_DIM) {
  1062. if (n_a_col != n_b_col) return -1;
  1063. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_row;
  1064. } else if (action == KAD_FORWARD) {
  1065. memset(p->x, 0, n_a_row * n_b_row * sizeof(float));
  1066. if (q[0]->x && q[1]->x)
  1067. kad_sgemm_simple(0, 1, n_a_row, n_b_row, n_col, q[0]->x, q[1]->x, p->x); /* Y = X * trans(W) */
  1068. } else if (action == KAD_BACKWARD) {
  1069. if (kad_is_back(q[0]) && q[1]->x)
  1070. kad_sgemm_simple(0, 0, n_a_row, n_col, n_b_row, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * W */
  1071. if (kad_is_back(q[1]) && q[0]->x)
  1072. kad_sgemm_simple(1, 0, n_b_row, n_col, n_a_row, p->g, q[0]->x, q[1]->g); /* G_w <- trans(G_y) * X */
  1073. }
  1074. return 0;
  1075. }
  1076. int kad_op_matmul(kad_node_t *p, int action) /* TODO: matmul and cmul have different broadcasting rules */
  1077. {
  1078. int n_a_row, n_b_row, n_a_col, n_b_col;
  1079. kad_node_t *q[2];
  1080. q[0] = p->child[0];
  1081. q[1] = p->child[1];
  1082. n_a_row = q[0]->n_d == 1? 1 : q[0]->d[0];
  1083. n_b_row = q[1]->n_d == 1? 1 : q[1]->d[0];
  1084. n_a_col = kad_len(q[0]) / n_a_row;
  1085. n_b_col = kad_len(q[1]) / n_b_row;
  1086. if (action == KAD_SYNC_DIM) {
  1087. if (n_a_col != n_b_row) return -1;
  1088. p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_col;
  1089. } else if (action == KAD_FORWARD) {
  1090. memset(p->x, 0, n_a_row * n_b_col * sizeof(float));
  1091. if (q[0]->x && q[1]->x)
  1092. kad_sgemm_simple(0, 0, n_a_row, n_b_col, n_a_col, q[0]->x, q[1]->x, p->x); /* Y = X * W */
  1093. } else if (action == KAD_BACKWARD) {
  1094. if (kad_is_back(q[0]) && q[1]->x)
  1095. kad_sgemm_simple(0, 1, n_a_row, n_a_col, n_b_col, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * trans(W) */
  1096. if (kad_is_back(q[1]) && q[0]->x)
  1097. kad_sgemm_simple(1, 0, n_b_row, n_b_col, n_a_row, q[0]->x, p->g, q[1]->g); /* G_y <- trans(A) * G_y */
  1098. }
  1099. return 0;
  1100. }
  1101. int kad_op_square(kad_node_t *p, int action)
  1102. {
  1103. int i, n;
  1104. kad_node_t *q = p->child[0];
  1105. n = kad_len(q);
  1106. if (action == KAD_SYNC_DIM) {
  1107. kad_copy_dim1(p, q);
  1108. } else if (action == KAD_FORWARD) {
  1109. for (i = 0; i < n; ++i)
  1110. p->x[i] = q->x[i] * q->x[i];
  1111. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1112. for (i = 0; i < n; ++i)
  1113. q->g[i] += p->g[i] * (q->x[i] + q->x[i]);
  1114. }
  1115. return 0;
  1116. }
  1117. int kad_op_1minus(kad_node_t *p, int action)
  1118. {
  1119. int i, n;
  1120. kad_node_t *q = p->child[0];
  1121. n = kad_len(q);
  1122. if (action == KAD_SYNC_DIM) {
  1123. kad_copy_dim1(p, q);
  1124. } else if (action == KAD_FORWARD) {
  1125. for (i = 0; i < n; ++i) p->x[i] = 1.0f - q->x[i];
  1126. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1127. kad_saxpy(n, -1.0f, p->g, q->g);
  1128. }
  1129. return 0;
  1130. }
  1131. int kad_op_exp(kad_node_t *p, int action)
  1132. {
  1133. int i, n;
  1134. kad_node_t *q = p->child[0];
  1135. n = kad_len(q);
  1136. if (action == KAD_SYNC_DIM) {
  1137. kad_copy_dim1(p, q);
  1138. } else if (action == KAD_FORWARD) {
  1139. for (i = 0; i < n; ++i) p->x[i] = expf(q->x[i]);
  1140. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1141. for (i = 0; i < n; ++i)
  1142. q->g[i] += p->g[i] * p->x[i];
  1143. }
  1144. return 0;
  1145. }
  1146. int kad_op_log(kad_node_t *p, int action)
  1147. {
  1148. int i, n;
  1149. kad_node_t *q = p->child[0];
  1150. n = kad_len(q);
  1151. if (action == KAD_SYNC_DIM) {
  1152. kad_copy_dim1(p, q);
  1153. } else if (action == KAD_FORWARD) {
  1154. for (i = 0; i < n; ++i) p->x[i] = logf(q->x[i]);
  1155. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1156. for (i = 0; i < n; ++i)
  1157. q->g[i] += p->g[i] / q->x[i];
  1158. }
  1159. return 0;
  1160. }
  1161. int kad_op_reduce_sum(kad_node_t *p, int action)
  1162. {
  1163. kad_node_t *q = p->child[0];
  1164. int i, j, k, axis, d0, d1;
  1165. assert(p->ptr);
  1166. axis = *(int32_t*)p->ptr;
  1167. if (axis < 0 || axis >= q->n_d) return -1;
  1168. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1169. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1170. if (action == KAD_SYNC_DIM) {
  1171. p->n_d = q->n_d - 1;
  1172. for (i = j = 0; i < q->n_d; ++i)
  1173. if (i != axis) p->d[j++] = q->d[i];
  1174. } else if (action == KAD_FORWARD) {
  1175. memset(p->x, 0, kad_len(p) * sizeof(float));
  1176. for (i = 0; i < d0; ++i)
  1177. for (j = 0; j < q->d[axis]; ++j)
  1178. for (k = 0; k < d1; ++k)
  1179. p->x[i * d1 + k] += q->x[(i * q->d[axis] + j) * d1 + k];
  1180. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1181. for (i = 0; i < d0; ++i)
  1182. for (j = 0; j < q->d[axis]; ++j)
  1183. for (k = 0; k < d1; ++k)
  1184. q->g[(i * q->d[axis] + j) * d1 + k] += p->g[i * d1 + k];
  1185. }
  1186. return 0;
  1187. }
  1188. int kad_op_reduce_mean(kad_node_t *p, int action)
  1189. {
  1190. kad_node_t *q = p->child[0];
  1191. int i, j, k, axis, d0, d1;
  1192. assert(p->ptr);
  1193. axis = *(int32_t*)p->ptr;
  1194. if (axis < 0 || axis >= q->n_d) return -1;
  1195. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1196. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1197. if (action == KAD_SYNC_DIM) {
  1198. p->n_d = q->n_d - 1;
  1199. for (i = j = 0; i < q->n_d; ++i)
  1200. if (i != axis) p->d[j++] = q->d[i];
  1201. } else if (action == KAD_FORWARD) {
  1202. float t = 1.0f / q->d[axis];
  1203. memset(p->x, 0, kad_len(p) * sizeof(float));
  1204. for (i = 0; i < d0; ++i)
  1205. for (j = 0; j < q->d[axis]; ++j)
  1206. for (k = 0; k < d1; ++k)
  1207. p->x[i * d1 + k] += t * q->x[(i * q->d[axis] + j) * d1 + k];
  1208. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1209. float t = 1.0f / q->d[axis];
  1210. for (i = 0; i < d0; ++i)
  1211. for (j = 0; j < q->d[axis]; ++j)
  1212. for (k = 0; k < d1; ++k)
  1213. q->g[(i * q->d[axis] + j) * d1 + k] += t * p->g[i * d1 + k];
  1214. }
  1215. return 0;
  1216. }
  1217. /********** Miscellaneous **********/
  1218. int kad_op_dropout(kad_node_t *p, int action)
  1219. {
  1220. int i, n;
  1221. kad_node_t *q = p->child[0];
  1222. assert(p->child[1]->n_d == 0);
  1223. n = kad_len(q);
  1224. if (action == KAD_SYNC_DIM) {
  1225. kad_copy_dim1(p, q);
  1226. } else if (action == KAD_ALLOC) {
  1227. if (kad_is_back(p->child[0]))
  1228. p->gtmp = realloc(p->gtmp, n);
  1229. } else if (action == KAD_FORWARD) {
  1230. float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1231. uint8_t *flag = (uint8_t*)p->gtmp;
  1232. for (i = 0; i < n; ++i) {
  1233. int kept = (kad_drand(p->ptr) >= r);
  1234. p->x[i] = kept? q->x[i] * z : 0.0f;
  1235. if (flag) flag[i] = kept;
  1236. }
  1237. } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1238. float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
  1239. uint8_t *flag = (uint8_t*)p->gtmp;
  1240. for (i = 0; i < n; ++i)
  1241. if (flag[i]) q->g[i] += z * p->g[i];
  1242. }
  1243. return 0;
  1244. }
  1245. int kad_op_sample_normal(kad_node_t *p, int action) /* not tested */
  1246. {
  1247. int i, n;
  1248. kad_node_t *q = p->child[0];
  1249. n = kad_len(q);
  1250. if (action == KAD_SYNC_DIM) {
  1251. kad_copy_dim1(p, q);
  1252. } else if (action == KAD_ALLOC) {
  1253. if (kad_is_back(p->child[0]))
  1254. p->gtmp = realloc(p->gtmp, n * sizeof(float));
  1255. } else if (action == KAD_FORWARD) {
  1256. float *r = (float*)p->gtmp;
  1257. for (i = 0; i < n; ++i) {
  1258. float z;
  1259. z = (float)kad_drand_normal(p->ptr);
  1260. p->x[i] = q->x[i] * z;
  1261. if (r) r[i] = z;
  1262. }
  1263. } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
  1264. float *r = (float*)p->gtmp;
  1265. for (i = 0; i < n; ++i)
  1266. q->g[i] += p->g[i] * r[i];
  1267. }
  1268. return 0;
  1269. }
  1270. int kad_op_slice(kad_node_t *p, int action)
  1271. {
  1272. kad_node_t *q = p->child[0];
  1273. int32_t *aux, *range;
  1274. int i, axis, d0, d1;
  1275. assert(p->ptr);
  1276. aux = (int32_t*)p->ptr, axis = aux[0], range = aux + 1;
  1277. if (axis < 0 || axis >= q->n_d) return -1;
  1278. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1279. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1280. if (action == KAD_SYNC_DIM) {
  1281. if (range[0] >= range[1] || range[0] < 0 || range[1] > q->d[axis]) return -1;
  1282. kad_copy_dim1(p, q);
  1283. p->d[axis] = range[1] - range[0];
  1284. } else if (action == KAD_FORWARD) {
  1285. for (i = 0; i < d0; ++i)
  1286. memcpy(&p->x[i * p->d[axis] * d1], &q->x[(i * q->d[axis] + range[0]) * d1], (range[1] - range[0]) * d1 * sizeof(float));
  1287. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1288. for (i = 0; i < d0; ++i)
  1289. kad_saxpy((range[1] - range[0]) * d1, 1.0f, &p->g[i * p->d[axis] * d1], &q->g[(i * q->d[axis] + range[0]) * d1]);
  1290. }
  1291. return 0;
  1292. }
  1293. int kad_op_concat(kad_node_t *p, int action)
  1294. {
  1295. kad_node_t *q = p->child[0];
  1296. int32_t *aux;
  1297. int i, j, k, axis, d0, d1;
  1298. assert(p->ptr);
  1299. aux = (int32_t*)p->ptr, axis = aux[0];
  1300. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1301. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1302. if (action == KAD_SYNC_DIM) {
  1303. for (i = 1; i < p->n_child; ++i) {
  1304. if (p->child[i]->n_d != q->n_d) return -1;
  1305. for (j = 0; j < q->n_d; ++j)
  1306. if (j != axis && q->d[j] != p->child[i]->d[j]) return -1;
  1307. }
  1308. kad_copy_dim1(p, q);
  1309. for (i = 1; i < p->n_child; ++i)
  1310. p->d[axis] += p->child[i]->d[axis];
  1311. } else if (action == KAD_FORWARD) {
  1312. for (i = 0; i < d0; ++i)
  1313. for (j = k = 0; j < p->n_child; ++j) {
  1314. q = p->child[j];
  1315. memcpy(&p->x[(i * p->d[axis] + k) * d1], &q->x[i * q->d[axis] * d1], q->d[axis] * d1 * sizeof(float));
  1316. k += q->d[axis];
  1317. }
  1318. } else if (action == KAD_BACKWARD) {
  1319. for (i = 0; i < d0; ++i)
  1320. for (j = k = 0; j < p->n_child; ++j) {
  1321. q = p->child[j];
  1322. if (!kad_is_back(q)) continue;
  1323. kad_saxpy(q->d[axis] * d1, 1.0f, &p->g[(i * p->d[axis] + k) * d1], &q->g[i * q->d[axis] * d1]);
  1324. k += q->d[axis];
  1325. }
  1326. }
  1327. return 0;
  1328. }
  1329. int kad_op_reshape(kad_node_t *p, int action)
  1330. {
  1331. kad_node_t *q = p->child[0];
  1332. if (action == KAD_SYNC_DIM) {
  1333. if (p->ptr) {
  1334. int32_t *aux = (int32_t*)p->ptr;
  1335. int i, len = 1, n_missing = 0;
  1336. p->n_d = p->ptr_size / 4;
  1337. for (i = 0; i < p->n_d; ++i) p->d[i] = aux[i];
  1338. for (i = 0; i < p->n_d; ++i)
  1339. if (p->d[i] <= 0) ++n_missing;
  1340. else len *= p->d[i];
  1341. if (n_missing == 0 && len != kad_len(q)) return -1;
  1342. if (n_missing > 1) { /* attempt to infer missing dimensions except the last one */
  1343. for (i = 0; i < p->n_d; ++i)
  1344. if (p->d[i] <= 0 && i < q->n_d) {
  1345. p->d[i] = q->d[i], len *= p->d[i];
  1346. if (--n_missing == 1) break;
  1347. }
  1348. if (n_missing > 1) return -1;
  1349. }
  1350. if (n_missing == 1) { /* infer the last missing dimension */
  1351. if (kad_len(q) % len != 0) return -1;
  1352. for (i = 0; i < p->n_d; ++i)
  1353. if (p->d[i] <= 0) p->d[i] = kad_len(q) / len;
  1354. }
  1355. } else kad_copy_dim1(p, q);
  1356. } else if (action == KAD_FORWARD) {
  1357. memcpy(p->x, q->x, kad_len(p) * sizeof(float));
  1358. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1359. kad_saxpy(kad_len(p), 1.0f, p->g, q->g);
  1360. }
  1361. return 0;
  1362. }
  1363. int kad_op_reverse(kad_node_t *p, int action)
  1364. {
  1365. kad_node_t *q = p->child[0];
  1366. int axis, i, j, n, d0, d1;
  1367. axis = p->ptr? *(int32_t*)p->ptr : 0;
  1368. if (axis < 0) axis += q->n_d;
  1369. assert(axis >= 0 && axis < q->n_d);
  1370. for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
  1371. n = q->d[axis];
  1372. for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
  1373. if (action == KAD_SYNC_DIM) {
  1374. kad_copy_dim1(p, q);
  1375. } else if (action == KAD_FORWARD) {
  1376. for (i = 0; i < d0; ++i)
  1377. for (j = 0; j < n; ++j)
  1378. memcpy(&p->x[(i * n + n - 1 - j) * d1], &q->x[(i * n + j) * d1], d1 * sizeof(float));
  1379. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1380. for (i = 0; i < d0; ++i)
  1381. for (j = 0; j < n; ++j)
  1382. kad_saxpy(d1, 1.0f, &p->g[(i * n + n - 1 - j) * d1], &q->g[(i * n + j) * d1]);
  1383. }
  1384. return 0;
  1385. }
  1386. /********** Cost functions **********/
  1387. int kad_op_mse(kad_node_t *p, int action)
  1388. {
  1389. kad_node_t *y1 = p->child[0]; /* test */
  1390. kad_node_t *y0 = p->child[1]; /* truth */
  1391. int i, n;
  1392. n = kad_len(y0);
  1393. if (action == KAD_SYNC_DIM) {
  1394. if (n != kad_len(y1)) return -1;
  1395. p->n_d = 0;
  1396. } else if (action == KAD_FORWARD) {
  1397. double cost = 0.0;
  1398. for (i = 0; i < n; ++i)
  1399. cost += (y1->x[i] - y0->x[i]) * (y1->x[i] - y0->x[i]);
  1400. p->x[0] = (float)(cost / n);
  1401. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1402. float t = 2.0f * p->g[0] / n;
  1403. for (i = 0; i < n; ++i)
  1404. y1->g[i] += t * (y1->x[i] - y0->x[i]);
  1405. }
  1406. return 0;
  1407. }
  1408. int kad_op_ce_bin(kad_node_t *p, int action)
  1409. {
  1410. static const float tiny = 1e-9f;
  1411. kad_node_t *y1 = p->child[0]; /* test */
  1412. kad_node_t *y0 = p->child[1]; /* truth */
  1413. int i, n;
  1414. n = kad_len(y0);
  1415. if (action == KAD_SYNC_DIM) {
  1416. if (n != kad_len(y1)) return -1;
  1417. p->n_d = 0;
  1418. } else if (action == KAD_FORWARD) {
  1419. double cost = 0.0;
  1420. for (i = 0; i < n; ++i) {
  1421. if (y0->x[i] > 0.0f)
  1422. cost += y0->x[i] * log(y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny));
  1423. if (1.0f - y0->x[i] > 0.0f)
  1424. cost += (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
  1425. }
  1426. p->x[0] = (float)(cost / n);
  1427. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1428. float t = p->g[0] / n;
  1429. for (i = 0; i < n; ++i) {
  1430. if (y0->x[i] > 0.0f)
  1431. y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny);
  1432. if (1.0f - y0->x[i] > 0.0f)
  1433. y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
  1434. }
  1435. }
  1436. return 0;
  1437. }
  1438. int kad_op_ce_bin_neg(kad_node_t *p, int action)
  1439. {
  1440. static const float tiny = 1e-9f;
  1441. kad_node_t *y1 = p->child[0]; /* test */
  1442. kad_node_t *y0 = p->child[1]; /* truth */
  1443. int i, n;
  1444. n = kad_len(y0);
  1445. if (action == KAD_SYNC_DIM) {
  1446. if (n != kad_len(y1)) return -1;
  1447. p->n_d = 0;
  1448. } else if (action == KAD_FORWARD) {
  1449. double cost = 0.0;
  1450. for (i = 0; i < n; ++i) {
  1451. if (1.0f + y0->x[i] > 0.0f)
  1452. cost += .5f * (1.0f + y0->x[i]) * log((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny));
  1453. if (1.0f - y0->x[i] > 0.0f)
  1454. cost += .5f * (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
  1455. }
  1456. p->x[0] = (float)(cost / n);
  1457. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1458. float t = p->g[0] / n;
  1459. for (i = 0; i < n; ++i) {
  1460. if (1.0f + y0->x[i] > 0.0f)
  1461. y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny);
  1462. if (1.0f - y0->x[i] > 0.0f)
  1463. y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
  1464. }
  1465. }
  1466. return 0;
  1467. }
  1468. int kad_op_ce_multi(kad_node_t *p, int action)
  1469. {
  1470. static const float tiny = 1e-9f;
  1471. kad_node_t *y1 = p->child[0]; /* test */
  1472. kad_node_t *y0 = p->child[1]; /* truth */
  1473. kad_node_t *c = 0;
  1474. int i, j, n1, d0;
  1475. n1 = y0->d[y0->n_d - 1];
  1476. d0 = kad_len(y0) / n1;
  1477. if (p->n_child == 3) {
  1478. c = p->child[2];
  1479. assert(c->n_d == 1 && c->d[0] == n1);
  1480. }
  1481. if (action == KAD_SYNC_DIM) {
  1482. if (kad_len(y0) != kad_len(y1) || y0->d[y0->n_d - 1] != y1->d[y1->n_d - 1]) return -1;
  1483. p->n_d = 0;
  1484. } else if (action == KAD_FORWARD) {
  1485. double cost = 0.0;
  1486. if (c == 0) {
  1487. for (j = 0; j < d0; ++j) {
  1488. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1489. for (i = 0; i < n1; ++i)
  1490. if (x0[i] > 0.0f)
  1491. cost += x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
  1492. }
  1493. } else {
  1494. for (j = 0; j < d0; ++j) {
  1495. float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1496. for (i = 0; i < n1; ++i)
  1497. if (x0[i] > 0.0f)
  1498. cost += c->x[i] * x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
  1499. }
  1500. }
  1501. p->x[0] = (float)(cost / d0);
  1502. } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
  1503. float t = p->g[0] / d0;
  1504. if (c == 0) {
  1505. for (j = 0; j < d0; ++j) {
  1506. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1507. for (i = 0; i < n1; ++i)
  1508. g[i] -= t * x0[i] / (x1[i] > tiny? x1[i] : tiny);
  1509. }
  1510. } else {
  1511. for (j = 0; j < d0; ++j) {
  1512. float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
  1513. for (i = 0; i < n1; ++i)
  1514. g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny? x1[i] : tiny);
  1515. }
  1516. }
  1517. }
  1518. return 0;
  1519. }
  1520. /********** Normalization **********/
  1521. int kad_op_stdnorm(kad_node_t *p, int action)
  1522. {
  1523. int i, j, n, m;
  1524. kad_node_t *q = p->child[0];
  1525. assert(q->n_d > 0);
  1526. n = q->d[q->n_d - 1];
  1527. m = kad_len(q) / n;
  1528. if (action == KAD_SYNC_DIM) {
  1529. kad_copy_dim1(p, q);
  1530. } else if (action == KAD_ALLOC) {
  1531. p->gtmp = realloc(p->gtmp, m * sizeof(float));
  1532. } else if (action == KAD_FORWARD) {
  1533. float *si = (float*)p->gtmp;
  1534. for (j = 0; j < m; ++j) {
  1535. float *px = &p->x[j * n], *qx = &q->x[j * n];
  1536. float avg, std_inv;
  1537. double s;
  1538. for (i = 0, s = 0.0; i < n; ++i) s += qx[i];
  1539. avg = (float)(s / n);
  1540. for (i = 0; i < n; ++i) px[i] = qx[i] - avg;
  1541. for (i = 0, s = 0.0; i < n; ++i) s += px[i] * px[i];
  1542. std_inv = s == 0.0? 1.0f : (float)(1.0 / sqrt(s / n));
  1543. for (i = 0; i < n; ++i) px[i] *= std_inv;
  1544. si[j] = std_inv;
  1545. }
  1546. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1547. float *si = (float*)p->gtmp;
  1548. for (j = 0; j < m; ++j) {
  1549. float *pg = &p->g[j * n], *qg = &q->g[j * n], *px = &p->x[j * n], std_inv = si[j];
  1550. double s, t;
  1551. for (i = 0, s = t = 0.0; i < n; ++i)
  1552. s += pg[i], t += px[i] * pg[i];
  1553. s /= n, t /= n;
  1554. for (i = 0; i < n; ++i)
  1555. qg[i] += std_inv * (pg[i] - s - px[i] * t);
  1556. }
  1557. }
  1558. return 0;
  1559. }
  1560. /********** Activation functions **********/
  1561. int kad_op_sigm(kad_node_t *p, int action)
  1562. {
  1563. int i, n;
  1564. kad_node_t *q = p->child[0];
  1565. n = kad_len(q);
  1566. if (action == KAD_SYNC_DIM) {
  1567. kad_copy_dim1(p, q);
  1568. } else if (action == KAD_FORWARD) {
  1569. for (i = 0; i < n; ++i)
  1570. p->x[i] = 1.0f / (1.0f + expf(-q->x[i]));
  1571. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1572. for (i = 0; i < n; ++i)
  1573. q->g[i] += p->g[i] * (p->x[i] * (1.0f - p->x[i]));
  1574. }
  1575. return 0;
  1576. }
  1577. int kad_op_tanh(kad_node_t *p, int action)
  1578. {
  1579. int i, n;
  1580. kad_node_t *q = p->child[0];
  1581. n = kad_len(q);
  1582. if (action == KAD_SYNC_DIM) {
  1583. kad_copy_dim1(p, q);
  1584. } else if (action == KAD_FORWARD) {
  1585. for (i = 0; i < n; ++i) {
  1586. if (q->x[i] < -20.0f) p->x[i] = -1.0f;
  1587. else {
  1588. float y;
  1589. y = expf(-2.0f * q->x[i]);
  1590. p->x[i] = (1.0f - y) / (1.0f + y);
  1591. }
  1592. }
  1593. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1594. for (i = 0; i < n; ++i)
  1595. q->g[i] += p->g[i] * (1.0f - p->x[i] * p->x[i]);
  1596. }
  1597. return 0;
  1598. }
  1599. int kad_op_relu(kad_node_t *p, int action)
  1600. {
  1601. int i, n;
  1602. kad_node_t *q = p->child[0];
  1603. n = kad_len(q);
  1604. if (action == KAD_SYNC_DIM) {
  1605. kad_copy_dim1(p, q);
  1606. } else if (action == KAD_FORWARD) {
  1607. for (i = 0; i < n; ++i)
  1608. p->x[i] = q->x[i] > 0.0f? q->x[i] : 0.0f;
  1609. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1610. for (i = 0; i < n; ++i)
  1611. if (q->x[i] > 0.0f)
  1612. q->g[i] += p->g[i];
  1613. }
  1614. return 0;
  1615. }
  1616. int kad_op_sin(kad_node_t *p, int action)
  1617. {
  1618. int i, n;
  1619. kad_node_t *q = p->child[0];
  1620. n = kad_len(q);
  1621. if (action == KAD_SYNC_DIM) {
  1622. kad_copy_dim1(p, q);
  1623. } else if (action == KAD_FORWARD) {
  1624. for (i = 0; i < n; ++i) p->x[i] = sinf(q->x[i]);
  1625. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1626. for (i = 0; i < n; ++i)
  1627. q->g[i] += p->g[i] * cosf(q->x[i]);
  1628. }
  1629. return 0;
  1630. }
  1631. int kad_op_softmax(kad_node_t *p, int action)
  1632. {
  1633. int i, j, n1, d0;
  1634. kad_node_t *q = p->child[0];
  1635. n1 = q->d[q->n_d - 1];
  1636. d0 = kad_len(q) / n1;
  1637. if (action == KAD_SYNC_DIM) {
  1638. kad_copy_dim1(p, q);
  1639. } else if (action == KAD_FORWARD) {
  1640. for (j = 0; j < d0; ++j) {
  1641. float s, max, *x = &q->x[j * n1], *y = &p->x[j * n1];
  1642. for (i = 0, max = -FLT_MAX; i < n1; ++i)
  1643. max = max > x[i]? max : x[i];
  1644. for (i = 0, s = 0.0f; i < n1; ++i) {
  1645. y[i] = expf(x[i] - max);
  1646. s += y[i];
  1647. }
  1648. for (i = 0, s = 1.0f / s; i < n1; ++i) y[i] *= s;
  1649. }
  1650. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1651. for (j = 0; j < d0; ++j) {
  1652. float s, *g = &p->g[j * n1], *y = &p->x[j * n1], *h = &q->g[j * n1];
  1653. for (i = 0, s = 0.0f; i < n1; ++i)
  1654. s += g[i] * y[i];
  1655. for (i = 0; i < n1; ++i)
  1656. h[i] += y[i] * (g[i] - s);
  1657. }
  1658. }
  1659. return 0;
  1660. }
  1661. /********** Multi-node pooling **********/
  1662. int kad_op_avg(kad_node_t *p, int action)
  1663. {
  1664. int i, n;
  1665. float tmp;
  1666. kad_node_t *q;
  1667. assert(p->n_child > 0);
  1668. tmp = 1.0f / p->n_child;
  1669. q = p->child[0];
  1670. n = kad_len(q);
  1671. if (action == KAD_SYNC_DIM) {
  1672. for (i = 1; i < p->n_child; ++i)
  1673. if (kad_len(p->child[i]) != n) return -1;
  1674. kad_copy_dim1(p, q);
  1675. } else if (action == KAD_FORWARD) {
  1676. memcpy(p->x, q->x, n * sizeof(float));
  1677. for (i = 1; i < p->n_child; ++i)
  1678. kad_saxpy(n, 1.0f, p->child[i]->x, p->x);
  1679. for (i = 0; i < n; ++i) p->x[i] *= tmp;
  1680. } else if (action == KAD_BACKWARD) {
  1681. for (i = 0; i < p->n_child; ++i)
  1682. if (kad_is_back(p->child[i]))
  1683. kad_saxpy(n, tmp, p->g, p->child[i]->g);
  1684. }
  1685. return 0;
  1686. }
  1687. int kad_op_max(kad_node_t *p, int action)
  1688. {
  1689. int i, n;
  1690. kad_node_t *q = p->child[0];
  1691. n = kad_len(q);
  1692. if (action == KAD_SYNC_DIM) {
  1693. int *max_j;
  1694. for (i = 1; i < p->n_child; ++i)
  1695. if (kad_len(p->child[i]) != n) return -1;
  1696. kad_copy_dim1(p, q);
  1697. max_j = (int*)calloc(n, sizeof(int));
  1698. p->gtmp = max_j;
  1699. } else if (action == KAD_FORWARD) {
  1700. int j, *max_j = (int*)p->gtmp;
  1701. memset(max_j, 0, n * sizeof(int));
  1702. memcpy(p->x, q->x, n * sizeof(float));
  1703. for (j = 1; j < p->n_child; ++j)
  1704. for (i = 0, q = p->child[j]; i < n; ++i)
  1705. if (q->x[i] > p->x[i]) p->x[i] = q->x[i], max_j[i] = j;
  1706. } else if (action == KAD_BACKWARD) {
  1707. int *max_j = (int*)p->gtmp;
  1708. for (i = 0; i < n; ++i)
  1709. p->child[max_j[i]]->g[i] += p->g[i];
  1710. }
  1711. return 0;
  1712. }
  1713. int kad_op_stack(kad_node_t *p, int action) /* TODO: allow axis, as in TensorFlow */
  1714. {
  1715. int i, n, axis = 0;
  1716. kad_node_t *q;
  1717. assert(p->n_child > 0);
  1718. q = p->child[0];
  1719. n = kad_len(q);
  1720. if (action == KAD_SYNC_DIM) {
  1721. for (i = 1; i < p->n_child; ++i)
  1722. if (kad_len(p->child[i]) != n) return -1;
  1723. p->n_d = q->n_d + 1;
  1724. for (i = 0; i < axis; ++i) p->d[i] = q->d[i];
  1725. p->d[axis] = p->n_child;
  1726. for (; i < q->n_d; ++i) p->d[i+1] = q->d[i];
  1727. } else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */
  1728. for (i = 0; i < p->n_child; ++i)
  1729. memcpy(&p->x[i * n], p->child[i]->x, n * sizeof(float));
  1730. } else if (action == KAD_BACKWARD) {
  1731. for (i = 0; i < p->n_child; ++i)
  1732. if (kad_is_back(p->child[i]))
  1733. kad_saxpy(n, 1.0f, &p->g[i * n], p->child[i]->g);
  1734. }
  1735. return 0;
  1736. }
  1737. int kad_op_select(kad_node_t *p, int action)
  1738. {
  1739. kad_node_t *q;
  1740. int i, n, which;
  1741. which = *(int32_t*)p->ptr;
  1742. if (which < 0) which += p->n_child;
  1743. assert(which >= 0 && which < p->n_child);
  1744. q = p->child[which];
  1745. n = kad_len(q);
  1746. if (action == KAD_SYNC_DIM) {
  1747. for (i = 0; i < p->n_child; ++i)
  1748. if (p->child[i]->n_d != q->n_d || kad_len(p->child[i]) != n)
  1749. break;
  1750. if (i < p->n_child) return -1;
  1751. kad_copy_dim1(p, q);
  1752. } else if (action == KAD_FORWARD) {
  1753. memcpy(p->x, q->x, n * sizeof(float));
  1754. } else if (action == KAD_BACKWARD && kad_is_back(q)) {
  1755. kad_saxpy(n, 1.0f, p->g, q->g);
  1756. }
  1757. return 0;
  1758. }
  1759. /********** 2D convolution **********/
  1760. static void conv_rot180(int d0, int d1, float *x) /* rotate/reverse a weight martix */
  1761. {
  1762. int i, j;
  1763. for (i = 0; i < d0; ++i) {
  1764. float tmp, *xi = &x[i * d1];
  1765. for (j = 0; j < d1>>1; ++j)
  1766. tmp = xi[j], xi[j] = xi[d1-1-j], xi[d1-1-j] = tmp;
  1767. }
  1768. }
  1769. static void conv2d_move_1to3(int d[4], const float *x, float *y) /* convert the NCHW shape to the NHWC shape */
  1770. {
  1771. int i, j, k, l;
  1772. for (i = 0; i < d[0]; ++i)
  1773. for (j = 0; j < d[1]; ++j)
  1774. for (k = 0; k < d[2]; ++k) {
  1775. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1776. for (l = 0; l < d[3]; ++l)
  1777. y[(ik + l) * d[1] + j] = x[ijk + l];
  1778. }
  1779. }
  1780. static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the NHWC shape back to NCHW and add to another NCHW-shaped array */
  1781. {
  1782. int i, j, k, l;
  1783. for (i = 0; i < d[0]; ++i)
  1784. for (j = 0; j < d[1]; ++j)
  1785. for (k = 0; k < d[2]; ++k) {
  1786. int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3];
  1787. for (l = 0; l < d[3]; ++l)
  1788. x[ijk + l] += y[(ik + l) * d[1] + j];
  1789. }
  1790. }
  1791. #define conv_out_size(in_size, aux) (((in_size) - (aux)->kernel_size + (aux)->pad[0] + (aux)->pad[1]) / (aux)->stride + 1)
  1792. #define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1793. int j, l; \
  1794. if (_stride > 1) { \
  1795. for (l = 0; l < _wn; ++l) { \
  1796. const float *xl = &_xx[l - _pad]; \
  1797. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1798. kad_saxpy(_pn, _ww[l], _t, _yy); \
  1799. } \
  1800. } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \
  1801. } while (0)
  1802. #define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1803. int j, l; \
  1804. if (_stride > 1) { \
  1805. for (l = 0; l < _wn; ++l) { \
  1806. float *xl = &_xx[l - _pad]; \
  1807. memset(_t, 0, _pn * sizeof(float)); \
  1808. kad_saxpy(_pn, _ww[l], _yy, _t); \
  1809. for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \
  1810. } \
  1811. } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \
  1812. } while (0)
  1813. #define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
  1814. int j, l; \
  1815. if (_stride > 1) { \
  1816. for (l = 0; l < _wn; ++l) { \
  1817. const float *xl = &_xx[l - _pad]; \
  1818. for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
  1819. _ww[l] += kad_sdot(_pn, _yy, _t); \
  1820. } \
  1821. } else for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \
  1822. } while (0)
  1823. /* Forward and backward passes are implemented with two different algorithms.
  1824. * The first is faster for small kernels with few input channels; otherwise the
  1825. * second algorithm is faster. Both algorithms should produce identical
  1826. * results, up to the precision of "float".
  1827. */
  1828. int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-width (NCHW) shape */
  1829. {
  1830. #define conv2d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCHW shape */ \
  1831. int n, c1, c0, i, k, ii; \
  1832. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1833. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1834. for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \
  1835. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  1836. float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \
  1837. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output row */ \
  1838. float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \
  1839. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  1840. if (x_padded) { \
  1841. memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \
  1842. _xx = x_padded + aux[1].pad[0]; \
  1843. } \
  1844. _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \
  1845. } /* ~i */ \
  1846. } /* ~k, c0, c1, n */ \
  1847. } while (0)
  1848. #define conv2d_loop2(_x, _w, _y, _code) do { /* for the NHWC shape */ \
  1849. int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \
  1850. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1851. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1852. for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
  1853. float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \
  1854. for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output and input row */ \
  1855. float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \
  1856. float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
  1857. if (x_padded) { \
  1858. memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \
  1859. _xx = x_padded; \
  1860. } \
  1861. for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \
  1862. } /* ~i */ \
  1863. } /* ~k, c1, n */ \
  1864. } while (0)
  1865. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  1866. kad_node_t *q = p->child[0], *w = p->child[1];
  1867. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  1868. int algo_switch = 0;
  1869. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  1870. if (w->d[3] * w->d[1] < 16) {
  1871. t = (float*)malloc(p->d[3] * sizeof(float));
  1872. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0;
  1873. } else {
  1874. q1 = (float*)malloc(kad_len(q) * sizeof(float));
  1875. w1 = (float*)malloc(kad_len(w) * sizeof(float));
  1876. x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0;
  1877. algo_switch = 1;
  1878. }
  1879. }
  1880. if (action == KAD_SYNC_DIM) {
  1881. if (q->n_d != 4 || w->n_d != 4) return -1;
  1882. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  1883. p->n_d = 4;
  1884. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  1885. } else if (action == KAD_FORWARD) {
  1886. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1887. memset(p->x, 0, kad_len(p) * sizeof(float));
  1888. if (!algo_switch) { /* this is the first algorithm */
  1889. conv2d_loop1(q->x, w->x, p->x, t, process_row_for);
  1890. } else { /* this is the second algorithm */
  1891. conv2d_move_1to3(q->d, q->x, q1);
  1892. conv2d_move_1to3(w->d, w->x, w1);
  1893. conv2d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  1894. }
  1895. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1896. } else if (action == KAD_BACKWARD) {
  1897. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  1898. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1899. if (!algo_switch) {
  1900. conv2d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  1901. } else {
  1902. memset(q1, 0, kad_len(q) * sizeof(float));
  1903. conv2d_move_1to3(w->d, w->x, w1);
  1904. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  1905. conv2d_add_3to1(q->d, q1, q->g);
  1906. }
  1907. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
  1908. }
  1909. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  1910. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  1911. if (!algo_switch) {
  1912. conv2d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  1913. } else {
  1914. conv2d_move_1to3(q->d, q->x, q1);
  1915. memset(w1, 0, kad_len(w) * sizeof(float));
  1916. conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  1917. conv2d_add_3to1(w->d, w1, w->g);
  1918. }
  1919. conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
  1920. }
  1921. }
  1922. free(t); free(q1); free(w1); free(x_padded);
  1923. return 0;
  1924. }
  1925. int kad_op_max2d(kad_node_t *p, int action)
  1926. {
  1927. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  1928. kad_node_t *q = p->child[0];
  1929. if (action == KAD_SYNC_DIM) {
  1930. if (q->n_d != 4) return -1;
  1931. p->n_d = 4;
  1932. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
  1933. } else if (action == KAD_ALLOC) {
  1934. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  1935. } else if (action == KAD_FORWARD) {
  1936. int rest = 1, len, t, i;
  1937. int *f = (int*)p->gtmp;
  1938. len = kad_len(p);
  1939. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  1940. for (i = 0; i < p->n_d - 2; ++i) rest *= p->d[i];
  1941. for (t = 0; t < rest; ++t) {
  1942. int i, j, k, l, p_row = p->d[p->n_d - 2], p_col = p->d[p->n_d - 1];
  1943. for (i = 0; i < p_row; ++i) {
  1944. int u = (t * p_row + i) * p_col;
  1945. for (k = 0; k < aux[0].kernel_size; ++k) {
  1946. int v, v0, v_end, ii = i * aux[0].stride + k - aux[0].pad[0];
  1947. if (ii < 0 || ii >= q->d[p->n_d - 2]) continue;
  1948. v0 = (t * q->d[p->n_d - 2] + ii) * q->d[p->n_d - 1];
  1949. v_end = v0 + q->d[p->n_d - 1];
  1950. for (l = 0; l < aux[1].kernel_size; ++l)
  1951. for (j = 0, v = v0 + (l > aux[1].pad[0]? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride)
  1952. if (p->x[u + j] < q->x[v])
  1953. p->x[u + j] = q->x[v], f[u + j] = v;
  1954. } /* ~k */
  1955. } /* ~i */
  1956. }
  1957. } else if (action == KAD_BACKWARD) {
  1958. int i, len, *f = (int*)p->gtmp;
  1959. len = kad_len(p);
  1960. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  1961. }
  1962. return 0;
  1963. }
  1964. /********** 1D convolution **********/
  1965. static void conv1d_move_1to2(int d[3], const float *x, float *y)
  1966. {
  1967. int i, j, k;
  1968. for (k = 0; k < d[0]; ++k)
  1969. for (j = 0; j < d[1]; ++j)
  1970. for (i = 0; i < d[2]; ++i)
  1971. y[(k * d[2] + i) * d[1] + j] = x[(k * d[1] + j) * d[2] + i];
  1972. }
  1973. static void conv1d_add_2to1(int d[3], const float *y, float *x)
  1974. {
  1975. int i, j, k;
  1976. for (k = 0; k < d[0]; ++k)
  1977. for (j = 0; j < d[1]; ++j)
  1978. for (i = 0; i < d[2]; ++i)
  1979. x[(k * d[1] + j) * d[2] + i] += y[(k * d[2] + i) * d[1] + j];
  1980. }
  1981. int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW) shape */
  1982. {
  1983. #define conv1d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCW shape */ \
  1984. int n, c1, c0; \
  1985. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  1986. for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
  1987. for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \
  1988. float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \
  1989. float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \
  1990. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  1991. if (x_padded) { \
  1992. memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \
  1993. _xx = x_padded + aux->pad[0]; \
  1994. } \
  1995. _row_func(_xx, _ww, _yy, w->d[2], p->d[2], aux->stride, aux->pad[0], (_tmp)); \
  1996. } /* ~c0, c1, n */ \
  1997. } while (0)
  1998. #define conv1d_loop2(_x, _w, _y, _code) do { /* for the NWC shape */ \
  1999. int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \
  2000. for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
  2001. for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \
  2002. float *_ww = &(_w)[c1 * m]; \
  2003. float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \
  2004. float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
  2005. if (x_padded) { \
  2006. memcpy(x_padded + aux->pad[0] * q->d[1], _xx, q->d[2] * q->d[1] * sizeof(float)); \
  2007. _xx = x_padded; \
  2008. } \
  2009. for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \
  2010. } /* ~c1, n */ \
  2011. } while (0)
  2012. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  2013. kad_node_t *q = p->child[0], *w = p->child[1];
  2014. float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
  2015. int algo_switch = 0;
  2016. if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
  2017. if (w->d[2] * w->d[1] < 32) {
  2018. t = (float*)malloc(p->d[2] * sizeof(float));
  2019. x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0;
  2020. } else {
  2021. q1 = (float*)malloc(kad_len(q) * sizeof(float));
  2022. w1 = (float*)malloc(kad_len(w) * sizeof(float));
  2023. x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0;
  2024. algo_switch = 1;
  2025. }
  2026. }
  2027. if (action == KAD_SYNC_DIM) {
  2028. if (q->n_d != 3 || w->n_d != 3) return -1;
  2029. if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
  2030. p->n_d = 3;
  2031. p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], aux);
  2032. } else if (action == KAD_FORWARD) {
  2033. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2034. memset(p->x, 0, kad_len(p) * sizeof(float));
  2035. if (!algo_switch) { /* this is the first algorithm */
  2036. conv1d_loop1(q->x, w->x, p->x, t, process_row_for);
  2037. } else { /* this is the second algorithm */
  2038. conv1d_move_1to2(q->d, q->x, q1);
  2039. conv1d_move_1to2(w->d, w->x, w1);
  2040. conv1d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
  2041. }
  2042. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2043. } else if (action == KAD_BACKWARD) {
  2044. if (kad_is_back(p->child[0])) { /* backprop to the input array */
  2045. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2046. if (!algo_switch) {
  2047. conv1d_loop1(q->g, w->x, p->g, t, process_row_back_x);
  2048. } else {
  2049. memset(q1, 0, kad_len(q) * sizeof(float));
  2050. conv1d_move_1to2(w->d, w->x, w1);
  2051. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
  2052. conv1d_add_2to1(q->d, q1, q->g);
  2053. }
  2054. conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
  2055. }
  2056. if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */
  2057. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2058. if (!algo_switch) {
  2059. conv1d_loop1(q->x, w->g, p->g, t, process_row_back_w);
  2060. } else {
  2061. conv1d_move_1to2(q->d, q->x, q1);
  2062. memset(w1, 0, kad_len(w) * sizeof(float));
  2063. conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
  2064. conv1d_add_2to1(w->d, w1, w->g);
  2065. }
  2066. conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
  2067. }
  2068. }
  2069. free(t); free(q1); free(w1); free(x_padded);
  2070. return 0;
  2071. }
  2072. int kad_op_max1d(kad_node_t *p, int action)
  2073. {
  2074. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  2075. kad_node_t *q = p->child[0];
  2076. if (action == KAD_SYNC_DIM) {
  2077. if (q->n_d != 3) return -1;
  2078. p->n_d = 3;
  2079. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2080. } else if (action == KAD_ALLOC) {
  2081. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  2082. } else if (action == KAD_FORWARD) {
  2083. int rest = 1, len, t, i;
  2084. int *f = (int*)p->gtmp;
  2085. len = kad_len(p);
  2086. for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
  2087. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2088. for (t = 0; t < rest; ++t) {
  2089. int j, l, p_width = p->d[p->n_d - 1];
  2090. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2091. for (l = 0; l < aux->kernel_size; ++l)
  2092. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2093. if (p->x[u + j] < q->x[v])
  2094. p->x[u + j] = q->x[v], f[u + j] = v;
  2095. }
  2096. } else if (action == KAD_BACKWARD) {
  2097. int i, len, *f = (int*)p->gtmp;
  2098. len = kad_len(p);
  2099. for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
  2100. }
  2101. return 0;
  2102. }
  2103. int kad_op_avg1d(kad_node_t *p, int action)
  2104. {
  2105. conv_conf_t *aux = (conv_conf_t*)p->ptr;
  2106. kad_node_t *q = p->child[0];
  2107. if (action == KAD_SYNC_DIM) {
  2108. if (q->n_d != 3) return -1;
  2109. p->n_d = 3;
  2110. p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
  2111. } else if (action == KAD_ALLOC) {
  2112. p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
  2113. } else if (action == KAD_FORWARD) {
  2114. int rest = 1, len, t, i;
  2115. int *f = (int*)p->gtmp;
  2116. len = kad_len(p);
  2117. for (i = 0; i < len; ++i) p->x[i] = 0.0f, f[i] = 0;
  2118. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2119. for (t = 0; t < rest; ++t) {
  2120. int j, l, p_width = p->d[p->n_d - 1];
  2121. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2122. for (l = 0; l < aux->kernel_size; ++l)
  2123. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2124. p->x[u + j] += q->x[v], ++f[u + j];
  2125. }
  2126. for (i = 0; i < len; ++i) p->x[i] /= f[i];
  2127. } else if (action == KAD_BACKWARD) {
  2128. int rest = 1, t, i;
  2129. int *f = (int*)p->gtmp;
  2130. for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
  2131. for (t = 0; t < rest; ++t) {
  2132. int j, l, p_width = p->d[p->n_d - 1];
  2133. int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
  2134. for (l = 0; l < aux->kernel_size; ++l)
  2135. for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
  2136. q->g[v] += p->g[u + j] / f[u + j];
  2137. }
  2138. }
  2139. return 0;
  2140. }
  2141. /********** List of operators **********/
  2142. kad_op_f kad_op_list[KAD_MAX_OP] = {
  2143. 0,
  2144. kad_op_add, /* 1: element-wise addition */
  2145. kad_op_mul, /* 2: element-wise multiplication */
  2146. kad_op_cmul, /* 3: column multiplication */
  2147. kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */
  2148. kad_op_square, /* 5: square */
  2149. kad_op_sigm, /* 6: sigmoid */
  2150. kad_op_tanh, /* 7: tanh */
  2151. kad_op_relu, /* 8: ReLU */
  2152. kad_op_matmul, /* 9: matrix multiplication */
  2153. kad_op_avg, /* 10: general average pooling (not for ConvNet) */
  2154. kad_op_1minus, /* 11: 1-x */
  2155. kad_op_select, /* 12: choose between one of the children */
  2156. kad_op_ce_multi, /* 13: multi-class cross-entropy */
  2157. kad_op_softmax, /* 14: softmax */
  2158. kad_op_dropout, /* 15: dropout */
  2159. kad_op_conv2d, /* 16: 2D convolution */
  2160. kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */
  2161. kad_op_conv1d, /* 18: 1D convolution */
  2162. kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */
  2163. kad_op_slice, /* 20: slice data at a dimension */
  2164. kad_op_max, /* 21: general max pooling */
  2165. kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */
  2166. kad_op_sub, /* 23: element-wise subtraction */
  2167. kad_op_sample_normal, /* 24: sample from a normal distribution */
  2168. kad_op_reduce_sum, /* 25 */
  2169. kad_op_reduce_mean, /* 26 */
  2170. kad_op_log, /* 27: log() */
  2171. kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */
  2172. kad_op_mse, /* 29: mean square error */
  2173. kad_op_reshape, /* 30 */
  2174. kad_op_concat, /* 31 */
  2175. kad_op_stdnorm, /* 32: layer normalization */
  2176. kad_op_exp, /* 33: exp() */
  2177. kad_op_sin, /* 34: sin() */
  2178. kad_op_stack, /* 35: tf.stack, but on the first axis only */
  2179. kad_op_reverse /* 36: tf.reverse, but on one axis only */
  2180. };
  2181. char *kad_op_name[KAD_MAX_OP] = {
  2182. 0, "add", "mul", "cmul", "ce_bin_neg", "square", "sigm", "tanh", "relu", "matmul", "avg", "1minus", "select", "ce_multi", "softmax",
  2183. "dropout", "conv2d", "max2d", "conv1d", "max1d", "slice", "max", "ce_bin", "sub", "sample_normal", "reduce_sum", "reduce_mean", "log",
  2184. "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse"
  2185. };
  2186. /**************************
  2187. *** Debugging routines ***
  2188. **************************/
  2189. void kad_trap_fe(void)
  2190. {
  2191. #ifdef __SSE__
  2192. _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~(_MM_MASK_INVALID | _MM_MASK_DIV_ZERO));
  2193. #endif
  2194. }
  2195. void kad_print_graph(FILE *fp, int n, kad_node_t **v)
  2196. {
  2197. int i, j;
  2198. for (i = 0; i < n; ++i) v[i]->tmp = i;
  2199. for (i = 0; i < n; ++i) {
  2200. kad_node_t *p = v[i];
  2201. fprintf(fp, "%d\t%x:%x\t%d\t", i, p->flag, p->ext_flag, p->ext_label);
  2202. if (p->pre) fprintf(fp, "%d\t", p->pre->tmp);
  2203. else fprintf(fp, ".\t");
  2204. fputs("[", fp);
  2205. for (j = 0; j < p->n_d; ++j) {
  2206. if (j) fputc(',', fp);
  2207. fprintf(fp, "%d", p->d[j]);
  2208. }
  2209. fprintf(fp, "]\t");
  2210. if (p->n_child) {
  2211. fprintf(fp, "%s(", kad_op_name[p->op]);
  2212. for (j = 0; j < p->n_child; ++j) {
  2213. if (j) fputc(',', fp);
  2214. fprintf(fp, "$%d", p->child[j]->tmp);
  2215. }
  2216. fprintf(fp, ")");
  2217. } else fprintf(fp, "%s", kad_is_feed(p)? "feed" : kad_is_var(p)? "var" : kad_is_const(p)? "const" : "N/A");
  2218. fputc('\n', fp);
  2219. }
  2220. for (i = 0; i < n; ++i) v[i]->tmp = 0;
  2221. }
  2222. static void kad_add_delta(int n, kad_node_t **a, float c, float *delta)
  2223. {
  2224. int i, k;
  2225. for (i = k = 0; i < n; ++i)
  2226. if (kad_is_var(a[i])) {
  2227. kad_saxpy(kad_len(a[i]), c, &delta[k], a[i]->x);
  2228. k += kad_len(a[i]);
  2229. }
  2230. }
  2231. void kad_check_grad(int n, kad_node_t **a, int from)
  2232. {
  2233. const float eps = 1e-5f, rel = 1e-7f / eps;
  2234. int i, k, n_var;
  2235. float *g0, *delta, f0, f_minus, f_plus, s0, s1, rel_err, p_m_err;
  2236. n_var = kad_size_var(n, a);
  2237. g0 = (float*)calloc(n_var, sizeof(float));
  2238. f0 = *kad_eval_at(n, a, from);
  2239. kad_grad(n, a, from);
  2240. for (i = k = 0; i < n; ++i)
  2241. if (kad_is_var(a[i])) {
  2242. memcpy(&g0[k], a[i]->g, kad_len(a[i]) * sizeof(float));
  2243. k += kad_len(a[i]);
  2244. }
  2245. delta = (float*)calloc(n_var, sizeof(float));
  2246. for (k = 0; k < n_var; ++k) delta[k] = (float)kad_drand(0) * eps;
  2247. kad_add_delta(n, a, 1.0f, delta);
  2248. f_plus = *kad_eval_at(n, a, from);
  2249. kad_add_delta(n, a, -2.0f, delta);
  2250. f_minus = *kad_eval_at(n, a, from);
  2251. kad_add_delta(n, a, 1.0f, delta);
  2252. s0 = kad_sdot(n_var, g0, delta);
  2253. s1 = .5f * (f_plus - f_minus);
  2254. fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0/eps, s1/eps, f0);
  2255. if (fabs(s1) >= rel * eps) {
  2256. rel_err = fabsf(fabsf(s0) - fabsf(s1)) / (fabsf(s0) + fabsf(s1));
  2257. p_m_err = fabsf(f_plus + f_minus - 2.0f * f0) / fabsf(f_plus - f_minus);
  2258. fprintf(stderr, "rel_err:%g p_m_err:%g -- ", rel_err, p_m_err);
  2259. if (rel_err >= rel && rel_err > p_m_err) fprintf(stderr, "failed\n");
  2260. else fprintf(stderr, "passed\n");
  2261. } else fprintf(stderr, "skipped\n");
  2262. free(delta); free(g0);
  2263. }